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Abstract 

This paper investigates the influence of alcohol on brain complexity. Considering 

electro-encephalogram (EEG) has the nonlinear dynamics characteristic of time-varying 

and non-stationary, we introduce the wavelet entropy (WE) analysis. We denoise EEG 

signal by using wavelet decomposition, then calculate the wavelet entropy of the denoised 

signal and analyze the nonlinear complexity. In 64 conductive poles experiments and in 

different stimulus experiments for FP2 electrode's EEG, the drinkers' EEG wavelet 

entropy is greater than normal people's. The wavelet entropy of every conductive pole of 

drinkers’ or normal persons’ is inconformity.  
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1. Introduction 

Drunk driving is the major reason for traffic accidents. The regularity of drinkers' brain 

function change is an interesting topic. Generally, dizziness, tinnitus and show response 

especially for emergency, are typical symptoms after drinking. Brain is composed of a 

huge amount of nerve cells and each nerve cell connects to other nerve cells, making 

brain a complex non-linear system. Complexity can reflect the regularity of dynamic 

systems. The behaviour of various systems is different, and thus the regularity of the 

behaviour from these systems is also different. Complexity is capable of describing these 

differences and then further discriminating these systems. 

Electroencephalogram (EEG) is a non-invasive, low-cost and effective technique for 

examining electrical activity of the brain and diagnosing brain diseases in clinical setting 

[1]. EEG is a type of non-stationary time series signal. It's hard to analyze EEG by linear 

method, such as time domain analysis and frequency domain analysis because of the no-

regularity caused by nonlinear and non-stationary factors. Therefore non-linear analysis 

methods could better facilitate opening out the characteristics and mechanisms of EEG [2] 

[15]. 

With the rapid development of non-linearity theory, complexity analysis is becoming a 

popular field for studying nonlinear dynamics of EEG time series. Although different 

methods have provided indirect evidence for synchronization EEG processes [3, 8], a tool 

for a quantitative evaluation of the complex EEG signal synchronization and its temporal 

dynamics is still lacking. In information theory, 'entropy' represents the irregularity of 
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systems, and many complexity concepts are related to entropy. Entropy is a concept 

handling predictability and randomness, with higher values of entropy always related to 

less system order and larger randomness [4]. Approximate entropy (ApEn) was first put 

forward by Pincus et al., [5]. In [6], an ApEn-based epileptic EEG detection system using 

artificial neural networks was studied. These methods are based on information theory, 

such as permutation entropy (PE), ApEn, and other ones based on chaos theory. SampEn 

was an improved algorithm based on approximate entropy (Richman et al., 2000) [7]. 

PE and ApEn are better in distinguishing the EEG between drinkers and the control, 

but they can't be used for on-line analysis due to too much time-consuming. ApEn's 

counting process adopts Heaviside function, which is very sensitive to the threshold value 

and phase space dimension, and vulnerable to noise interference. It lacks relative 

consistency and the result shows much dependence on data length. SampEn displays 

relative consistency and less dependence on data length. Nevertheless, the similarity 

definition of vectors in SampEn is based on Heaviside function as in ApEn. Due to the 

inherent flaws of Heaviside function, problems still exist in the validity of the entropy 

definition, especially when small parameters are involved. To overcome these limitations, 

Wavelet entropy (WE) [13] (Osvaldo A. Rosso et al., 2001), a new nonlinear dynamic 

analysis method, can be used for analyzing the short time signal. WE algorithm needn't 

consider any parameters during the process of calculation. It can reduce the influence of 

noise, reflect the signal's confusion degree of frequency components and provide the 

dynamics characteristics. And it is simple and possesses both time-frequency limitations 

and robustness. 

In this paper, we investigate the influence of alcohol on brain complexity based 

on wavelet entropy. The work is organized as follows. Section 2 introduces wavelet 

entropy method. Section 3 WE performances to the nonlinear signals are discussed. 

