
International Journal of Hybrid Information Technology

Vol.8, No.7 (2015), pp.37-44

http://dx.doi.org/10.14257/ijhit.2015.8.7.04

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Reconstructing Fragmented YAFFS2 Files for Forensic Analysis

Na Huang, Jingsha He, Bin Zhao, Gongzheng Liu and Xuejiao Wan,

School of Software Engineering

Beijing University of Technology

Beijing 100124, China

Abstract

Data recovery from captured intelligent mobile devices such as smartphones plays a

significant role in digital forensic analysis. In this paper, we study the main

characteristics of NAND flash and YAFFS2 file systems and explore the method for

recovering YAFFS2 files for forensic analysis based on Tnode tree that can save a lot of

time compared to other data recovery methods. For any broken file that has missing or

broken data pages, we propose to reuse pages from previous versions of the current file

based on the chunk IDs of the missing pages to replace and thus recover such pages. We

will describe the replacement method with detailed steps and also perform some analysis

to show that the proposed replacement approach can be feasible and effective in

reconstructing YAFFS2 files.

Keywords: Security; Digital Forensics; Data Recovery; YAFFS; Fragmentation

1. Introduction

Nowadays, communication technologies raise various security issues while

providing a lot of convenience to users. Since Android has become a major platform

for developing communication technologies and applications, it has also become a

major target for the acquisition and analysis of information that includes digital

evidence. One of the great challenges in forensic analysis is the recovery of deleted

damaged data that is possibly related to user behavior and could then be an important

part of the digital evidence in the NAND flash memory which has been widely used

in Android smart phones. And YAFFS2 is the file system that has been designed

specifically for the NAND flash memory that Google has adopted as the official file

system for Android smart phones and other types of intelligent devices.

There has been some research effort on data recovery. Luck and Stokes proposed

an approach to recover files from handset memory dumps after studying the structure

of the FAT file system [1], which afterwards was also applied to the Ext3 and Ext4

file systems. The method proposed in [4] performs data acquisition from Android

smartphones regardless of versions and manufacturers. Spreitzenbarth et al. provided

an overview of the YAFFS2 file system from the point of view of digital forensics

and demonstrated how garbage collection and wear leveling techniques could affect

the recoverability of deleted and modified files [6]. Sack et al. analyzed the structure

of the Android system and formulated a forensic guide with the conclusion that all

data stored on Android smart phones could be examined [7]. Sylve et al. discussed

some of the challenges in performing Android memory acquisition and developed a

new kernel module called dmd for memory dumping [8]. In the work, the kernel

structure was analyzed through using newly developed volatility functionality and

the results demonstrated the great potential that deep memory analysis could offer to

digital forensic investigators. The conclusion was that if the spare area of flash

memory pages doesn ’ t exist or it is created from the unallocated area of the

undamaged file system, reconstruction of the file system would not be possible [9].

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

38 Copyright ⓒ 2015 SERSC

To solve the problem of fragmentation, the authors also proposed some new analysis
techniques for fragmented flash memory pages in smartphones. Wu et al. presented a recovery

approach for SQLite history recorders from YAFFS2 that can correctly recover updated or deleted

records in Android smart phones [11] through acquiring Android image in logical method and then

recording the object ID, object type and chunk ID of each chunk sequentially to prepare for

reversed-scanning. Based on the work in [5,11], Xu et al. further proposed a metadata-based method

for recovering file traces that contain all the versions of files from YAFFS2 [12]. Although the

above effort shows that it is possible to recovery files from NAND flash memory as long as the

actual data still resides on the flash chip, none of the methods is shown to be able to recover broken

fragmented files. The purpose of this paper is to further progress the previous effort by focusing on

proposing methods for the recovery of YAFFS2 files.

2. NAND Flash and YAFFS2 File Systems

2.1 NAND Flash

Embedded systems traditionally have utilized the NOR Flash for nonvolatile memory.

Many current designs are moving to NAND Flash to take advantage of its higher density

and lower cost for high-performance applications. The 2GB NAND Flash device is

organized as 2048 blocks with each block containing 64 pages and each page containing

2112 bytes which consists of a 2048-byte data area and a 64-byte spare area. The spare

area is typically used for ECC, wear-leveling and other software overhead functions

although physically it is the same as the rest of the page. NAND Flash is an electrically

erasable and reprogrammable non-volatile flash memory with such advantages as low-

power consumption, portable and low cost. It must be erased first before it can be

rewritten, which is very different from the magnetic storage medium.

