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Abstract 

In this paper, various kinds of sub-word lexica are thoroughly investigated under the 

framework of Uyghur LVCSR system. Experimental results show that it is inefficient to 

directly model based on word units or small units like morpheme or even syllable units. It 

is observed that an optimal sub-word unit set between word and morpheme units can 

better fit for ASR system. In order to select best unit set we have investigated several 

effective unit segmentation, concatenation approaches, and their ASR performances. For 

segmentation approach, we investigate a supervised segmentation which split words into 

the smallest functional units - the linguistic morphemes, and an unsupervised 

segmentation which extract pseudo-morphemes (or statistical morphemes). In supervised 

model, a leaning algorithm is trained on a manually prepared training corpus, and 

morpho-phonetics changes are analyzed. In the unsupervised model, the Morfessor tool 

is used to extract pseudo-morphemes from a raw text corpus. For concatenation 

approach, several effective concatenation approaches are investigated based on 

linguistic morphemes. First is the data-driven approach which concatenates morpheme 

sequences based on certain measures like co-occurrence frequency or mutual probability. 

Second is a model based approach which merges units with global statistical criteria. In 

this study, the Morfessor program is revised and turned into concatenation program by 

controlling segmentation points. Third is the two-layer-lexica based concatenation 

approach which extracts an optimal sub-word unit set by aligning and comparing the 

ASR results of word and morpheme two lexical layers. This method utilizes both speech 

and text, and produced the best results in terms of WER and lexicon size, and proved to 

be very stable. The best optimal lexicon, which is obtained totally on the basis of HMM 

based acoustic model, outperformed all other baseline lexica. And when all these lexica 

are directly incorporated with a deep neural network (DNN) based acoustic model, 

without changing the speech and text training corpora and language models, the optimal 

lexicon not only drastically improved the ASR accuracy but also outperformed other units 

as a proof of the generality of the two-layer-lexica based approach. 

 

Keywords: Speech recognition; Uyghur; morpheme; lexicon optimization 

 

1. Introduction 

Uyghur language belongs to Turkish Language Family of Altaic Language 

system. Words are naturally separated in text. It is an agglutinative language in 

which words are formed by productive affixation of derivational and inflectional 

suffixes to a root without any splitter between them. The derivational suffixes make 

semantic changes, while the inflectional suffixes make syntactic changes. The stem 
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set, in this paper, is consisted of the roots and some stems which are formed by 

attaching a derivational suffix to a root.  

Words in agglutinative languages are relatively long, and the vocabulary size of 

these languages is growing up proportionally with the corpus size, causing out-of-

vocabulary (OOV) and data sparseness problems. It is timely and spatially 

inefficient to use words as the basic unit set [1]. Therefore, sub-word units like 

morphemes are conventionally adopted in many inflectional languages, such as 

Japanese, Korean, Turkish, Finnish, German and Arabic [2-12]. However, short 

units shrink the context of statistical models, and prone to morpho-phonetic 

confusions. When sequence of units are merged or split, unit boundaries are 

phonetically harmonized in the speech which reflects as the morpho-phonetic 

changes in the text.  

Many language processing tasks including parsing, semantic modeling, 

information retrieval, and machine translation frequently requires a morphological 

analysis of the language at hand [14-16]. In this research, the morpheme is mainly 

investigated as the foundation of concatenative approaches for ASR tasks, for it can 

provide high coverage, low vocabulary size, acceptable ASR performance, and 

semantic and syntactic relations. Smaller units like syllables better be phonetic 

particles, and too short to hold its contextual relations. Words and morphemes have 

their merits and demerits respectively, the reasons can be explained in both 

statistical and linguistic ways. Therefore, analyzing these reasons and finding an 

optimal unit set which has both high coverage and better constraints are very 

important research topics for highly inflectional languages. An optimal lexicon can 

better generalize for texts of especially limited resources, and increase the 

reliability of statistical models [13]. 

