
International Journal of Hybrid Information Technology

Vol.8, No.9 (2015), pp.121-130

http://dx.doi.org/10.14257/ijhit.2015.8.9.13

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Combinatorial Test Generation Using Improved Harmony

Search Algorithm

Xiaoan Bao
1
, Shuhan Liu

1
, Na Zhang

1*
 and Meng Dong

1

The institute of software of Zhejiang Sci-Tech University

zhangna@zstu.edu.cn

Abstract

Combinatorial testing can effectively detect the faults triggered by interactions among

the various factors in software system. Harmony Search Algorithm (HS), which is a new

optimization algorithm and has been widely applied in the fields of portfolio design,

repeatedly adjusts the solution variables in harmony memory to reach the optimum. In

order to improve the convergence speed of HS, we propose an improved HS algorithm

(IHS) and uses one-test-at-a-time strategy to generate a set of optimum initial solutions in

IHS. To avoid the algorithm falling into local optima, we dynamically adjust the values of

HMCR and PAR in the new algorithm. Compared to some existing algorithms and tools,

the improved harmony search algorithm performs more stably and efficiently in

generating optimum combinatorial test cases.

Keywords: Combinatorial Testing; Harmony Search Algorithm; Software Testing

1. Introduction

The normal operation of a complex software system is restrict to lots of factors, these

factors includes configuration of the system, the external input and internal events.

Interactions between factors will lead into some potential problems, even cause the

system to be crashed seriously. In software testing, only considering the software failures

caused by a single factor will obviously be sufficient for software testing, we need to

consider all the interactions between factors as many as possible. However, testing all the

combinations of these factors is impractical. Therefore, various methods have been

proposed to test combinations coverage and these methods are referred to as the

Interaction Testing or Combinatorial Testing [1-4]. Premising that the error detection

capability of these methods is ensured, these methods use fewer test cases to test the

software fault caused by some interactive factors of the system. A large number of

references indicate that the problem of generating a combinatorial test case suite is an

NPC problem [5-6]. The researchers tried to use intelligent search algorithms, such as

genetic algorithms, ant colony optimization algorithm, particle swarm optimization

algorithm [7-9], to search out the approximately optimal solutions about test cases which

have exact requirement for the combination coverage.

Geem ZW et al., [10-11] proposed Harmony Search algorithm (HS) by simulating the

process of debugging musical harmony, they repeated adjusting the solution variables,

realized the convergence of iterations as the time of iteration increases, and completed

optimization. The method uses few parameter and is easy to implement, it has been

applied to solve numerical optimization problems, pipeline scheduling and structural

engineering optimization [12-14] and so on. In software testing, Abdul Rahman

A.Alsewari [15] based on combinatorial tests to generate combinatorial test cases

efficiently, and proved that the harmony search algorithm perform excellently in solving

highly interactive combinatorial problems. HS algorithm is effective in the neighborhood

of solution suite, however, the random initial solutions generated by standard HS

algorithms affects the performance of the algorithm to a great extent, and the value of key

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

122 Copyright ⓒ 2015 SERSC

parameter is almost fixed and computed by experience, these factors results in that it is

easy to fall into local optimum convergence instability and other problems in the latter.

Thus, in this paper, to gain a harmony memory (HM) which is filled with better initial

solutions, we first give an accurate description of the interaction of the system and use the

Greedy Algorithm to generate test case by the way of one-test-at-a-time strategies, and

then dynamically adjust the Harmony Memory Considering Rate(HMCR) and Pitch

Adjusting Rate(PAR) to improve the speed of searching optimal solutions. At last, we

emulate and analyze the improved algorithm; numbers of experimental results prove that

the algorithm proposed in this paper can gain more efficient and stable test case.

2. Related Works

2.1. The Model of Combinatorial Testing

Supposing there are n factors that influence the Software Under Test(SUT), and these

factors form a finite set
1 2
, , ,

n
F f f f . Each factor

i
f contains

i
a discrete values and

these values are independent after some pre-processing operations such as equivalence

partitioning . Assume that the set of optional values for these factors is

1, 2 , , i
i i

V a （ 1 n） , where
i

V represents the set of possible values of
i

f ,
i

a

represents the number of
i

V (
i i

a V).

