
International Journal of Hybrid Information Technology

Vol.8, No.9 (2015), pp.235-244

http://dx.doi.org/10.14257/ijhit.2015.8.9.22

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

An advanced Parallel FPGA Architecture for Bi-directional

Motion Estimation*

Yangfan Huang, Minjun Deng, Donglian Li, Zhenzhen Li, Mingyan Yu, Cailan

Zeng, Yu Zhang, Zhuo Chen, Pengcheng Cao and Ran Liu

College of Communication Engineering, Chongqing University, Chongqing,

400030, China

hyf@cqu.edu.cn, lizhenzhen_1116@163.com, cao2008cheng@163.com,

ran.liu_cqu@qq.com

Abstract

Motion estimation (ME) and motion compensation (MC) are the key elements for frame

rate up-conversion (FRUC) system. Fast and accurate motion estimation is the premise of

high quality motion compensation. Unlike conventional unidirectional motion estimation

which brings holes, overlaps and blocking artifacts, the bi-directional motion estimation

does not produce any overlapped pixel or hole in the interpolated frames. As a result, the

bi-directional motion estimation has better performance than conventional unidirectional

motion estimation. This paper presents an efficient FPGA architecture targeting

bi-directional motion estimation hardware implementation. This proposed architecture

can achieve real-time processing for 1280x720@60Hz under 200MHz operating

frequency. The design is described in Verilog HDL, verified in Virtex5 FPGA platform.

Experimental results show that the proposed architecture has high performance and low

cost for bi-directional motion estimation algorithm. This architecture can be used for

video post-processing system.

Keywords: Frame Rate Up-Conversion, ME/MC, Bi-Directional Motion Estimation,

FPGA

1. Introduction

With the development of digital television, especially large-scale display device, higher

and higher requirements are put forward on video image processing technology. When

displaying dynamic pictures on LCD, the problem such as tailing, jitter and blurring

usually occurs. To solve these problems, frame rate up conversion (FRUC) technology

arises spontaneously. FRUC can achieve frame rate conversion between different video

scanning formats, so as to reduce the holding time of LCD and eliminate the above

problems effectively [1]. For example, the frame rate can be increased from 50/60fps to

100/120fps to make the display more fluent. Thus, FRUC has become a key technique in

the development of television technology.

Motion estimation and motion compensation are the key algorithms for video

compression encoding and video post-processing [2]. ME plays an important role in the

ME/MC FRUC system; the accuracy of ME could directly affect the quality of

interpolated frames. Fast and accurate motion estimation is the premise for high quality

motion compensation [3]. However, with video solution increased, such as HD 720p or

1080p, the computational complexity of motion estimation algorithm will dramatically

increase. Generally, in hardware implementation, motion estimation normally spends

about 70% resource in video processing system [4]. How to improve the speed and

precision of motion estimator, and how to simplify the corresponding hardware structure

has always been a hot research area in the FRUC system, or even in the video encoding

and video processing aspects.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

236 Copyright ⓒ 2015 SERSC

Many VLSI architectures have been proposed to implement the motion estimator based

on full-search block-matching arithmetic (FS_BMA) algorithm. To meet the requirement

of parallel and high-speed processing, processing element (PE) array are adopted in most

of the architectures. Ref [5] proposed a FS_BMA motion estimator based on frame-level

pipelining. Ref [6] proposed a cascaded motion estimator structure with low resource

consumption and low bandwidth requirements. Ref [7] proposed a VLSI architecture for

unidirectional motion estimation, which is based on the structure of parity array registers.

The architecture can reduce the access times of external memory effectively by data

multiplex. Many of the above architectures are based on unidirectional motion estimation.

However, when applied to the FRUC system, unidirectional motion estimation will result

in holes and overlaps [8]. Bi-directional motion estimation can effectively cope with these

problems. In the VLSI architecture of this paper, efficient data multiplex is adopted to use

the duplicate data. Pipelining technology is adopted to improve the operating frequency.

The final result reveal that this architecture can support the real time processing of 720p

video under the 200 MHz clock frequency with low resource consumption.

The remaining portion of this paper is organized as follows. First, the theory of

bi-directional motion estimation is briefly introduced in Section 2. Then, Section 3

presents the VLSI architecture. With the proposed architecture, Section 4 demonstrates

the implementation results and corresponding simulation. Finally, Section 5 concludes the

paper.

