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Abstract 

Magnetotactic bacteria optimization algorithm(MBOA) is an optimization algorithm 

based on the characteristics of magnetotactic bacteria, which is a kind of polyphyletic 

group of prokaryotes with the characteristics of magnetotaxis that make them orient and 

swim along geomagnetic field lines. In this paper, an improved MBOA is proposed. At 

first, it generates moments based on the interaction energy of cells. Then, the moments of 

cells are regulated based on the best cell. Some cells have chance to move towards the 

best one. At last, some worse cells will be replaced by randomly generated solutions in 

order to keep diversity. Thus, it can find optimum solution. It is tested on ten standard 

function problems and compared with many popular optimization algorithms, including 

CLPSO, LeDE and ABC. Experiment results show that the improved MBOA is very 

effective in optimization problems and has superior performance to the compared 

methods on many benchmark functions. 
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1. Introduction 

Swarm Intelligence(SI), such as Ant Colony Optimization(ACO) [1] and Particle 

Swarm Optimization(PSO) [2], is one of important branches of natural computing. 

Learning from life systems, people have developed many SI methods to solve 

complicated optimization problems since evolutionary algorithms(EAs) [3] were inspired 

by evolutionary biology in 1960s. Since 2000s, Some relative new natural computing 

techniques, such as Artificial Bee Colony(ABC) [4], Artificial Fish Swarm(AFS) [5], 

Biogeography-Based Optimization Algorithm(BBO) [6] were developed based on 

different life systems. All of them are inspired by animals behaviors. 

In nature, magnetotactic bacteria(MTB) [7] is a special kind of bacteria that can orient 

and swim along magnetic field lines. They are different from chemotactic bacteria in that 

they have mineral particles inside their bodies, and their enveloping membrane, together 

called magnetosomes(MTSs). With the aid of magnetosome chains, magnetotactic 

bacteria can orient themselves along geomagnetic field lines (magnetotaxis) in the earth 

magnetic field [8]. 

Based on the biology principle of MTB, Mo has proposed an original magnetotactic 

bacteria optimization algorithm [9].It has been tested on standard benchmark functions 

including multi-modal functions and compared with many popular and classical 

NIAs. MBOA shows better performance and good potential ability in solving 

optimization problems. It has been improved into several  new variants of MBOA 

[10-15]. It shows the potential ability of solving optimization problems and has very fast 

convergence speed. 

In this paper, the original MBOA is improved. The problem solutions are generated by 

moments mechanisms based on interaction energy among solutions in the new improved 

algorithm. It works by mainly three steps: MTSs generation, MTSs migration and MTSs 

replacement. The MTSs migration is based on the half better individual’s moments. 
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2. Magnetotactic Bacteria Optimization Algorithm Based on Best 

Moments 
 

2.1. Biological Basis 

In MTB, a chain of magnetosomes makes up of compass of magnetotactic bacteria, 

which keeps the long axis of the bacteria parallel to the geomagnetic field direction [16]. 

For the MTB, each cell carries a remanent magnetic moment, the direction of which is 

given by the orientation of the magnetosome-chain axis and its magnetic polarity [17]. If 

each cell is to align its magnetosome chain parallel to the other ones, with the same 

polarity would yield the most efficient swimming way for living. This specific behavior is 

the inspiration source of the MBOA. For the MBOA, we consider the state that each cell 

is to align its magnetosome chain parallel to the other ones, with the same polarity would 

yield the most efficient swimming way for living as finding the optimal solution. The 

interaction energy between different chains in different cells make MTB strive for better 

living. In Figure 1, the compass of multi-cells in a magnetotactic bacterium is shown. 

The simplest hypothesis for magnetotaxis is passive orientation of the swimming 

bacterium along the magnetic field lines by the torque exerted by the field on the 

magnetic moment. Considering a chain of magnetosomes as a cylinder of infinite length 

in a magnetic field B, its energy of the bacterial moment can be estimated as follows [18]. 
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where   is the angle between M and B.  
According to [19], the interaction energy between two dipoles from different 

magnetosome chains is: 
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where ,2,1,0, mn  are the number of magnetosomes of two cells, D  is the distance 

between neighbor centers in a chain.  