Definition 1. The N-tuple 1 2 1 1 2 2
, , , (, , ,)

n n n
te s t v v v v V v V v V is a test case of

the software, accordingly, the suite T which is consist of several te s t is marked as a test

case suite of SUT.

Definition 2. Given a matrix
,

()
i j m n

T V

 and each row of the matrix represents a test

case, T is definited as a test case suite of SUT whose size is m . The combination test

cases are also marked as Coveting Array(CA).

Definition 3. Given the j th column of matrix
,

()
i j m n

A a

 indicates the

parameter
j

f of SUT , where all elements are taken from the set (1, 2 , ,)V j j n , that

is,
,

(1, 2 , ,)
i j j

a V i m . Given a positive integer (1)N N n , if every N columns

cover all the sub arrays of A at least once, calling the A as a N w a y covering array

which is marked as (; ,)C A m N F . Obviously, a combination covering of its sub-

matrices which are taken from the column A are all composed of N strengths,

therefore, N w a y covering array is also called as the fixed combination covering

array.

Definition 4. For a (2)N w a y N covering array A , if t disjoint sub set

(1, 2 , ,)
i

F F i t constitute a subset of C , which contain
i

n factors corresponding

to the columns of ()
i i i

N w a y N N n covering array, where
i

N N , then A is a

variable strength covering array. It could marked as (; , ,)V S C A m N F C .

Definition 5. If the T is the optimal test set, then T needs to meet the standard of

combination coverage and the m must be the minimum size.

2.2. The Basic HS Algorithm

The Harmony Search algorithm is first proposed by Geem. Similar to other heuristic

intelligent optimization algorithms, the HS algorithm is inspired from nature and imitate

behavior of musicians while composing a musical performance, and the process is exactly

same as that of searching out the best objective function. Besides, aesthetic evaluation of

music is determined by music pitch set of all music instruments, likewise, the objective

function is determined by values of all variables.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 123

The core idea of harmony search algorithm is as follows: 1. By some way, the HS

algorithm first generates HMS initial solution vector (harmony), and add them to the

Harmony Memory(HM). 2. The HS randomly generates new harmonics from HM in a

permitted range. Geem designed Harmony Memory Considering Rate(HMCR) and Pitch

Adjusting Rate(PAR) of HM, and applied them to adjust the process of debugging

optimal solution. Then, the HS generated a random harmony ra n d between 0 and 1. If

ra n d is less than HMCR, it will generate a new harmony from HM randomly, and if the

new harmony is better than the worst one in HM, the worst one will be replaced and then

HS use PAR to regulate a new solution in local scope. Otherwise, the HS will gain a new

harmony outside of HM and the new harmony is within the permissible range. 3. Finally,

the objective function produced by the new solution will be compared with the function

produced by the worst solution of HM, if the new solution is better, it will be adopt and

HM will be updated, or it will be abandon. At last, the HS repeats step 1 and step 2, and

end until the maximum number of iterations is satisfied with
m a x

T . The pseudo code of HS

algorithm is listed as follow:

Algorithm1:

1. define objective function ()f x ;

2. define HMCR, PAR and
m a x

T ;

3. generate HM with random harmonies;

4. while t m a x number of iterations do

5. while i number of variables do

6. if (rand H M C R) then

7. choose a value from HM for the variable ;

8. if (rand P A R) then

9. Adjust the value by adding small random amount;

10. end if

11. else

12. Choose a random value;

13. end if

14. end while

15. Accept the new harmony(solution) if better;

16. end while

17. return the current best solution;

3. Improved Harmony Search Algorithm

In this article, in order to enhance convergence speed, we improve standard HS

algorithm, and the new method we proposed, which is based on harmony search algorithm

and is used to generate combinatorial test suite, is composed of two parts. Firstly,

depending on the factors that impact examined system, the range of value and constraints

between factors, we use one-test-at-a-time strategy to generate a set of optimal initial

solutions and apply them to initial harmony memory. Secondly, the improved algorithm

adjusts HMCR and PAR adaptively. Lastly, we use the basic frame of improved harmony

search algorithm to generate the final optimal test suite.