In this paper, we investigate supervised and unsupervised segmentation of 

morphemes and pseudo-morphemes (statistical morphemes), and their ASR 

performances. We also investigate several effective concatenative methods, such as 

data-driven approach, statistical model based approach, and two-layer-lexica based 

approach, and their ASR performances. Based on the morpheme unit, concatenation 

approaches does not cross the word boundaries, so that the optimized lexical units 

are the granules between word and morpheme layers. 

The present day typical ASR system consisted of acoustic model (AM) and 

language model (LM). The AM generates phonetic sequences based on the speech, 

while the LM generates morpho-syntactic unit sequences based on text. Our 

experiments are based on the same AM which can map all the morpho-phonetic 

changes of speech into the text of character sequences in the Uyghur language. 

These morpho-phonetic changes are extracted and analyzed in our general purpose 

morphological analyzer. The linguistic information including morpheme and word 

boundaries are preserved by labeling stems and suffixes. Thus all the sub-word 

units are conveniently re-merged into words and compared by word-error-rate 

(WER).  

In this paper, various linguistic particle sets are investigated and evaluated based 

on an Uyghur LVCSR system. All the morphological lexica based ASR systems are 

separately investigated and compared under a hidden Markov model (HMM) 

framework and a deep neural network (DNN) framework based on the same text 

and speech training corpora. 

The remainder of the paper is organized as follows: Fist we discuss sub-word 

segmentation methods in Section 2, then, unit concatenation methods in Section 3. 

Next, we demonstrate experimental evaluations for segmented and concatenated 

lexica in Section 4, before concluding in Section 5. 
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2. Morpheme Segmentation Approaches 

Uyghur text is written as pronounced, each phoneme is recorded by a character, total 

32 characters for 32 phonemes (8 vowels and 24 consonants). The surface realizations of 

the morphological structure are constrained and modified by a number of morphological 

and phonetic changes such as insertion, deletion, phonetic harmony, and disharmony 

(vowel assimilation, vowel weakening) [1]. 

There are linguistic morphemes and pseudo-morpheme to be extracted and applied for 

ASR systems. The morpheme, smallest functional unit, is extracted in a supervised 

manner. A statistical leaning model can be constructed and trained on a manually 

prepared corpus. And, the pseudo-morphemes are extracted in an unsupervised manner 

which can split words into morpheme-like units from a raw text corpus by using a 

probabilistic criterion [13-14]. These pseudo-morphemes are specially designed for 

certain applications and not strictly meaningful units. 

 

2.1. Supervised Morpheme Segmentation 

Linguistic morphemes have their standard forms and surface forms. There are 1~4 

different surface forms for a morpheme in Uyghur language. Various surface forms are 

the result of phonetic harmony when the units are merged to form longer morphological 

units. And the strong syllable bond in Uyghur language causes some morphological 

changes like deletion, insertion, and substitution. A general purpose morpheme 

segmenter tool must consider morpho-phonetic changes of sub-word units. The 

morpheme structure of Uyghur words is “prefix + stem + suffix1 + suffix2 +…”  A root 

(or stem) is followed by zero to many suffixes as in Example 1. In this research, 108 

suffix types are defined strictly according to their semantic and syntactic functions, which 

have 305 surface forms. A few words have a (only one) prefix preceding a stem; 7 kinds 

of prefixes are considered.  

A general purpose Uyghur morpheme segmenter has been developed by training a 

learning model on a manually prepared training corpus. As the training data, a text corpus 

of 10025 sentences and their manual segmentations are prepared as in Table 1. These 

sentences are collected from general topics, unrelated. Furthermore, considering the 

limited size of the training corpus, we prepared more than 30K stems independently and 

used for the segmentation task to produce a probable segmentation result for an unknown 

word which is not covered by the training corpus. Considering flexibility of language, we 

keep various segmentation forms of a same word as in Example 2. For example: 

“work+ing” is segmented to the root while “worker” is kept as a stem. This will expand 

the size of stem vocabulary, but may be more convenient for analyzing semantic and 

syntactic context. 

Table 1. Manually Segmented Morpheme Corpus 

units tokens vocabulary 

word 139.0k 35.37k 

morpheme 261.7k 11.8k 

character 936.8k 

sentence 10025 

(Example 1 morpheme segmentation) 

Müshükning kǝlginini korgǝn chashqan hoduqup qachti. 