2.2 YAFFS2 File System

YAFFS (Yet another Flash File System) is specifically designed for NAND flash and

YAFFS2 is the second version of YAFFS that has evolved from YAFFS1 to accommodate

newer chips. There are two types of chunks in YAFFS2: data chunks and object header

chunks [10]. Data chunks contain the actual file content while object header chunks

contain file/directory metadata and descriptor information such as file size, object name

and creation time [12]. Each chunk has Tags in the spare area that holds additional

information such as the chunk ID, serial number, number of bytes and object ID. Every

file that is stored on the NAND chips has a unique identity called the object IDs since files

are regarded as objects by the file system. When a file is modified, the YAFFS2 file

system will store the new data in empty pages and add a new object header [12]. When a

file is deleted, the YAFFS2 file system will write a new object header at the end of the file

to indicate that the file has been deleted. Only when most of the flash chip is used and

there is data waiting to be written, will YAFFS2 invoke the garbage collection process [2].

Table 1 displays some information that is stored in the object header chunks and data

chunks that is useful for data recovery according to YAFFS2 documentation [5] and our

research, among which Yst_ctime indicates the time when the file was created, Yst_mtime

indicates the time when the file was last modified and Yst_atime indicates the time when

the file was last accessed which changes as the read operation is done. Listed in Table 1 is

also the information in the object headers and tags. In a data chunk, object ID indicates to

which object file the chunk belongs and value 0 means that the chunk is not part of any

object. Chunk ID indicates the logical sequence of the chunk in the file to which it belongs

and value 0 indicates that the chunk is a header chunk rather than a regular data chunk.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 39

Table 1. Information in Object Header and Data Chunks

Content Size(Bytes) Comment

Parent_ Objectid 4 Parent directory

Name[yaffs_max_name_length+1] 256 File name

Yst_atime 4 Access time

Yst_mtime 4 Modified time

Yst_ctime 4 Create time

Filesize 4 Length of the file

isShrink 4 Whether the file is

resized

Chunk ID 20 Sequence in the file

Object ID 18 Unique identifies of file

For YAFFS2, the content of each and every file is stored in chunks which are organized

in the form of a Tnode tree for easy access. A Tnode tree provides a mapping to physical

chunk address from file address [2]. Therefore, very object holds a Tnode tree. YAFFS2

Tnode tree is built with different pointers. Tnodes at the lowest level, i.e., Tnodes at level

0, has 16 physical chunk indexes that point to the chunk’s logical location in memory [2].

Every Tnode has 8 pointers to point to the other nodes at the next level. We can use

YAFFS_FindLevel0Tnode () to find the position of a physical chunk [2]. The tree must

get updated whenever chunks get updated.

3. Recovering YAFFS2 Files Based on Tnode tree

When recovering files stored in a NAND flash, we need to scan the partitions of the

flash first. For better performance, we choose the reversely-scanning algorithm that is

illustrated in Algorithm 1 as follows. Let Blockn denote the block with sequence number n

and Pagem denote the mth page in the block. We begin with the block with the largest

sequence number and scan the whole block from the last chunk to the first one.

In YAFFS2, the strategy is designed to store new data in empty pages and to add a new

object header when a file is modified or deleted. Fragmentation would then occur when

files are modified. Traditional file recovering methods would scan the pages that belong to

other files but are located between chunks of the current file and read their tags two or

more times. The algorithm that we propose for recovering files and reconstructing the file

system in YAFFS2 doesn’t need to scan some fragmentation pages two or more times.

Rather, it only scans each page in the NAND flash memory once, thus reducing the

recovery time. The steps of our recovery algorithm are described in Algorithm 2 below:

Algorithm 1:

Step 1: Scan Blockn;

Step 2: Scan Pagem in Blockn. If Pagem is the first one in the block, jump to Step 4;

Step 3: m=m-1, go to Step 2;

Step 4: If n=0, then end; else n=n-1, return to Step 1.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

40 Copyright ⓒ 2015 SERSC

ObjectID ChunkID Invalid

1 0 N

21

N11

1

N31

N

Y51

Y4

2 N0

2 N1

ObjectID ChunkID Invalid

2 2 N

42

N32

1

N41

N

N03

N5

3 N1

3 N2

Replace

Replace

Figure 1. Recovery Techniques for Broken Files

4. Replace Method for Reconstructing Yaffs2 Files

When a file has been broken and some data pages or object headers could not be found,

Algorithm 2 is no longer sufficient for the reconstruction of fragmented files.