Suppose the interaction energy between two cells in a MTB is as follows:  
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where
mn

EE ,  are the energy of two cells, respectively. If two cells have the same 

number of magnetosomes, that is, mn   , and suppose 
mn

EE  , then we have 

mnmn
EEE 

,
. 

 

2.2. Procedures of MBOA 

In the MBOA, a population is a magnetotactic bacterium with multi-cells. A cell is a 

candidate solution, that is, a vector. The attributes of a solution vector are considered as 

magnetosomes. The values of attributes of a solution vector is considered as the moments 

of a cell. The interaction between two cells is represented by the differential vector 

between them. In the following we describe he the main procedures of MBOA. 

Initialization of the population The initial population is filled with number of randomly 

generated-dimensional real-valued vectors (i.e., cells of a MTB). Let represents the ith 

cell (for generation index t=0) initialized randomly. Then each cell is generated as 

follows: 

, m in , m ax , m in ,
(0 ,1) ( )

i j j j j
x x ra n d x x                                 (4) 



International Journal of Hybrid Information Technology 

Vol.8, No.8 (2015) 

 

 

Copyright ⓒ 2015 SERSC  105 

where 1, 2 , . . . ,i S N  , 1, 2 , . . . ,j n  . 
m a x , j

x  and 
m in , j

x  are upper and lower bounds for 

the dimension j  , respectively. ( 0 ,1)r a n d   is a random number between 0 and 1. Thus, a 

N n distance matrix
1 2

[ , , ..., ] '
N

D D D D  is generated, where i  and r  is mutually 

different integer indices from {1, 2, . . . ,  N }, and r  is randomly chosen one. 

MTSs generation Based on the distances among cells, the interaction energy 
i

e  

between two cells based on (2) is defined as 
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where t  is the generation index, 
1

c and
2

c  are constants. 
,p q

d  is randomly selected 

from
p

D  . ( )
i

n o rm D is the Euclidean length of vector
i

D . p  and r  are mutually 

different and randomly chosen integer indices from{1, 2, . . . , N  }. {1, 2 , . . . , }q n  

stands for one randomly chosen integer. n  is the dimensions of a cell. 
i

D  stands for the 

Euclidean distance between two cells ,
i r

X X . 

After obtaining interaction energy, for simplifying calculation, ignore where   is the 

angle between M and B and direction in (1), the moments 
i

M are generated as follows: 
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i

i

E t
M t

B
                                                                      (7) 

where B  is a constant named magnetic field strength. Then the total moments of a cell is 

regulated as follows: 

, , ,
( ) ( ) ( )

i j i j r q
x t x t m t ra n d                                               (8) 

where 
,r q

m  is randomly chosen from 
i

m . r a n d  is a random number in interval 

(0,1). MTSs regulation After moments generation, evaluate the population according to 

cells’ fitness, then the moments regulation is realized as follows. We set a magnetic field 

strength probability m p . If rand> m p , the moments in the cell migrate as follows: 

 

( 1) ( ) ( ( ) ( ))
i b e s t b e s t i

X t X t X t X t ra n d                                    (9) 

Otherwise,  

( 1) ( ) ( ( ) ( ))
i r b e s t i

X t X t X t X t ra n d                                 (10) 

 ra n d  is a random number in interval (0,1).  r is randomly chosen from {1, 2 . . ., N }. 
In this step, the best cell’s moments are used to regulate the moments of the cells in 

next generation. Based on (9), some new cells will be generated base on the best one in 

the current generation. Thus it has an enhanced local search ability. Based on(10), some 

randomly chosen cells will receive information and regulate their moments based on the 

interaction between the best cell and some cells of last next generation. Thus, it will have 

chance to approximate to the best one. Thus, it can enhance the ability of global search. 