(The mouse seeing the coming cat was startled and escaped.) 

Müshük+ning kǝlgǝn+i+ni kor+gǝn chashqan hoduq+up qach+ti. (morpheme 

sequence) 
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(Example 2 various segmentations of a word) 

oqutquchi (teacher{stem})= oqut(teach){root} + quchi(er) {suffix}   

yazghuchi(writer{stem}) = yaz(write) {root}+ghuchi(er) {suffix} 

hesablinidu = hesab+la+n+idu,  hesab+lan+idu; 

The learning model is based on an intra-word bi-gram model as in equation (2-1). For 

a candidate word, all the possible segmentation results are extracted in reference to both 

stem and suffixes, and their probabilities are calculated to produce the best option.  

 

            

 

 

                      (2-1) 

 

 

In this approach, the identification of stem and word-ending boundary is the most 

important part. At first, a word is split into two parts, a stem and a word-ending 

(combined suffix or stem-ending in some papers). Then, the word-ending is re-segmented 

into singular-suffixes. So the segmenter can perform both stemming and segmenting 

tasks for general purposes. 

For an open test set, the word coverage is 86.85%, the morpheme coverage is 

98.44%, and the morpheme segmentation accuracy is 97.66%.  This morpheme 

segmenter can output both on the standard forms and on the surface forms without 

costing segmentation accuracy [11]. The manually prepared morpheme sequences 

are defined on their strict linguistic functions. Morpho-phonetic variations are also 

learnt from the training corpus. Our general purpose morpho-phonetic analyzer can 

segment Uyghur text into phonemes, syllables, morphemes, and words with high 

accuracy. And can be applied to different research purposes. 

 

2.1. Unsupervised Morpheme Segmentation 

Unsupervised morpheme segmentation approaches extract pseudo-morpheme 

units from an un-annotated raw text corpus. Extraction of linguistic morphemes is 

not the main target. The practical purpose of the unsupervised segmentation is to 

provide a lexicon which is smaller and generalizes better than a vocabulary 

consisting of words as they appear in text. Such a lexicon could be useful in 

statistical LM of ASR. Unsupervised probabilistic models are designed either to 

segment word units into sub-word (or pseudo-morpheme) units, or automatically 

selecting granules from a text according to a probabilistic distribution [13-14]. 

Surface forms are unchanged for pseudo-morphemes, since they are not strictly 

functional units. 

Morfessor program developed by Creutz [13] is a popular program for the 

unsupervised induction of a simple morphology from a raw text data. The main idea 

of this program is to use frequent word units to segment infrequent words. Pseudo-

morphemes are extracted from a raw text corpus in an unsupervised way by using a 

probabilistic criterion of maximum a posteriori (MAP). Totally based on a raw text 

corpus, the joint probability of the optimized sub-word unit sequence is maximized. 

The Morfessor has been successfully applied to ASR of several languages such as 

Finnish and Turkish [17-22], and reported to have improved ASR performance.  

The model of language (M) consists of units and their various properties, and the 

goal is to find an optimal model which maximizes the following probability. 
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where 

        (2-2) 

 

The properties can simply be frequency, length, or some linguistic and phonetic 

attributes [13]. 

 

   (2-3) 

In this work, it is assumed that words are consisting of lengthy sequences of 

segments. This model is suitable for languages with agglutinative morphological 

structure. And no distinction is made between stems and affixes. However, we add 

stem and suffix labels in order to conveniently recover ASR results from pseudo-

morpheme into words which can be used for fair WER comparison. 

 

3. Morpheme Concatenation Approaches 

The general idea of concatenation approach is merging the frequently co-occurred and 

easily confused units while splitting less frequent and easily misrecognized units without 

causing much phonetic confusions. There are data-driven methods, statistical model 

based methods, and two-layer-lexica based approaches investigated in this paper. Figure 

1 demonstrates the overall concatenation optimization process.  

In these concatenation approaches, certain morphemes are merged into longer units to 

form a new granule. The new built lexicon is used to build a new LM for ASR system. 