Consequently, we are not able to recover all the files in a NAND flash memory. Taking

this situation into consideration, we propose a replacement method to attempt to

reconstruct fragmented YAFFS2 files. The logic behind the idea is that, in YAFFS2, after

a file is modified, the file system will store new data in empty pages and add a new object

header to indicate that this file has a new version and the old pages are now made invalid

[12]. We can thus use pages in previous versions of the same file according to the missing

chunk IDs to locate and thus recover the missing chunks. However, the recovered file will

be aligned to the previous versions instead of the latest one. We randomly picked 6

Android devices available and dumped the “/data” partition including the user data as

Algorithm 2:

Step 1: Initialization n=1;

Step 2: Scan NAND flash using Algorithm 1; read the yaffs_tags from the spare area of

each page in the NAND flash;

Step 3: Build the relevant Tnode tree for every file in which there are two different

circumstances as follows:

(1) chunkID=0:

 If the yaffs_Object has been built in the RAM already, take the chunk with the

latest Yst_atime;

 Else build a yaffs_Object according to its objectID;

(2) chunkID>0:

 If there exists an object header that has the same objectID, insert the present

chunk into its yaffs_Object;

 Else if such an object header doesn’t exist, build a yaffs_Object according to the

objectID and insert the current chunk;

 Else if the chunk that shares the same chunkID has already been added into the

relevant file’s Tnode tree, determine which one is valid based on the Serial

Number and abandon the invalid one;

Step 4: Once the construction of the Tnode tree of one file is complet, call

yaffs_FindChunkInGroup() and yaffs_FindLevel0Tnode() to find the physical address of

Level 0 pages and store them in File[n][i] where i= chunkID;

Step 5: Copy pages into the new area according to the physical address stored in

File[n][i];

Step 6: If the current page is the last one in this NAND flash, then end the scanning;

else n=n+1, go to Step 2.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 41

Image files using dd tools. All the devices we used in the experiments had been in use for

at least 3 months and most of user data files thus have been modified. Consequently, the

data pages are fragmented into many pieces as update, insert or delete operations were

once performed. We used Frag-insight in our experiments which is a tool that is developed

for analyzing the flash memory images (fragmented pages) and currently supports the

YAFFS and Ext4 file system. We analyzed the 6 image files using Frag-insight and the

results are showing in Table 2 where listed are the total size of each image file and the

actual size of the storage space that all the files occupy in flash memory. Since each page

consists of a 2048-byte data area, we can calculate the number of pages. All extra pages

can be used to show that there are other history versions of the files stored in the NAND

flash memory and can thus be used in our replace method for reconstructing files.

Table 2. Results of the Frag-Insight Analysis

 Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Total

size

1.21GB 427MB 871MB 462.5MB 524.6MB 819MB

Valid file

size

763.22MB 366MB 654.30MB 403MB 397MB 605.3M

B

Number

of pages

317194 109312 222976 118400 134297 209664

Number

of valid

pages

195384 93696 167501 103168 101632 154957

Extra

pages

121810 15616 55474 15232 32665 54707

An illustration of some of the steps in the procedure in Figure 2 for recovering files is

provided below:

Step 1: To determine whether the Tnode tree of a file is complete or not. It is complete

when the number of pages in this Tnode tree is equal to Filesize in Object header.

Step 2: Put the ObjectID of a broken file in tmp[0].

Step 3: To determine whether the current page exists in Tnode tree. Scan the NAND Flash

memory reversely and read the yaffs_tags from the spare area of each page. While

ObjectID=tmp[0], match the ChunkID of this page with elements stored in tmp[i],

i(1,n). There are two different circumstances as follows:

(1) If the ChunkID of this page is equal to one of the elements in array tmp[], go on

scanning;

(2) Else if the ChunkID of this page doesn’t exist in array tmp[], insert it into the

Tnode tree and store its physical address;

Step 4: Once the construction of the Tnode tree of this file is completed, copy all the pages

into a new area. Clear array tmp[].

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

42 Copyright ⓒ 2015 SERSC

Figure 2. The Procedure for Recovering Missing Chunks

5. Analysis

We have performed some experiments to evaluate the proposed file reconstructing

method to show its effectiveness and its superior performance over existing methods. We

conducted this experiment over a VirtualBox set up with the Ubuntu operating system. We

simulated a MTD in the random access memory RAM and created a simulation NAND

flash using nandsim to mount YAFFS2 partitions. The storage capacity of NAND flash

that we simulated is 64MB and the size of each page is 2KB. The following steps are taken

to prepare the experimental environment.