In Section 4, by calculating the wavelet entropy of drinkers’ and normal people's 

EEG signal, we analyze the complexity of drinkers’ and normal people's EEG 

signal. Finally, Section 5 draws the conclusions. 

 

2. Wavelet Entropy 
 

2.1. Wavelet Transform 

Wavelet analysis [9, 10-12, 14] is a signal processing method, which relies on the 

introduction of an appropriate basis and a characterization of the signal by the distribution 

of amplitude in the basis. If the wavelet is required to form a proper orthogonal basis, it 

has the advantage that an arbitrary function can be uniquely decomposed and the 

decomposition can be inverted (Mallat, 1989). The wavelet is a smooth and quickly 

vanishing oscillating function with good localization in both frequency and time. A 

wavelet family 
,

( )
a b

t  is the set of elementary functions generated by dilations and 

translations of a unique admissible mother wavelet ( )t : 

1 / 2

,
( ) ( ) , , 0 ,

a b

t b
t a a R a b R

a
 

 
   

                                         (1) 

Where a, b are the scale and translation parameters, respectively, and t is time. As the 

scale parameter a increases, the wavelet becomes wider. Thus, one has a unique analytic 

pattern and its replications at different scales and with variable time localization. 

The continuous wavelet transform of a signal 
2

( ) ( )S t L R  (the space of real square 

summable functions) is defined as the correlation between the function ( )S t   with the 

family wavelet
,

( )
a b

t for each a and b: 
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For a special election of the mother wavelet function ( )t  and for the discrete set of 

parameters, 2
j

j
a


  and 

,
2

j

j k
b k


  with ,j k Z  (the set of integers) the family 

  
2

,
( ) 2 ( 2 ) ,

j

j

j k
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(3) 

constitutes an orthonormal basis of the Hilbert space 
2

( )L R consisting of finite-energy 

signals. The correlated decimated discrete wavelet transform provides a non-redundant 

representation of the signal and its values constitute the coefficients in a wavelet series. 

These wavelet coefficients provide full information in a simple way and a direct 

estimation of local energies at different scales. More-over, the information can be 

organized in a hierarchical scheme of nested subspaces called multi-resolution analysis 

in
2

( )L R . In the present work, orthogonal cubic spline functions are employed as mother 

wavelets. Among several alternatives, cubic spline functions are in a suitable proportion 

with smoothness and numerical advantages and they have become a recommended tool 

for representing natural signals. 

In the following, the signal is assumed to be given by the sampled values 

0
{ ( ), 1, , }S s n n M  , corresponding to a uniform time grid with sampling time ts. 

For simplicity the sampling rate is taken as ts = 1. If the decomposition is carried out over 

all resolutions levels,
2

N   lo g M , the wavelet expansion will be: 

   

1 1

,
( ) ( ) ( ) ( )

j j k j

j N k Z j N

S t C k t t 

 

    

   
                                               

(4) 

where wavelet coefficients  j
C k can be interpreted as local residual errors between 

successive signal approximations at scales j and j + 1, while ( )
j

t is the residual signal at 

scale j. It contains information of the signal S(t) corresponding to frequencies 
1

2 2
j j

s s
  


  . 

 

2.2. Wavelet Energy 

Since the family 
,

{ ( )}
j k

t is an orthonormal basic for
2

( )L R , the concept of energy is 

linked with the usual notions derived from Fourier theory. Then, wavelet coefficient are 

given by 
,

( ) , ( )
j j k

C k S t ，and the energy of a signal at each scale 1, 2 , ,j N    , 

will be 

    

2 2

( )
j j j

k

E C k 
                                                           (5) 

The energy at each sampled time k will be  

    

1
2

( ) ( )
j

j N

E k C k



 

 
                                                              (6) 

In consequence, the total energy can be obtained by 

  

22

0 0

( )
to t j j

j k j

E S C k E
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                                                  (7) 
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For the j
th
 scale, the wavelet energy ratio is considered as a normalized value 

         

j

j

to t

E
p

E


                                                                   (8) 

The wavelet energy ratio vector { }
j

p
 
represents energy distribution in a time-scale, 

which gives a suitable tool for detecting and characterizing singular features of a signal in 

time-frequency domain. Clearly, 
1

1
N

jj
p



 
 . 