WER and lexicon size are compared to evaluate every lexicon set. Morpho-phonetic 

confusions in certain morphemes can be avoided when longer units are formed through 

concatenation. 

 

 
 

Figure 1. Overall Flow-Chart of Various Lexicon Optimization Approaches 

3.1. Data-driven morpheme concatenation approaches 

Data-driven approaches merge sequential units based on certain measures like co-

occurrence frequency and mutual probability. Below are some widely reported effective 

data-driven approaches [25].  
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1) Stem & word-ending. Suffixes in Uyghur language are often very short, one or two 

phonemes, so can easily be confused. Remerging singular suffixes makes a word 

consisting of two parts: stem and wording-ending [26]. Thus, word-endings can reduce 

phonetic alterations between singular suffixes. 

2) Co-occurrence frequency. A simple model based on statistical co-occurrence is built 

by merging frequently co-occurred unit sequences. Specifically, we count unit bigram co-

occurrence frequency , and concatenate them if the frequency is higher than a 

threshold.  

3) Mutual probability. Another statistical measure is mutual probability (MP) [25]. It is 

calculated as a geometrical mean of forward and reverse bigram probabilities as in 

equation (3-1). In this method, the pairs of unit counts  must be high while the 

unigram counts  are smaller to prevent the units  to occur in 

conjunction with other units. This criterion is iteratively applied to morpheme based text 

corpus. 

 

                       (3-1) 

 

3.2. A statistical model based morpheme concatenation approach 

A statistical model based concatenation can be developed by maximizing a likelihood 

function, or by searching a global optimal point for a statistical criterion. An optional 

model is the Morfessor program which can produce an optimal lexicon from a text of 

word sequences (section 2.2). If we assume that text is consisted of morphemes instead of 

characters, the Morfessor program could produce sub-word units which are actually the 

concatenation of morphemes. Specifically, we can insert morpheme boundaries for word-

text corpus by using our supervised morpheme segmenter, and then feed this corpus to 

Morfessor. When the searching point of Morfessor algorithm is confined to morpheme 

boundaries only, the output is a kind of regrouping of morpheme sequences within the 

word boundary. We can see that word and morpheme boundaries are preserved here. In 

this method, a global optimal point is obtained by maximizing equation (2-2). 

 

3.3. Two-layer-lexica based morpheme concatenation approaches 

It is convenient to directly observe the ASR results, and enumerate the problematic 

patterns, instead of speculating reasons of unknown results. By examining the ASR 

results of morpheme lexicon, easily confused unit sequences can be systematically 

extracted and analyzed. Overall view of the proposed scheme is depicted in Figure 1. 

Baseline ASR systems should be prepared with both morpheme-based lexicon and word-

based lexicon, and separately they are applied to decode a large-scale speech data into 

two layers of unit sequences.  A practical method can be aligning and comparing the ASR 

results of word and morpheme lexica, and extract problematic morpheme sequences or 

CRITICAL samples as given in Table 2.  

By observing the aligned ASR results, CRITICAL samples, “OX” in which the word 

is correctly recognized while aligned morphemes are misrecognized, can be extracted for 

further analysis. A simple method which can decrease the WER would be to extract all 

the problematic morpheme sequences according to their error frequency, merge them into 

words, and add them to the morpheme lexicon. Our preliminary study showed that this 

naive method is very effective, but this method only utilized CRITICAL samples (about 

28.5%), it is difficult to cover all the erroneous words in the open test data. Therefore, we 

explore more generalized methods. Furthermore, when these two layers of ASR results 
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are different, neither of them is correct in most cases (approximately 68%). This majority 

of samples can be utilized in some sophisticated machine learning methods. 