And it can also increase the solutions diversity of the algorithm. Based on this step, some 

cells in the population will 50% chance to be regulated based on the moments of the best 

cell. 

MBOA obtains the optimal solution by regulating the moments of cells continually by 

the process of MTS generation, MTS expanding and MTS replacement. When the MBOA 

obtains the optimal solution, it corresponds to the state that when the moments of all cells 

are oriented in the geomagnetic field. 

MTSs replacement after the moments migration, evaluate the population according to 

cells’ fitness, then some worse moments are replaced by the following way: 
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,
( 1) ( ) (( (1, ) 1) (1, ))

i r q
X t m t ra n d n ra n d n                                    (11) 

where 
,r q

m  is randomly chosen from 
r

m . r is randomly chosen from{1, 2 . . ., N }. 

{1, 2 , . . . , }q n stands for one randomly chosen integer. (1, )r a n d n is a random vector 

with dimensions. 

At last, evaluate the population according to cells’ fitness after replacement. In general, 

one fifth of the cells with worse fitness will be replaced by randomly generated vectors 

based on(11). 

Generally, MBOA includes the following steps: 

I. Define the simple bounds, determination of algorithm parameters. 

II. Initialization: Randomly create the initial population in the search space. 

III. while stop criteria is not met  

      for  =1: N 

          Calculate interaction distance according to(5) 

       end for 

      for  =1: N 

          for  =1:  N 

          Calculate interaction energy according to (6)  

          end for 

          Obtain moments according to (7) 

          for  =1: N 

          MTSs generation according to (8) 

          end for 

     end for 

     Evaluate the population according to fitness 

   for  =1:  N 

        if rand> 0.5 

   MTSs regulation according to (9)  

       else  

   MTSs regulation according to (10)  

       end if 

end for 

   Evaluate the population according to fitness 

   for  = N /5:N     

        MTSs replacement to (11) 

   end for 

  Memorize the best solution achieved so far 

VI. end while 
 

3. Simulation Results 

To test the performance of the proposed algorithm, we demonstrate the effectiveness of 

MBOA by comparing the performance of MBOA with the state-of-the-art evolutionary 

algorithms on 10 benchmark functions. These benchmark functions are widely used in 

evaluating global numerical optimization algorithms. 

 

3.1. Benchmark Functions and Experiments Settings 

A short description of 10 benchmark functions[20] is shown in Tables 1. These 

functions can be classified into two groups. f1– f6 are unimodal; f7 is a noisy quartic 

function; The unimodal functions here are used to test if MBOA can still maintain the 

fast-converging feature. The next seven functions f8–f10 are multimodal functions and 

the number of local minima increases exponentially with the problem dimension. These 
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functions can be used to test the global search ability of the algorithm in avoiding 

premature convergence.  

To validate the effectiveness of the proposed algorithm, we compare MBOA with the 

CLPSO [21], Learning -enhanced differential evolution (LeDE) [22], standard ABC [23]. 

And for the compared methods, we follow the parameter settings in the original paper. In 

the MBOA, there are three parameters settings, including the magnetic field strength B  

=3, 1c =50, 2c =0.003, magnetic field strength probability m p  =0.5. 

Table 1. Benchmark Functions used in Experiments 

Function Range D Formulation 

1
f : Sphere 

[-100, 100] 30 2

1
( )

n

ii
f x x


   

2f : Schwefel2.22 [-10, 10] 30 
1 1

( )
nn

i ii i
f x x x

 
  

 

3
f : Schwefel1.2 

[-100, 100] 30 2

1 1
( ) ( )

n i

ji j
f x x

 
  

 

4
f : Zakharov 

[-5, 10] 30 2 2 4

1 1 1
( ) ( 0 .5 ) ( 0 .5 )

n n n

i i ii i i
f x x ix ix

  
    