3.1. Initialize HMS

As harmony search algorithm is mainly based on the field of search, so the

performance of initial solution greatly influences the search results. In particular, for some

optimization problems with complex constraints, random initial solution is likely to be

faulty, and even causes that multi-step search can not acquire a viable initial solution.

Then, we use greedy algorithm or other method to search a feasible solution for specific

constraints.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

124 Copyright ⓒ 2015 SERSC

In this paper, one-test-at-a-time strategy, which is effective, easy to expand and most

widely used in generating combinatorial test suite, is utilized to generate an initial HM.

We use this strategy to generate combinatorial test suite: First, we base on factors suite F

and interactions R of S U T to generate a suite called C om bSet which contains all

combinations of distinct factors need to be covered by the test suite. In the initial stage,

we initialize an empty test case set T . Thereafter, we choose a test case T E S T from the

test case suite every time and add it to test case suite T .

Algorithm 2:

input: factor collection F and interactions R

output: Combination test suite T

1. Initialize [0 0][1]T n ;

2. base on factor suite F and interactions R to generate C om bSet ;

3. :U ncom bSet C om bSet ;

4. while(U n co m b S et)

5. Generate T E S T and add it toT ;

6. UpdateU ncom bSet and delete combination covered byT E S T ;

7. end while

3.2. The Process of Searching

In harmony search algorithm, due to the generating of new solutions is determined by

HMCR, the HMCR value should be set relatively high. PAR controls local search in

harmony search algorithm and help avoid problems of local optima. To search out

feasible solutions, in the early iterations we must choose appropriate HMCR and PAR to

expand search scope as possible. In later iterations, in order to avoid results falling into

local optimal we can reduce HMCR and increase PAR to broaden search scope. Generally,

the PAR value changes small to large, and in the early stage of optimization, a smaller

value is more conducive to find local optimal solution. While in the latter stage, a larger

value can increase the diversity of solutions. Therefore, we can optimize adaptive setting

as following:

m ax m in

m ax

m ax

m ax m in

m in

m ax

H M C R -H M C R
H M C R = H M C R k

T

P A R -P A R
P A R = P A R + k

T

 3-1

In formula 3-1,
m a x

T is the number of iteration , k is the number of current iteration,

m a x
H M C R and

m in
H M C R represent the maximum and minimum of HMCR value in memory

library respectively,
m a x

P A R and
m in

P A R stand for maximum and minimum of adjustable

probability respectively.

3.3. Process of Generating Optimal Test Cases

We apply the basic framework of improved harmony search algorithm to generate the

optimal test cases, the steps are as following:

Step 1. Specify Optimization Problem and Initialize Parameter

The basic parameters of IHS algorithm include harmony memory size(HMS), Harmony

Memory Consideration Rate (HMCR), Pitch Adjusting Rate (PAR), the total number of

iteration(
m ax

T)and the initial iteration value (0)
m a x

k k T . The optimization problem can

be specified as follows:

 1 1
() : | , , , , (1, ,)

i i
f x y U n c o m b S e t x y x x x in P P i n 3-2

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 125

Where ()f x is an objective function, x is the set of decision variables
i

x . U ncom bSet is

the set of the of non-covered interaction tuples(y), the objective value is the number of

non-covered interaction tuples covered by x ,
i

P is the set of possible range of values for

each decision variable (
i

P discrete decision variables (1) (2) ()
i i i

x x x k), N is the

number of decision variables and k is the number of possible value for the discrete

variables.

Step 2. Initialize HM

In this step, we use one-test-at-a-time strategy to generate HMS harmony variables
1 2
, , ,

H M S
x x x , and add them to harmony memory(HM), the definition of HM is:

)(

)(

)(

2

1

HMS

N

HMS

2

HMS

1

2

N

2

2

2

1

1

N

1

2

1

1

HMS
xf

xf

xf

xxx

xxx

xxx

HM

 3-3

On the left hand side of Eq.3-3 are the values of the decision variable of the solutions

vectors, while the right hand side contains the fitness evaluation of the solution vectors in

the HM. Firstly, we add solution vector, which covers the maximum interaction, to the

final test case suite and remove the corresponding interaction tuples from the interaction

tuple list. Then, to generate the HM, we fill the HM with solution vectors generated by

Greedy Algorithm which is based on one-test-at-a-time strategy. Thirdly, the same step is

repeated until no solution vectors in HM cover the maximum interaction.