 
Table 2 Example of ASR results of morpheme and word units 

reference (word) 

(English word-by-word ) 

Yash  cheghinglarda     bilim  elishinglar     kerǝk 

young  when_you_ are     knowledge  acquire      must 

reference (morpheme) Yash  chegh_ing_lar_da  bilim  el_ish_ing_lar  kerǝk 

ASR result (word) 
Yash  cheghinglarda     bilim  berishinglar    kerǝk 

 O             O                       O           X               O 

ASR result (morpheme) 
Yash  chegh_ing_da     bilim  el_ish_ing_lar  kerǝk 

 O             X                      O             O              O 

 

 

A more sophisticated approach is to extract some morphological features from the 

aligned samples, for example, length and unigram as the clear cause of misrecognition 

[26]. These manually selected features can utilize all the aligned samples. A 

discriminative evaluation function can be designed to discriminatively evaluate the 

candidate units. And this function can be trained on all the samples extracted from the 

aligned two-layer ASR results as in Table 2. We feed all the samples to the leaning 

algorithm which can decide the best concatenation options. In this case, we can only use 

the two-layer ASR results and no need to compare with the transcription of training 

speech corpus [23]. This property of not using the reference transcripts makes this 

approach an unsupervised learning, so that we can make use of enormous un-transcribed 

speech data.  

1) Evaluation functions for lexical features 

In this scheme, each word  is described by a set of features ( ) of 

the constitute morphemes ( ), and its desired value  defined by the 

differences of ASR results of the aligned two layers of units. We assume that they are 

binary (1 for true, 0 or -1 for otherwise).  

Given all the training pairs extracted from two-layer ASR results, 

, we feed them to the learning 

scheme which could be Perceptron or SVM. In this study, we investigate the SVM 

machine learning algorithm which is more robust for outlier samples [27].  

For SVM, we adopt a linear binary classifier [27]. When the word is misrepresented by 

the morpheme sequence, the desired value is , otherwise . Given a set of 

training sample pairs , this method solve the following unconstrained 

optimization problem with a loss functions : 

 

                                           (3-2) 

 

 

                                         (3-3) 

where >0 is a penalty parameter. The SVM optimization is stopped at the tolerance 

of 0.1[27]. 

Training feature sample pairs  are extracted independently for every word 

with its aligned morpheme sequence. This model evaluate every word according to its 

 

 

 

 

 

 
CRITICAL 
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features , which indicates the potential importance of the word (or sub-word) to be 

included in the lexicon, or how likely WER will be reduced by adding this new entry. 

Note that these models can be used for any words or even sub-words consisting of 

morphemes. 

2) Morpheme bigram feature 

In this paper, we focus on typical morpheme entries and their bigram patterns. The 

bigram feature can capture the context, proved to be most effective feature [23]. Each 

bigram feature of morpheme bigram  is defined from an aligned sample within a 

word  as in equation (3-4). A specific weight  is estimated for each bigram entry.  

 

            (3-4) 

 

Below is a feature of the morpheme bigram  in the aligned sample of word 

 from Table 2. 

 

 

3) Weight estimation with discriminative learning 

The weight  is estimated for every bigram feature, based on corresponding desired 

output . The desired value is defined as binary, corresponding to the CRITICAL sample 

in which the word-based model outputs a different hypothesis from the morpheme 

sequence generated by the morpheme-based model.  

 

          (3-9) 

Note that the above judgment does not refer the correct hypotheses for the 

unsupervised training in which the training samples included the CRITICAL samples and 

the other samples in which both layers are unmatched but assumed as CRITICAL sample.  

4) Lexicon design  

The bigram feature is then generalized to all morpheme sequences in the text corpus 

prepared for language model training. If the evaluated bigram morphemes are classified 

to be merged, then this bigram sub-word granule is included in the lexicon. Otherwise 

they are left as separated morpheme units. Specifically, we try to search for sub-word 

entries that satisfy the evaluation. The search is exhaustively done from the beginning of 

all words by concatenating the following morphemes while the above-mentioned 

condition is met. If the condition is not met, the search is re-started there. 

 

4. ASR results for segmented and concatenated lexica 

All the segmented and concatenated lexica are separately applied to our Uyghur 

LVCSR system under a same AM. WER and lexicon size are compared. 

 

4.1. Acoustic model construction 

A speech corpus of general topics is prepared to construct an AM for Uyghur 

language. This AM is used for all the optimization experiments in this study. A held-out 
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test data set is prepared independently from readings of newspaper articles.  

Specifications of the data sets are summarized in Table 3. 