 

2.3. Wavelet Entropy 

Entropy gives a useful criterion for analyzing and comparing a probability distribution. 

It provides a measure of information of any distribution. According to the entropy theory 

and wavelet energy ratio defined above, wavelet entropy is defined as 

  0

( ) . ln [ ]
W T W T j j

j

S S p p p



  
                                                   

(9) 

To some extent, wavelet entropy can represent the degree of order/disorder of the 

signal, so it can provide useful information about the underlying dynamical process 

associated with measured signals. A signal generated by a totally random process can be 

taken as representing a very disordered behavior. This kind of signal will have a wavelet 

representation with significant contributions from all frequency bands. In addition, it is 

expected that all contributions will be of the same order. Consequently, the relative 

wavelet energy will be almost equal for all resolution levels and the wavelet entropy will 

take the maximum value. 

 

3. WE Performances to Nonlinear Signals 

In order to study the wavelet entropy's performance of mutation detection and sequence 

complexity measuring about the nonlinear time series, we construct the following ideal 

nonlinear time series.  

1
(1 ), [0 ,1]

n n n
y u y y y


  

                                                            
 (10) 

In the Eq.11, y0=0.8, u=3.8. The length of the ideal nonlinear time series still take 

2000, and the curve is shown in Figure 1(a). When the sequence at t = 1001, the evolution 

of the system becomes a random process, so that the complexity of the system 

significantly increases, and the predictability becomes smaller. 

Similar to the method of introducing noise into ideal linear time series, we introduce 

the Gaussian white noise into nonlinear ideal time series in the foundation of Eq.11. The 

Gaussian white noise with noise ratio for 2db, and the amplitude for 0.2. The noised 

nonlinear time series signal curve is shown in Figure 1(b). 

Figure 2 is the entropy curve of ideal nonlinear time series. In 1 1 0 0 0t   two kinds of 

entropy values are obvious smaller than that in 1 0 0 0 2 0 0 0t  . In Figure 2 (a), when the 

scale of the sliding window is smaller, with the movement of the sliding window, ApEn 

curve is unstable and changing larger, because the data is so short that the approximate 

entropy values are not enough robust. With the length of the sliding window increasing, in 

Figure 2 (b) the ApEn curve becomes more stable, and it can reflect out the sudden 

change of the dynamical structure of the system. In Figure 2 (a) and (b), from t = 800 to t 

= 1001, the curve reduces first and then increases significantly, we can roughly determine 

the mutation starts near t = 1000. Because the curve fluctuates frequently in the area, there 

are some difficulties to locate the mutation point. 
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Figure 1. Nonlinear Time Series (a) Ideal Nonlinear Time Series, 
(b)Nonlinear Time Series with Gaussian White Noise 

 

Figure 2. Entropy Curves of Ideal Nonlinear Time Series. MP-ApEn Curve: (a) 

Sliding Window Length L=50, step 1; (b) L=200. Time-WE Curve: (c) Time 

Evolution Window Length L=50, Step 1; (d) L=200 

However, according to the Time-WE curves fluctuating in Figure 2 (c) and (d), we see 

that with the length of time evolution window changing, the fluctuation of the curve is 

relatively small, and when the length of time evolution window L=50 and L=200, the 

entropy curves variation tendency is similar. Time-WE is nearly independent of the length 

of the time window, WE can accurately reflect the structural change of the sequence. 

From Time-WE in Figure 2 (c) and (d), the wavelet entropy can accurate quantitative 

measure the complexity of the nonlinear time series, which is sensitive to the dynamic 

complexity changing for the nonlinear time series. The mutation point of the nonlinear 

time series is near t=1000. 