Step 3. Generate a New Harmony Solution Vector

Three methods can be used to generate a new harmony solution vector from new

harmony
1 2

(, , ,)
i N

x x x x and each pitch (1, 2 , ,)
i

x i N , these methods are: 1. studying HM;

2. pitch-adjusted; 3.random pitch.

First, we choose a random rand, when the value of rand is larger than HMCR, we can

choose any vector from
i

P .Or we have to choose a vector b e s t

i
X from HM. The value of

i
x is computed as formula 3-4.

 NiotherXx

HMCRrandxxx
x

ii

HMS

iii

i

,,2,1,,

),,,(
1

 3-4

ra n d represent a random number which is between 0 and 1.

If
i

x is from HM, we need to adjust pitch by PAR. If (1)
i

ra n d i N is less than PAR,

i
x will be moved either to the left or to the right until reaching the border, then move to

the opposite. Otherwise do nothing. Formula is as follows:

 NiotherXx

HMCRrandxxx
x

ii

HMS

iii

i

,,2,1,,

),,,(
1 3-5

Once a new solution vector is generated, the algorithm will produce a new iteration,

and update HMCR and PAR based on the number of current iteration. The formula 3-1 is

used to update HMCR and PAR.

Step 4. Update the Harmony Memory

This step, we need to assess the new harmony solution vector generated in step 3. If the

new solution vector excludes forbidden tuples, the tuples coverage is computed. While if

the new vector is better than the worst vector in HM, the current vector will be updated

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

126 Copyright ⓒ 2015 SERSC

and rearranged accordingly. If the new solution vector includes forbidden tuples, its

contribution is completely ignored. In a word, the result must be better than the worst one

in HM, and the computing process is formula 3-6:

() () m a x ()
w o r s t j

w o r s t

i f f x f x f x

th e n x x

 3-6

Step 5. Check the Stopping Criterion

Repeat step 3 and step 4, and end until the maximum number of iterations is satisfied.

Upon the iterations terminate, the best solution vector in HM is added into the final test

suite and the covered interactions are removed from the interaction list.

Step 6: Check Exit Criteria for Interaction Coverage

When the interaction tuples are all covered, the iteration stops. Otherwise, iteration is

restarted from Step 2.

4. Experimental Results

In this section, we conduct 3 simulations to evalute the effectiveness of the Improved

Harmony Search Algorithm (IHS) and the excellence of HIS compared with standard HS.

In this part, the datas of HS are from literature [16]. For HIS, we adopt the parameter

settings: HMS=100, HMCR=0.7, PAR=0.2, Tmax=1000. In order to compare IHS strategy

with other intelligent strategies, we list 14 system configurations to verify the results:

CA1-4 3-valued parameters, t=2; CA2-13 3-valued parameters, t=2;

CA3-10 10-valued parameters, t=2; CA4-10 15-valued parameters, t=2;

CA5-10 5-valued parameters, t=2; CA6-6 3-valued parameters, t=3;

CA9-6 6-valued parameters, t=3; CA10-7 5-valued parameters, t=3;

CA11-1 5-valued parameters, 8 3-valued parameters, 2 2-valued parameters, t=2;

CA12-1 7-valued parameters, 1 6-valued parameters, 1 5valued parameters, 6 4-valued

parameters, 8 3-valued parameters, 3 2-valued parameters, t=2;

CA13-2 5-valued parameters, 2 4-valued parameters, 2 3-valued parameters, t=3;

CA14-1 10-valued parameters, 2 6-valued parameters, 3 4-valued parameters,1 3-valued

parameters, t=3；

To ensure fairness, we have downloaded and employed all strategies within our

environment, which consists of a desktop PC with Window XP, 2.8 GHz Core 2 DUE

CPU, 2GB of RAM and JDK 1.5 installed.