Table 3 Statistics of speech corpus 

corpus sentences speakers 
total 

utterances 

word 

tokens 

time 

(hours) 

training 13.7K 353 62K 895.1K 158.6 

test 550 23 1468 14.7K 2.4 

An acoustic model based on tri-phone HMMs with 3000 shared states and 16 Gaussian 

mixtures was trained for 34 Uyghur phones (8 vowels, 24 consonants, and 2 silence 

models). The acoustic features consist of 12 MFCCs, ∆MFCCs and ∆∆MFCCs together 

with ∆power and ∆∆power. 

Recent trends of using DNN achieved high accuracy in LVCSR experiments, 

especially for the under-resource languages. DNN can provide better contextual 

dependences between acoustic units, while the HMM only depends on the previous 1~2 

units. In this study we used the RBM (Restricted Boltzmann Machines) based DNN 

architecture with 4 hidden layers and 1200 hidden units per layer to train a phoneme 

based Uyghur acoustic model based on the same speech data [29].  

 

4.2. Lexical model construction 

Lack of resource is one of the biggest problems for Uyghur natural language 

processing. It is difficult to have a large qualified corpus from a unique source (e.g. 

newspaper). So we selected texts from various publications like novels, newspapers, 

educational materials (history, science...). And we prepared a raw corpus of about 630k 

sentences which are from general topics. This corpus is prepared by removing all 

duplicated sentences, since it was a collection of different sources and may contain 

several copies of a same content. This text corpus separately segmented to word, 

morpheme, and pseudo-morpheme sequences, and n-gram language models are 

constructed separately based on each of them. Kneser-Ney smoothing is adopted. 

Vocabulary size, coverage and perplexity are calculated for each model. And, we keep 

the surface forms of morphemes same as in the words while they are split or merged, thus 

the words can be recovered simply by re-merging morphemes without any changes.  

Two additional parameters which affect ASR system performances are investigated. 

One is the n-gram dimension; another is the cutoff-rate.  Since the morpheme-based 

model is benefited from a much smaller vocabulary size, various n-gram dimensions are 

investigated for them in order to find out best ASR baseline results. The cutoff threshold 

also controls the lexicon size and ASR performance. Cutoff-F means that units with 

frequency less than F times are disregarded and treated as unknown.  

 

4.3. ASR results on segmented lexica 

Language models based on word, morpheme, and pseudo-morpheme units are 

separately constructed using the training text corpus, and the ASR results are compared 

as in Table 4. We can see that the pseudo-morpheme model outperformed other models, 

as it is already an optimized lexicon. However, the pseudo-morphemes are not fixed 

units, whose units and lexicon size change with a different training corpus, and exhibit a 

similar statistical property (perplexity) like words. Word-based model also outperforms 

the morpheme-based models with a larger lexicon size. When we have a smaller OOV for 

both sub-word units, the linguistic morpheme units may suffer from morpho-phonetic 

confusions. However, the morpheme-based model can be expanded to a huge vocabulary 

while the vocabulary of the word-based model is limited to the vocabulary of the training 



International Journal of Hybrid Information Technology 

Vol.8, No.8 (2015) 

 

 

336   Copyright ⓒ 2015 SERSC 

corpus. Moreover, linguistic morpheme provides syntactic and semantic information 

which facilitates feature-based ASR and NLP.  

 

Table 4 ASR results for different baseline units (cutoff-2) 

LM names WER (%) 
lexicon 

size 

word 

perplexity 
OOV rate 

word 3-gram 25.72 227.9k 2356 2.8% 

word 4-gram 25.93 227.9k 1734 2.8% 

morph 3-gram 28.96 55.2k 1733 0.3% 

morph 4-gram 27.92 55.2k 1244 0.3% 

morph 5-gram 29.31 55.2k 1144 0.3% 

pseudo-morpheme 4-garam 25.04 133.4k 2314 0.8% 

 

The Two-layer-lexica based concatenation approach utilizes both speech and text, 

while all other approaches are based on only text. So the two layers of lexica based 

baseline ASR results of a large speech data is necessary for the extraction of aligned 

CRITICAL samples. Table 5 shows the ASR performances of various models. The best 

n-gram dimensions with cutoff-2 parameter are selected as the baseline models. We can 

see from the results that word based model produce more correct hypothesis than the 

morpheme based model. Furthermore, we also investigated the effect of cutoff-rate to 

ASR performance of different lexica. We can see that pseudo-morpheme model produced 

the best ASR result. It is least affected by the cutoff-rates, while the word model is most 

vulnerable.  