2. Principle of Bi-directional Motion Estimation

2.1. Bi-directional Motion Estimation

Most of the current motion estimators are based on unidirectional motion estimation,

but unidirectional motion estimation will bring holes and overlaps when applied to the

FRUC system. The procedure of the FRUC system based on unidirectional motion

estimation can be separated into three steps [8]:

Step1: divide the previous frame (FP) into several non-overlapping blocks;

Step2: find the most matching block for each block of FP from the next frame (FN);

Step3: determine the position of the inserted block in interpolated frame (FI)

corresponding to the matching blocks in FP and FN.

As shown in Figure 1, when searching matching blocks for two adjacent blocks of FP,

the matching blocks in FN are overlapped, which will result in the problems that he

finally obtained positions of the inserted block in FI are also overlapped. Then, overlap

occurs. Similarly, hole occurs when some areas of FI are not covered by any matching

blocks. Holes and overlaps are inherent defect of unidirectional motion estimation and

hard to be eliminated.

FIFP FN

Figure 1. Unidirectional Motion Estimation

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 237

Bi-directional motion estimation can effectively cope with the above problems. The

procedure of bi-directional motion estimation can be separated into two steps [2]:

Step1: divide FI into several non-overlapping blocks;

Step2: set the blocks of FI as mirror center and find the best match blocks in FP and

FN.

As shown in Figure 2, each block of the FI has only one pair of matching block in the

FP and FN, which will effectively avoid holes and overlaps.

FP FNFI

Figure 2. Bi-Directional Motion Estimation

2.2. Local Full Search Algorithm

There are many search algorithms for bi-directional motion estimation, such as full

search, three-step, four-step and diamond search algorithm. Three-step [9], four-step [10]

and diamond search algorithm [11, 12] are all belong to fast search algorithm. Though the

computations of the three algorithms are small, they cannot get the best matching results.

On the contrary, full search (FS) algorithm [6] can get the best search results, but the

computation is enormous. Based on this, local full search (LFS) algorithm is adopted.

Compared with FS algorithm, the size of searching window of LFS is determined by

developers themselves. In the actual videos, the ranges of motion of moving objects are

moderate and the best matching block can obtained from an appropriate searching

window, , not a whole image instead. Thus, local full search algorithm is adopted in this

paper.

Because of the symmetrical search of bi-directional motion estimation, if the searching

range is too large, some textures of the image may be replaced by background. According

to the results discussed in Ref [4], the size of block is 16×16 and the searching range is -8

to +7. Thus, the searching window is 32×32, as shown in Figure 3.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

238 Copyright ⓒ 2015 SERSC

FI

16

16

32

32

Block

FN

32

32

Searching window of FP

FP
Searching window of FN

Figure 3. Search Range Of Bi-Directional Motion Estimation

2.3. Matching Criterion

The most common matching criteria for bi-directional motion estimation are MSE

(mean square error) criterion and SAD (sum of absolute difference) criterion [2]. MSE

criterion is considered to be the best matching criterion because it can express the

Euclidean distance between the two blocks. The formulation of MSE criterion is

Where M×N, represents the size of matching blocks, (dx, dy) represents motion

vectors, f(i, j, t) represents luminance value at point (i, j) in current image and f(i+dx,

j+dy, t-1) represents luminance value at point (i+dx, j+dy) in the reference image.

The computational complexity of MSE criteria is quite high, so we use SAD criteria

instead.

3. Improved FPGA Architecture

3.1. Data Multiplex

As described in section 2.2, the size of block is 16×16, the searching range is -8 to +7

and the size of searching window is 32×32. Here we use a simple example to explain the

basic principle of data multiplex. In this instance, the size of block is 4×4, the searching

range is -2 to +1 and the size of searching window is 16×16. Figure 4 shows the

relationship between two searching windows of two successive blocks.

11

21
(,) [(, ,) (, , 1)]

y Nx M

x y x y

i x j y

M S E d d f i j t f i d j d t
M N

  

 

    


 

(1)

11

(,) | (, ,) (, , 1) |

y Nx M

x y x y

i x j y

S A D d d f i j t f i d j d t

  

 

     

(2)

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 239

3,1

6,7

5,5

7,8

3,3

5,6

3,2

6,0 6,5

4,6

5,8

4,0

7,5

3,63,5

6,86,1

5,0

7,3

4,4

3,0 3,8

4,1

7,6

5,4

3,4

7,7

4,54,2

7,4

4,3 4,7

7,1

4,8

5,1

6,2

5,3

7,0 7,2

5,2

6,4

3,7

6,3

5,7

6,6

1,9

2,4

3,9

1,6

2,5 2,8 2,9

0,80,0 0,5

2,7

0,1

1,8

4,9

0,7

5,9

0,9

1,2

0,6

7,9

2,3

1,0

6,9

1,1

0,2

1,3

2,0

0,4

1,5

2,2

1,4

2,1

0,3

2,6

1,7 1,10

3,10

2,10

4,10

5,10

0,10

7,10

6,10 6,11

4,11

5,11

3,11

7,11

0,11

1,11

2,11

Searching window of block1

Block 1 Block 2

Searching window of block2

Figure 4. Searching Window Of Two Successive Blocks

It can be seen from Figure 4 that half of the two successive searching windows overlap

with each other. For such a design with large amount of data, read and write operation of

the memory will cost most of the processing time. A method to solve this problem is to

reduce the access times of the memory through data multiplex. In this design, the

following two aspects are considered: (a)data multiplex on different searching direction of

each block; (b)data multiplex between the successive blocks.