A. Comparison of Test Cases Size between Ihs And Hs

Test cases size and running time are two crucial factors to determine the performance

of harmony search algorithm, thus to evaluate the effectiveness of IHS, we gain a

sufficient amount of test cases size of IHS and compare them with HS at first. The test

cases size of HS and IHS are generated with 7-parameters, 2-values, and the results are

show in Table.1 and Figure 1:

Table 1. Comparison of Test Cases Size between IHS and HS

t IHS HS R(%)

2 14 14 0

3 48 50 4.0

4 132 157 15.92

5 390 437 10.76

6 811 916 11.46

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 127

Figure 1. Size of Test Cases

Table 1 proves that when the variable strength is 2-way, the size of test cases is both

14. While along with the variable strength increasing, the size of test cases generated by

IHS is less than that generated by HS. For example, When the variable strength is 6, the

size of test cases generated by IHS is 811, while the size of test cases generated by HS is

916, thus the size of test cases generated by IHS is 11.46% less than HS. Besides, we can

conclude that IHS is more efficient in decreasing test case size obviously. Thus, In

combinatorial testing of complex variable strength, the IHS is more effective.

B. Comparison of Running Time between Ihs And Hs

Table 2. Comparison of Running Time between IHS and HS

Figure 2. Running Time

t IHS HS

2 1396 1398

3 4800 4950

4 13068 15229

5 38221 42384

6 81913 89767

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

128 Copyright ⓒ 2015 SERSC

Table 2 and Figure 2 list the running times of IHS and HS, the experimental results

show that when the variable strength is small, the running time of searching out test case

suite by IHS is nearly same as HS, for example, when the variable strength is 2, the

running time of IHS is 1396ms, and the running time of HS is 1398ms. While if the

variable strength is bigger, the running time of IHS significantly decreases compared with

HS, for example, when the variable strength is 6, the running time of IHS is 81913ms,

while the running time of HS is 89767ms. Thus, along with variable strength increasing,

the running time of IHS will be decreasing.

The comparison with test case size and running time of IHS and HS proves that IHS is

more effective in test case size and running time. Using the Greedy Search Algorithm in

the initial stage makes IHS algorithm obtain better initial test cases than HS, so IHS could

generate better test cases in the latter stage. In the intermediate stage, we use adaptive

pitch adjusting to automatically generate test cases within less convergence time, this

resulting in less running time spend on generating test case suite. All experimental results

certificate that the Improved Harmony Search algorithm performs more effectively in

automatically generating test cases, what is more, as the variable strength increases, the

effectiveness will be more obvious.

C. Comparison with other intelligent algorithms

To evaluate the performance of IHS algorithm when compared with other related

intelligent algorithms, we change the number of parameter and the number of values of

these parameters used in software system, and then we compare the performance in test

case size. Table.3 lists the results of IHS, GA, ACA and SA.

Table 3. Comparison of Test Cases Size between IHS and Other Algorithms

Table 3 shows the number of test cases generated by different algorithms. It is evident

that IHS strategy outperforms others (e.g., SA, GA, ACA) and it seems to give an optimal

size in most part of the experiments. When using the system CA1, the size of test case is

the same between IHS, SA, GA and ACA. When using the system CA2, the test cases

size of IHS is equal to GA. While, the IHS has the largest size of the test cases when we

test system CA6 and the SA, GA and ACA have the least size.

5. Conclusion

In this paper, we propose and illustrate our efficient strategy, namely HIS for t-way

combinatorial test case generation using improved initial solutions generated by one-test-

St IHS SA GA AC

A

St IHS SA GA AC

A

CA

1

9 9 9 9 CA

8

113 152 125 125

CA

2

16 16 17 17 CA

9

287 300 331 330

CA

3

156 NA 157 159 CA

10

186 201 218 218

CA

4

339 NA NA NA CA

11

14 15 15 16

CA

5

42 NA NA NA CA

12

40 42 42 42

CA

6

36 33 33 33 CA

13

96 100 108 106

CA

7

58 64 64 64 CA

14

353 360 360 361

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 129

at-a-time strategy and adjusting the HS parameter adaptively. Experimental results

demonstrate that IHS performs more efficiently in generating t-way combinatorial test

case.

Of course, our research work still has limitations. In the future, we should consider the

variable strength and the constraints of test cases. Besides, we should consider the impact

of diversity of initial solutions of every parameter.