 
Table 5 ASR results for various baseline units 

Baseline models WER (%) lexicon size OOV 

morpheme 4-gram 
cutoff-2 27.92 55.2k 0.3% 

cutoff-5 28.11 27.4k 0.7% 

word 3-gram 
cutoff-2 25.72 227.9k 2.8% 

cutoff-5 26.64 108.1k 4.4% 

pseudo-morph. 

4-gram 

cutoff-2 25.04 133.4k 0.8% 

cutoff-5 25.01 94.5k 0.9% 

 

4.4. ASR results on concatenated lexica 

The morpheme based text training data are transformed into various concatenated 

granules based text corpora and n-gram LMs separately built on them in order to evaluate 

their ASR performances. 

 

4.4.1. Results of data-driven concatenation methods: Data-driven methods 

concatenate morphemes by various criteria. The concatenation can be made even 

across word boundaries in frequent unit sequence and mutual probability methods. 

The tuning of the threshold values for these methods are not so straight-forward, 

depending on the task and data set. Table 6 shows the best ASR results obtained by 

fine tuning.  

 

Table 6 Result of data-driven concatenation approaches 
Data-driven approaches WER (%) Lexicon size OOV rate 

Stem & word-endings 28.13 82.6K 0.5% 

Frequent unit sequence 26.63 50.7K 0.8% 

Mutual probability 25.60 53.3K 0.9% 
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4.4.2 Results of two-layer-lexica based approaches: The speech corpus used for 

acoustic model training is decoded by the two baseline models mentioned in section 4.3. 

ASR results are aligned and CRITICAL samples are extracted for the error frequency 

feature. WER and lexicon size are compared for 4-gram models with cutoff-5 pruning.  

For error frequency feature, words misrepresented more than twice are extracted, and 

added to the morpheme lexicon. This approach can be iteratively applied to extract new 

candidates. WER and lexicon size within two iterations are listed in Table 7. On each 

iteration, new candidate words are added to the lexicon, until few candidates can be 

extracted. This simple method cannot include entries that are not included in the training 

CRITICAL samples.  

 

Table 7 Results of word selection based on error frequency 
Iterations Baseline First round Second round 

WER (%) 28.11 26.11 25.82 

lexicon size 27.4K 40.4K 46.1K 

 

 

4.4.3 Results on discriminative training: An SVM based discriminative evaluation 

function is trained on the aligned two-layer ASR results. Among the various 

features, bigram feature can efficiently capture the context compared to unigram 

and length features, so the redundant features are ignored in this paper. Extracted 

problematic bigram morphemes are concatenated, and generalized to the text 

training corpus. This method is more effective when conducted thoroughly in the 

sub-word level than the word level [23]. So the below discussions are sub-word 

optimization approaches. 

First we investigate the supervised training by comparing with the correct transcription 

which means only CRITICAL samples (28.5%) are used for this training. Every bigram 

morpheme sequences are evaluated iteratively within word boundary. Then, it is 

propagated to the text training corpus. ASR result of this sub-word lexicon is shown in 

Table 8. 

 

Table 8 supervised discriminative training results with bigram feature 

method WER (%) lexicon size 

SVM (cutoff-5) 25.42 45.1K 

Now we extract all cases in which two layers are unmatched in the two-layer ASR 

hypothesis. Thus the training sample can include the 28.5% CRITICAL cases in which 

word-based model gives correct hypotheses while the morpheme-based model does not, 

and the majority of 68% cases in which both layers are misrecognized and not benefited 

by the supervised learning. So we can use an un-transcribed speech data to train this 

discriminative model. The dimension of the unigram features is 17K and that of the 

bigram is 53K in our speech training data. In the unsupervised experiment, the majority 

samples are defaulted as desired samples. Results in Table 9 shows that the unsupervised 

model outperformed the supervised method with the SVM learning method. 