3,1

6,7

5,5

3,3

5,6

3,2

6,0 6,5

4,64,0

7,5

3,63,5

6,1

5,0

7,3

4,4

3,0

4,1

7,6

5,4

3,4

7,7

4,54,2

7,4

4,3 4,7

7,1

5,1

6,2

5,3

7,0 7,2

5,2

6,4

3,7

6,3

5,7

6,6

2,4

1,6

2,5

0,0 0,5

2,7

0,1 0,7

1,2

0,6

2,3

1,0 1,1

0,2

1,3

2,0

0,4

1,5

2,2

1,4

2,1

0,3

2,6

1,7

5431 2 86 7

Searching window of FP

Searching window of FN

Current Block in FI

Figure 5. Searching Windows Of The Same Block In FP And FN

Figure 5 depicts the relationships between searching windows in FP and FN. For

convenience, the following specifications are stated first:

(1) The depiction of a block starts with character „B‟ and the depiction of a

pixel starts with character „P‟;

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

240 Copyright ⓒ 2015 SERSC

(2) Pixel coordinate at top left corner of the block is used to depict the block.

For example, block B(2,2) means the 4×4 block, which starts from pixel P(2,2) to

pixel P(5,5);

(3) FP_, FI_ and FN_ are used as a prefix to distinguish which frame the data

belongs to. For example, FN_B (3,3) depicts the 4×4 block in the next frame FN.

In Figure 5, the searching window of block FI_B(2,2) in FP is encircled by red lines

and the searching window in FN is encircled by blue lines. According to the search

principle of bi-directional motion estimation, blocks FP_B(0,0) ~ FP_B(3,3) in previous

FP and blocks FN_B(1,1) ~ FN_B(4,4) are used to calculate SAD values to determine the

best matching block for FI_B(2,2). Table 1 shows the relationships between blocks in FP

and blocks in FN. As shown in Table 1, there is a one-to-one correlation between blocks

in FP and blocks in FN, such as FP_B(0,0) and FN_B(4,4). Then, the SAD values of the

sixteen motion vectors are all calculated. The motion vector with the minimum SAD

value is the motion vector.

Table 1. Relationships Between Blocks In FP And Blocks In FN

Blocks in FP Blocks in FN
Motion vector(from FP to

FN)

FP_B(0 , 0) FN_B(4 , 4) (2, -2)

FP_B(0 , 1) FN_B(4 , 3) (1, -2)

FP_B(0 , 2) FN_B(4 , 2) (0, -2)

FP_B(0 , 3) FN_B(4 , 1) (-1, -2)

FP_B(1 , 0) FN_B(3 , 4) (2, -1)

FP_B(1 , 1) FN_B(3 , 3) (1, -1)

FP_B(1 , 2) FN_B(3 , 2) (0, -1)

FP_B(1 , 3) FN_B(3 , 1) (-1, -1)

FP_B(2 , 0) FN_B(2 , 4) (2, 0)

FP_B(2 , 1) FN_B(2 , 3) (1, 0)

FP_B(2 , 2) FN_B(2 , 2) (0, 0)

FP_B(2 , 3) FN_B(2 , 1) (-1, 0)

FP_B(3 , 0) FN_B(1 , 4) (2, 1)

FP_B(3 , 1) FN_B(1 , 3) (1, 1)

FP_B(3 , 2) FN_B(1 , 2) (0, 1)

FP_B(3 , 3) FN_B(1 , 1) (-1, 1)

3.2. FPGA Architecture

Based on the description above, the corresponding architecture is depicted in Figure 6.