In reality, most of signals are nonlinear signal, which blend various noises in different 

degree. To study the performance of wavelet entropy for measuring the complexity of 
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nonlinear time series with Gaussian white noise, we calculate MP-ApEn and Time-WE of 

the noised nonlinear time series. The MP-ApEn and Time-WE curves are shown in Figure 

3. By analyzing (a) and (b) in Figure 3 and Figure 2, especially the first part of the curves, 

ApEn values are all under 0.5 until near t=800 in Figure 2, and on the contrary ApEn 

values are all whereon 0.5 in Figure 3, we can learn that because the original signal and 

noise signal are no longer independent, the result of noise for ApEn is making sequences 

entropy increase, namely, the confusion degree of series is more greater. However, in 

Figure 2(c) (d) and Figure 3(c) (d), the initial value, transition value and the overall trend 

of the WE value curve are almost no change. This can explain that the wavelet transform 

reduce the effect of noise during the calculation of WE, which makes calculation of WE 

be more accurate, and WE can reflect the chaos degree of the nonlinear time series. 

 

 

Figure 3. Curves of Nonlinear Noised Time Series in Mutation Detection. 
MP-ApEn Curve: (a) Sliding Window Length L=50, step 1; (b) L=200. Time-

WE Curve: (c) Time Evolution Window Length L=50, Step 1; (d) L=200 

4. Application Examples 
 

4.1. Experiment Data 

The experimental data were taken from a public EEG database. The experiments were 

performed on 122 subjects. The tested people were made experiments 120 times 

respectively (Zhu Guohun et al., 2011) [16]. In the experiment, the tested people's heads 

were placed with 64 conductive poles, the sampling frequency was 256Hz and recording 

data period was 1 second in every experiment. Because the data of EEG in data 

concentration is incomplete, some experiment data are not in the database, therefore, with 

the requirements of examples analysis and in order to ensure the comparability of analysis 

results, 30 drinkers' and 30 normal persons' EEG completely data were selected at random 

in the dataset, as two data sets of this research analysis. Firstly, we calculate the sampling 

data of 64 conductive poles that were got in single at the 40th stimulation experiment, and 

analyze the results. Then, under the condition of three kinds of stimulation experiments, 

we calculate and analyze EEG data of FP2 conductive pole, which belonged to drinkers 

numbered co2a0000364 and normal people numbered co2c0000337 in the same 10 times 

stimulation experiments. 
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4.2. Experiment Results and Analysis 

 

4.2.1. The Whole Influence of Alcohol on the Brain 

We calculate all 64 electrodes' wavelet entropy to get the average value, the EEG data 

selected from the 40 times experiment about 60 tested people, and draw drinkers' and 

normal persons' average wavelet entropy curve of 64 conductive poles. As shown in 

Figure 4. Among the 60 tested people, there were 30 drinkers and 30 normal persons. 
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Figure 4. WE Curves of 64 Conductive Poles of Drinkers' and Normal 
People's 

In Figure 4, including 64 conductive poles, the drinkers' EEG wavelet entropy is 

widely greater than normal people's. The wavelet entropy of every conductive pole of 

drinkers’ or normal persons’ is inconformity, and the degree of EEG wavelet entropy 

between drinkers and normal persons is also different at the same conductive pole, which 

explains the distribution of EEG signal is not uniform in head. 

Compared with normal brain, the drinkers' will be with highly complexity and neuronal 

activity is increased because of stimulation of alcohol. All results can properly reflect the 

dynamics nature and changes of brain signals. For the changes between drinker's and 

normal people's EEG wavelet entropy at the same electrode point, from Figure 4, at CP1, 

CP5 and CP6 electrode points, the increasing trend of WE is obvious larger, which means 

these parts are more sensitive to alcohol. This provides a more reliable and keen way to 

determine person whether has drunk. 