Acknowledgements

This research was supported in part by the National Natural Science Foundation of

China (No.61379036); the Natural Science Foundation of Zhejiang Province, China

(No.Y13F020175); 521 ta-lent project of Zhejing Sci-Tech University; the New-shoot

Talents Program of Zhejiang province (Grant No.2014R406073); Public technology

research plan of Zhejiang Province(Grant No. 2014C33102); Major scientific and

technological special key industrial projects of Zhejiang Province, China (Grant No.

2014C01047).

References

[1] Mandl R. Orthogonal latin squares: An application of experimental design to compiler testing.

Communications of the ACM. 28,10:1054-1058(1985).

[2] Li Longshu, Cui Yingxia and Yang Yun. Combinatorial test cases with constraints in software systems.

IEEE 16th Computer Supported Cooperative Work in Design. (2012): 195-199; Wuhan,China

[3] KUHN D R, and REILLY M J. An investigation of the applicability of design of experiments to software

testing. IEEE Software Engineering Workshop.(2002):91-95;Los Alamitos, USA

[4] Yan Jun, and Zhang Jian. Combinatorial testing principles and methods. Journal of Software. 120,

6:1393-1405 (2009)

[5] Williams A W, and Probert R L. Formulation of the Interaction Test Coverage Problem as an Integer

Program. Proceedings of 14th International Conference on the Testing of Communicating Systems.

(2002) March:283-298

[6] Smith B, Feather M S, and Muscettola N. Challenges and Methods in Testing the Remote Agent Planner.

Proc. 5th Int’1 Conf. (2000):254-263

[7] Lodha, G.M, and Gaikwad, R.S. Search based software testing with genetic using fitness function.

Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH),

2014 Innovative Applications of. (2014):159-163

[8] X. Chen, Q. Gu, A. Li, and D. Chen, Variable strength Interaction Testing with an Ant Colony System

Approach. Proceedings of the 16th Asia-Pacific Software Engineering Conference, (2009):160–167

[9] T. Shiba, T. Tsuchiya, and T. Kikuno, Using Artificial Life Techniques to Generate Test Cases for

Combinatorial Ttesting. Proceedings of the 28th Annual International Computer Software and

Applications Conference, (2004):72–77.

[10] Geem ZW, and Kim JH. A New Heuristic Optimization Algorithm: Harmony Search. Simulation.76, 2:

60−68 (2001)

[11] Kim JH, Geem ZW, and Kim ES. Parameter estimation of the nonlinear muskingum model using

harmony search. Journal of the American Water Resources Association. 37, 5: 1131−1138 (2001)

[12] Yadav, P. Kumar, R. Panda, S.K. Chang, and C.S. Optimal Thrust Allocation for Semisubmersible Oil

Rig Platforms Using Improved Harmony Search Algorithm. The IEEE Journal of Oceanic Engineering 3,

39(2014)

[13] Valian, Ehsan; Tavakoli, Saeed; Mohanna, and Shahram. An intelligent global harmony search approach

to continuous optimization problems. APPLIED MATHEMATICS AND COMPUTATION, 670-

684(2014)

[14] Manjarres, D. ;Landa-Torres, I.; and Gil-Lopez, S. A survey on applications of the harmony search

algorithm. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE. 8, 26: 1818-

1831(2013)

[15] Abdul Rahman A. Alsewari,and Kamal Z.Zamli. Design and implementation of a harmony-search-based

variable-strength t-way testing strategy with constraints support .Information and Software Technology.

54:553-568(2012)

[16] Alsewari, A.A. Zamli, ansd K.Z. Interaction test data generation using Harmony Search Algorithm.

Industrial Electronics and Applications. 2011 IEEE Symposium on . (2011):559-564.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

130 Copyright ⓒ 2015 SERSC

Authors

Bao Xiao’an, born in 1973, M.S. He is a professor and mainly

researches adaptive software, software testing and intelligent

information processing.

Liu Shuhan, born in 1991, Master candidate. Her main research

interests include software testing.

Zhang Na, born in 1977, M.S. She mainly researches software

engineering and software testing technology.

Dong Meng, born in1989. Master candidate. His main research

interests include reliability model and analysis of software testing.