The motion estimator is mainly composed of block ram memory unit and calculating

array; the block ram memory unit is mainly responsible for getting the image and divides

the pixels of FP and FN into four columns according to the odd-even columns. Figure 7

shows the FPGA architecture for calculating array, in this architecture, there are sixteen

processing element (PE) arrays named pe0 to pe15 to calculate SAD values. Each PE is

responsible for calculating the SAD value of one motion vector. After that, the “compare”

component will compare the 16 SAD values and find out the minimum one.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 241

calculating

array

fp_even

MV_Xfp_odd

MV_Y

fn_even

fn_odd

Block ram

memory

unit

pix_int

motion estimator

Figure 6. Architecture Of Motion Estimator

fp_odd

fp_even

fn_odd

fn_even

mvy_mamvx_masad_min

pe15 pe14 pe13 pe12 pe11 pe10 pe9 pe8 pe7 pe6 pe5 pe4 pe3 pe2 pe1 pe0

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 O0

O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 O0

compare

Figure 7. FPGA Architecture for Calculating Array

MUX

MUX

fp_even

fp_odd

fn_even

fn_odd

mux_sel
|fp-fn|

SAD

fn

acc

latech_en

fp

Figure 8. Internal Structure Of PE

Figure 8 shows the internal structure of PE units. Firstly, PE selects the data of odd row

or even row according to the signal mux_sel. Then, the data of FP and the data of FN are

used to calculate the SAD value according to SAD matching criterion.

To fully utilize the overlapping data of the searching window, the motion estimator

puts forward a parity column scanning strategy for data distribution. The data is divided

into four groups according to the parity columns of FP and FN. Each group is flowed into

a shift register group. When motion estimator is operating on the next macro block, the

first few columns of data are still stored in the register group. With this strategy, the

motion estimator can reuse the overlapping data and reduce the access times of memory.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

242 Copyright ⓒ 2015 SERSC

fp_odd

fp_even

fn_odd

fn_even

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 O0

O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 O0

E15

(4,0) (5,0) (6,0) (0,2) (1,2) (3,2) (4,2) (5,2)(2,2) (6,2) (0,4) (1,4)

(0,0)(1,0)(3,0)(4,0)(5,0) (2,0)(6,0)(0,2)(1,2)(3,2)(4,2) (2,2)(5,2)(6,2)(0,4)(1,4)

(1,1)(2,1)(4,1)(5,1)(6,1) (3,1)(7,1)(1,3)(2,3)(4,3)(5,3) (3,3)(6,3)(7,3)(1,5)(2,5)

(4,4)(3,4)(1,4)(6,2)(5,2) (2,4)(4,2)(3,2)(2,2)(0,2) (7,2)(1,2)

Figure 9. Data Distribution Order Of Register Group

Figure 9 shows the data distribution order of odd array register groups and even array

register groups. When calculations for the macro block FI_B(2,2) are finished, the

operations for block FI_B(2,6) will start. At this time, the needed data FP_P(0,4),

FP_P(1,4), FP_P(6,4), FP_P(0,5), … FP_P(6,6) (the overlapping data) for block FI_B(2,2)

are still stored in the register groups, which are also the needed data for the next block

FI_B(2,6). Thus, this architecture can effectively meet the requirement of data multiplex

and improve the data utilization.

4. Synthesis Results and Experimental Results

4.1. Synthesis Results

The proposed architecture has been have been described in Verilog HDL and

synthesized to Xilinx FPGAs. According to the description, a great deal of logical

resources will be needed. The chosen FPGA chip has abundant logical resources for this

architecture. Besides, the chip has two HDMI input ports and one HDMI output port,

which can support HD or even FULL HD resolution at 60Hz frame rate.

The Xilinx software ISE was used to implement the design. After steps of synthesis,

translation, map and place & route, we can get the accumulative hardware resource used

in the system. Table 2 presents a summary of the synthesis results for the proposed

architecture, considering Xilinx xc5vlx330t FPGA.

Table 2. Device Utilization Summary of the Proposed Architecture

Logic Sources Type Used Total Utilization

Number of Slice Registers 31969 207360 15%

Number of Slice LUTs 34418 207360 16%

Number of fully used LUT-FF

pairs
21519 44868 47%

Number of boned IOBs 82 960 8%

Number of Block RAM/FIFO 6 324 1%

Number of BUFG/BUFGCTRLS 2 32 6%

4.2. Experimental Results

The system of bi-directional motion estimation is realized on a Xilinx Virtex-5

xc5vlx330t FPGA. In the experiments, the system captures the image data from DVD

player, up the frame rate of the image data real time, and then displayed the processed

image on the LCD. The results of bi-directional motion estimation system are shown in

Figure 10, the middle pictures are interpolated frames, and the left and right pictures are

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 243

original frames. Corresponding, the performance of the implementation is depicted in

Table 3.