 

5
f : Step 

[-100, 100] 30 
 

2

1
( ) 0 .5

n

ii
f x x


   

 

6
f : Schwefel2.21

 

[-100, 100] 30  ( ) m a x ,1i

i

f x x i n    

7
f : Noisy Quartic 

[-1.28, 1.28] 30 4

1
( ) [ 0 ,1)

n

ii
f x ix r a n d o m


 

 

8
f : Rosenbrock 

[-30, 30] 30 1 2 2 2

11
( ) [1 0 0 ( ) ( 1) ]

n

i i ii
f x x x x




   

 

9
f : Schwefel 

[-500, 500] 30 
1

( ) s in (
n

i ii
f x x x


 

 

1 0f : Rastrigin [-5.12, 5,12] 30 2

1
( ) [ 1 0 c o s ( 2 ) 1 0

n

i ii
f x x x


  

 

 

3.2. Comparison Results 

In this section, we compare the improved MBOA(iMBOA) with the original 

MBOA. And it is also compared with CLPSO, LeDE and ABC on ten benchmark 

functions, where LeDE uses the number of FEs as described in  [22] and the other 

algorithms use the number of 3.0×105 FEs. The results of LeDE are gained from 

[22] directly. The convergence comparison of original MBOA and iMBOA is shown 

in Figure1 for four examples. 

Table 2. Comparison between Original MBOA and iMBOA 

Fun NFES Original MBOA iMBOA 

f1: Step 1500×100 0(0) 0(0) 

f2:Sphere 2000×100 4.04e-12(4.42e-13) 0(0) 

f3: Sumsquare 5000×100 4.89e-13(7.68e-10) 0(0) 

f4:Noisy Quartic 1500×100 8.85e-06(8.14e-06) 1.36e-05(1.33e-05) 

f5:Easom 1500×100 -2.67e-09(1.81e-17) -1(1.16e-08) 

f6: Schwefel1.2 3000×100 5.68e-10(7.22e-11) 0(0) 

f7: Zakharov 2000×100 5.59e-10(1.56e-10) 0(0) 

f8:Powell 1500×100 6.21e-09(1.06e-09) 0(0) 

f9:Rotatedhyper 1500×100 1.17e-10(1.44e-11) 0(0) 

f10: Rastrigin 4000×100 2.98e-07(4.03e-08) 0(0) 

f11:Branin 100×100 -1.23 (0.57) 0.3979(1.30-05) 

f12: Dropwave 200×100 -1 (3.96e-14) -1 (0) 

f13:Schaffer  0(0) 0(0) 

f14:Griewank  2.67e-17(3.54e-18) 0(0) 
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Figure 1. Convergence Comparison of Original MBOA and iMBOA for 
Functions (a)Step,(b)Sphere, (c) Sumsquare and (d) Schwefel1.2 

In Figure 1, it can be seen that the improved MBOA is bettern than original MBOA on 

the performance of covergence. The results are shown in Table 3 in terms of the mean, 

st.d, mid, best, and worst of the solutions obtained in the 30 independent runs by each 

algorithm. And the best results of each function are highlighted in boldface. 

Table 3. Performance Comparisons of MBOA, CLPSO, ABC and LeDE 

Func. Min  CLPSO LeDE[23] ABC iMBOA 

 

1
f  

 

 

 

0 

Mean 1.6107e+03 2.19e-34 3.7410e-04 0 

 St.d 8.8223e+03 1.18e-34 5.2756e-04 0 

0 Mid 1.8656e-05 / 1.8222e-04 0 

 best 1.4310e-07 / 1.0277e-05 0 

 worst 4,8322e+04 / 0.0021 0 

 

2
f  

 

 

0 

Mean 7.0509 1.09e-24 0.0185 0 

 St.d 26.8787 4.09e-25 0.0139 0 

0 Mid 5.5581e-05 / 0.0126 0 

 best 5.0224e-06 / 0.0060 0 

 worst 111.8162 / 0.0691 0 

 