 

Table 9 unsupervised discriminative training results compared with baseline models. 

Models WER (%) lexicon size OOV 

baseline morpheme 27.92 55.2K 0.3% 

baseline word 25.72 227.9K 2.7% 

SVM cutoff-2 24.64 101.2K 0.7% 



International Journal of Hybrid Information Technology 

Vol.8, No.8 (2015) 

 

 

338   Copyright ⓒ 2015 SERSC 

cutoff-5 24.61 55.1K 0.9% 

 

The result in Table 9 shows that the sub-word-based model trained with the bigram 

feature outperforms the best word based model in accuracy with the lexicon size of one 

fourth. And it is the most stable model, for the WER is not affected by different cutoff-

rates. 

 

4.4.4 Result on a statistical model based concatenation method: We can directly 

optimize from the morpheme sequence by using a proper algorithm for the 

concatenation approach. One direct and simple way is to adapt an existing tool to 

this task. We adapt the unsupervised word splitter, Morfessor tool, to concatenate 

linguistic morphemes. And we can simply do that by feeding morpheme based text 

to Morfessor. But the smallest granules now are the morphemes rather than 

characters. Thus the searching point of Morfessor algorithm is confined to 

morpheme boundaries only. The output is some kind of regrouping of morpheme 

particles.  

 

We can see the result from Table 10 that both concatenated morphemes and 

pseudo-morphemes have an improved ASR performance which are comparable 

with the discriminative method, but with a larger vocabulary size.  

 
Table 10 results of model based concatenation compared with other models 

models WER (%) lexicon size OOV 

linguistic morpheme 28.11 27.4K 0.7% 

pseudo-morpheme 25.01 94.5K 0.9% 

model based  

morpheme concatenation 
24.96 98.35K 0.9% 

 

 

4.5. DNN based ASR results 

The baseline word lexicon, morpheme lexicon, and the discriminatively optimized 

lexicon, which is obtained totally based on HMM based AM, are incorporated with the 

DNN based AM separately. And the ASR results are compared without changing the 

LMs and training corpora. 

 

Table 11 DNN based comparison of various lexica 

Models 
WER 

(%) 

lexicon 

size 
OOV 

baseline word 16.50 227.9K 2.7% 

baseline morpheme 14.50 55.2K 0.3% 

optimal lexicon 12.89 55.1 0.9% 

Table 11 shows that under the DNN based AM, all lexical sets drastically improved 

the ASR accuracy with the same LMs as in the previous sections. Especially, we can see 

that the optimal lexicon that obtained from HMM based ASR results still outperformed 

other units in the DNN based model. This result demonstrates the generality of the two-

layer-lexica based optimization approach. 

 

5. Conclusions 
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This paper is a complete study on the lexicon design of Uyghur LVCSR system. Based 

on the derivational nature of the Uyghur language morphology, we have discussed 

particle segmentation approaches, and investigated statistical properties and ASR 

performances of segmented lexica. Some effective concatenation approaches for ASR 

systems are also investigated and results are compared. The optimized sub-word lexica 

proved to be better generalized than word or morpheme unit by exhibiting improved ASR 

performances. Pseudo-morpheme units, optimized directly from a raw text corpus, 

exhibits good ASR performance, but the extracted units are dependent on the training 

corpus. 

Morpheme unit provides small lexicon, better statistical properties. It is a good 

foundation of concatenation optimization and convenient for downstream processing. The 

discriminative optimization approach outperformed all other methods, and generated a 

lexicon size within 64K (16 bit) which is impossible for the word units of languages 

which have derivational morphology. The optimized lexicon is very stable without 

having many susceptible parameters. And the unsupervised discriminative method is 

scalable for a large un-transcribed speech data.  

Finally, this research provides a good example for the resource scarce languages which 

also have concatenative morphology. The results demonstrated the accuracy and 

generality of the optimization approaches as the optimal lexicon obtained by using the 

HMM based acoustic model also proved to be very effective when directly incorporated 

with the DNN based acoustic model. 
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