Figure 10. Results Of The Proposed System

Table 3. Performance Of The Implementation

Frequency of system clock 200MHz

Internal Memory 59.8KByte

Frame Size 1280×720

Frame Rate(f/s) 60

Throughput(pixels/s) 52.73M

Through the above analysis, the frame rate of image videos is upgrade from 60Hz to

120Hz by the proposed system based on bi-directional motion estimation, and the effect

of the interpolated frames is similar to the original frames.

5. Conclusion

This paper proposed a real-time FPGA architecture of bi-directional motion estimation

for FRUC system, which is based on processing element arrays. This architecture can

effectively avoid holes and overlaps caused by unidirectional motion estimation. In this

architecture, data multiplex and parallel processing techniques are fully used to reduce the

computational complexity effectively. Meanwhile, pipelining technology is used to

improve the system operating frequency. Experimental result shows that the architecture

can real-time estimate accurate motion vectors under the 200MHz clock frequency. The

architecture is easy for hardware implementation and can be used for video

post-processing system.

Acknowledgment

This project is partially supported by the National Natural Science Foundation of China

(Grant No. 61201347). The authors also gratefully acknowledge the helpful comments

and suggestions of the reviewers.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

244 Copyright ⓒ 2015 SERSC

References

[1] Lee Y L, Nguyen T, "High frame rate motion compensated frame interpolation in high-definition video

processing", in Acoustics Speech and Signal Processing, 2010 IEEE International Conference on, pp.

858-861, (2010).

[2] Byeong-Doo, C., et al., “Motion-Compensated Frame Interpolation Using Bilateral Motion Estimation

and Adaptive Overlapped Block Motion Compensation”, IEEE Transactions on Circuits and Systems for

Video Technology, vol. 17, no. 4, pp. 407-416, (2007).

[3] Gan P, Li Z, et al., “An Improved Block Motion Estimation Algorithm for FRUC System”, Journal of

Computational Information Systems, vol. 10, no. 4, pp. 1629-1637, (2014).

[4] Truong Quang, V., P. Seok-Hwi, and K. Young-Chul, “Efficient architecture for hierarchical

bidirectional motion estimation in frame rate up-conversion applications”, in Computational Intelligence

and Computing Research, 2010 IEEE International Conference on, (2010).

[5] Li-Chang, L., et al, “A frame-level FSBM motion estimation architecture with large search range”, in

Advanced Video and Signal Based Surveillance, 2003 Proceedings. IEEE Conference on, (2003).

[6] Hangu Y. and H. Yu-Hen, “A novel modular systolic array architecture for full-search block matching

motion estimation”, in Acoustics Speech and Signal Processing, 1995 International Conference on,

(1995).

[7] Yeong-Kang, L. and C. Liang-Gee, “A data-interlacing architecture with two-dimensional data-reuse for

full-search block-matching algorithm”, Circuits and Systems for Video Technology, IEEE Transactions

on, vol. 8, no. 2, pp. 124-127,(1998).

[8] Bo-Won, J., et al., “Coarse-to-fine frame interpolation for frame rate up-conversion using pyramid

structure”, IEEE Transactions on Consumer Electronics, vol. 49, no. 3, pp. 499-508, (2003).

[9] Xuan Jing and Chau L.P, “An efficient three-step search algorithm for block motion estimation”, IEEE

Transactions on Multimedia, vol. 6, no. 3, pp. 435-438, (2004).

[10] Dhahri S., Zitouni A. and Tourki R, “A parallel processing architecture for FSS block-matching motion

estimation”, in Communications, Computing and Control Applications, 2011 International Conference

on, pp. 1-5, (2011).

[11] Chun-Ho Cheung and Lai-Man Po, “A novel cross-diamond search algorithm for fast block motion

estimation”, Circuits and Systems for Video Technology, IEEE Transactions on, vol. 12, no. 12, pp.

1168-1177, (2002).

[12] Wang, Y.-n. and Y.-y. Fan, “An Adaptive Diamond Searching Algorithm on Space-time Correlation”, in

Image and Graphics, 2007 Fourth International Conference on, (2007).

Author

Huangyang Fan, Professor, Ph.D.graduated from Dept. of

Radio Engineering, Chongqing University, P.R. China, received

bachelor's, master's and doctoral degrees respectively. He has

been engaged in electronic technology, signal processing

technology research and teaching. He has been teaching the

course of the high frequency electronic circuit, TV technology,

signal detection and estimation for undergraduate and graduate.

Won the national teaching achievement award 1, Chongqing

teaching achievement award 2, Chongqing University teaching

achievement award 4; editor of books 1. As the person in charge

of the project for the provincial and ministerial level scientific

research, military project and the project more than 10; presided

over the completion of Chongqing city and Chongqing University

teaching reform project 5. Published more than 10 papers, won 4

national patents right. Subject: signal and information processing

.