3
f  

 

 

0 

Mean 2.4509e+04 1.16e-38 1.8136e+04 0 

 St.d 2.2241e+04 2.28e-38 3.0732e+03 0 

0 Mid 1.6661e+04 / 1.8838e+04 0 

 best 1.9675e+03 / 1.0380e+04 0 

 worst 9.7116e+04 / 2.3634e+04 0 

 

4
f  

 

 

0 

Mean 1.2006 / 6.1615 0 

 St.d 6.3836 / 4.5043 0 

0 Mid 0.0118 / 4.3177 0 

 best 9.7792e-04 / 0.6140 0 

 worst 34.9975 / 15.0324 0 

 

5
f  

 

 

0 

Mean 0.0667 0 0.1333 0 

 St.d 0.2537 0 0.3457 0 

0 Mid 0 / 0 0 

 best 0 / 0 0 

 worst 1 / 1 0 

  

 

0 

Mean 5.0312 4.66e-27 53.4590 0 
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6
f   St.d 3.6695 2.31e-26 7.0503 0 

0 Mid 3.5064 / 55.1662 0 

 best 1.4613 / 34.9710 0 

 worst 13.8917 / 67.9291 0 

 

7
f  

 

 

 

0 

Mean 4.3756 1.10e-03 0.2888 7.5250e-06 

 St.d 16.7644 5.58e-04 0.07524 6.8837e-06 

0 Mid 0.0506 / 0.2859 5.1280e-06 

 best 0.0152 / 0.16793 2.8292e-08 

 worst 78.0337 / 0.4516 2.9347e-05 

 

8
f  

 

 

0 

Mean 85.3100 0 29.5949 25.0222 

 St.d 65.4288 0 19.5743 2.5887 

0 Mid 87.4317 / 25.6863 24.4530 

 best 0.3284 / 7.5442 21.8180 

 worst 310.5533 / 85.1434 28.7978 

 

9
f  

 

 

 

Mean -11850.1977 -12569.5 -11478.017 -12411.5675 

 St.d 1160.4331 0 203.50099 507.60398 

−12569.5 Mid -12569.4338 / -

11460.6296 

-12569.4866 

 best -12569.4866 / -

11940.0760 

-12569.4866 

 worst -8270.7658 / -

11025.9588 

-10437.5966 

 

1 0
f  

 

 

0 

Mean 4.6539 0 7.0311 0 

 St.d 7.3767 0 2.5665 0 

0 Mid 0.4634 / 7.2404 0 

 best 5.5516e-06 / 2.4916 0 

 worst 25.4025 / 12.2860 0 

 

As is shown in Table 3, we can see that MBOA outperforms CLPSO, LeDE and ABC 

on most of the test functions, especially when solving the unimodal problems, the MBOA 

algorithm offers the best performance on all the test functions. In particular, it offers the 

highest accuracy on functions f1 to f7. And MBOA and LeDE show the same 

performance on function f5. For multimodel and high-dimension functions f8 and f9, 

MBOA performs better than CLPSO and ABC but has worse performance compared with 

LeDE. The MBOA algorithm and LeDE can also find the optimal solutions on the 

complex multimodal functions f10. 

 

4. Conclusion 

MBOA is a new optimization algorithm inspired by the biology behaviors of 

magnetotactic bacteria. It shows potential ability in solving optimization problems. In this 

paper, MBOA is improved based on the interaction between the moments of the best 

individual and those of some randomly chosen individual. It is compared with CLPSO, 

LeDE and ABC. The comparison results show that the proposed algorithm has superior 

performance on many benchmark functions and has the fastest convergence speed. 

In future, it will be analyzed in theory and improved its performance for solving those 

problems which are not solved well in this paper. In addition, MBOA will be improved to 

solve more complex problems including constrained optimization, multi-objective 

optimization and some real engineering problems. 
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