The method based on WE to analyze the complexity of EEG signal, can be made a 

contribution to detecting drunken driving and helping hospitals with alcoholism. 

 

4.2.2. FP2 Electrode's EEG Analysis in Different Stimulus Experiment 

In order to analyze WE's obvious differences of two groups of EEG data on the same 

electrode, and make further analysis in the impact of alcohol on person 's health, we 

choose alcoholic numbered co2a0000364 and normal people numbered co2c0000337 to 

carry on the same experiments 10 times in the condition of three kinds of external 

stimulation experiments. Each subject was exposed to either a single stimulus (S1) or two 

stimuli (S1 and S2) which were pictures of objects chosen from the 1980 Snodgrass and 

Vanderwart picture set. When two stimuli were shown, they were presented in either a 

matched condition (Sm) where S1was identical to S2 or in a non-matched condition (Sn) 

where S1 differed from S2. 

(1) While in the condition of a single stimuli (S1) experiment, we can get the FP2 

electrode's EEG data form the experiment. FP2 electrodes were located at the upper part 

of the eyes. Calculating WE of drinker and normal people at FP2 electrode, we get the 

wavelet entropy in Figure 5(a). As in Figure 8(a), under the condition of a single stimulus 

experiment, the WE of drinkers' EEG data on FP2 electrode is markedly greater than 

normal people's. We can also find that entropy curves become more and more stable with 

more experiments. 
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(2) While in the experiments of continuous matched stimuli condition, we can get the 

FP2 electrode's EEG data from the experiments. By calculating WE of drinkers’ and 

normal people’s at FP2 electrode in every experiment, we get the wavelet entropy in 

Figure 5(b). From Figure 5(b), the WE of drinkers’ EEG data on FP2 electrode is still 

greater than normal people's under the experiments of matched stimuli condition and the 

normal people's EEG entropy becomes smaller and smaller. In other words, the brain's 

memory consciousness of normal people's is enhanced, and more easily form a condition 

reflex, etc. 
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Figure 5. WE Curve of FP2 Electrode of Drinkers' and Normal People's (a) 
Under a Single Stimulation Experiment, (b)Under a Continuous Matched 

Stimuli,(c) Under a Continuous Non-Matched Stimuli 

(3) While in experiment of continuous non-matched stimuli condition, we calculate 

WE of alcoholic and normal people at FP2 electrode in every experiment, and get the 

wavelet entropy in Figure 5(c). In the Figure 8(c), under the condition of non-matched 

stimuli, the WE of drinkers’ EEG data on FP2 electrode is mostly greater than normal 

people's, but the complexity of normal people's brain is larger in the third experiment in 

Figure 8(c). With the experiment carried out, the WE wave of alcoholics fluctuates more 

intensely. However, the normal people's wave is gradually leveling off. Comparing with 

drinkers, the normal people's control and cognitive ability is more sustained to outside 

different stimulus, the normal people's brain can make accurate response more quickly. 
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5. Conclusion 

In this paper, we introduced the wavelet entropy to analyze and measure the EEG 

complexity of drinkers’ and normal people's. 

(1) Wavelet decomposition can reduce the influences of noise. WE model dimension m 

and threshold value r, have no influence on the result. We can accurately measure the 

chaos of nonlinear time series. 

(2) Comparing and analyzing drinkers' (or alcoholics') and normal people's EEG, the 

WE of drinkers' is widely larger than that of normal people's. In other words, the 

complexity of drinkers' brains is higher than that of normal people's. This makes a 

contribution to studying the states and complexity of drinkers' brains. 

Considering that drinkers' intoxication levels and sensitive degree for alcohol are 

all different, we will introduce fuzzy analysis method, such as fuzzy entropy, based 

on quantitative WE analysis in future works. We will do systematic fuzzy 

classification of the drunken degree and alcohol sensitive degree of drinkers', and 

reveal the changing rules of drinkers' EEG complexity with more details. 
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