1. Download the YAFFS2 source code package yaffs2.tar.gz and compile it.

2. Simulate a MTD in the random access memory RAM and create a simulation

NAND flash using nandsim to mount YAFFS2 partitions.

3. Write files into the simulated NAND flash and modify them. Specific data are

shown in Table 3.

When the reconstructing process is completed, data recovery and extraction are

performed on the image files. Since our method uses pages in other versions of the file to

replace the missing or broken pages, we would like to analyze how the changes in file size

can affect the reconstructing results. Let Y denote the percentage of files that can be

recovered and X denote the difference of file size between the different versions of the

same file. Then, X
T
=(x1, x2,......,xm) and Y

T
=(y1,y2,......,ym). To estimate the parameters

using the least squares method, Equation is as follows:






















 

 

 

 

xy

xxn

yxyxn

m

i

m

i

ii

m

i

m

i

i

m

i

iii





1

2

1

2

1 11

)(

))((

(1)





m

i

i

m

i

i x
m

xy
m 11

1
,

1
y (2)

Scan the Tnode
tree

Complete or not?

Reconstruct broken
file

End

Start

Copy the recovery file

Y

N

Stored the ObjectID

of this file in tmp[0]

Scan pages in NAND,when

ObjectID=tmp[0], do next

Store ChunkIDs of pages in the

Tnode tree into tmp[1]-tmp[n]

The ChunkID of the curent

page exists in array tmp[]?

Insert it into the

Tnode tree

Go on scanning

N

Y

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 43

Where the calculated results is 3830.11123.0-   ， . After analysis, the simulation curve

is shown in Figure 3 which depicts the effect of recovery result caused by the change of

file size.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

The change of file size(%)

T
h
e
 r

e
c
o
v
e
ry

 r
e
s
u
lt
(%

)

Figure 3. The Effect of File Size on the Recovery Result

6. Conclusion

In the field of digital forensic, many recovering techniques have been developed

to extract user data as much as possible. To overcome the problem that high

fragmentation occurred in storage devices, this paper demonstrates systematic

reconstructing method only for YAFFS2 files. Our future research will focus on

classifying the data pages of flash memory into different file types such as

encrypted, compressed, image and video, and develop classification reconstructing

techniques to recovery user data for each file type.

Acknowledgements

The work in the paper has been supported by National Natural Science Foundation of

China (61272500) and Beijing Natural Science Foundation (4142008).

References

[1] James Luck, Mark Stokes. An Integrated Approach to Recovering Deleted Files from NAND Flash Data.

Small Scale Digital Device Forensics Journal, 2(1), 2008:1-13.

[2] Charles Manning. How YAFFS Works. 2010. Available at: http://www.yaffs.net/documents/how-yaffs-

works.

[3] Baiyi Huang. Data Recovery on Android Phones. M.S. Thesis, The George Washington University, May

2011.

[4] Andre Morum de L. Simao, Fabio Caus Sicoli, Laerte Peotta de Melo, Flavio Elias de Deus, Rafael

Timoteo de Sousa Junior. Acquisition of Digital Evidence in Android Smartphones. In：Proceedings of

the 9th Australian Digital Forensics Conference, Perth, 2011:116-124.

[5] Xue Yang, Ming Xu, Haiping Zhang. File Recovering from YAFFS2 based on Object Headers and

Metadata. In：Proceedings of 4th International Conference on Graphic and Image Processing, Singapore,

2013: 876806 - 876806-8.

[6] Christian Zimmermann, Michael Spreitzenbarth, Sven Schmitt, Felix C. Freiling. Forensic Analysis of

YAFFS2. Lecture Notes in Informatics P-195, 2012:59-70.

[7] Stefan Sack, Knut Kröger, Reiner Creutzburg. Overview of Potential Forensic Analysis of an Android

Smartphone. Electronic Imaging, 2012：8304M-8304M-11.

[8] Joe Sylve, Andrew Case, Lodovico Marziale, Golden G. Richard. Acquisition and Analysis of Volatile

Memory from Android Devices. Digital Investigation, 8(3-4), 2012:175-184.

[9] Jungheum Park, Hyunji Chung, Sangjin Lee. Forensic Analysis Techniques for Fragmented Flash

Memory Pages in Smartphones. Digital Investigation, 9(2), 2012:109-118.

http://www.yaffs.net/documents/how-yaffs-works
http://www.yaffs.net/documents/how-yaffs-works
http://www.sciencedirect.com/science/article/pii/S1742287611000879
http://www.sciencedirect.com/science/article/pii/S1742287611000879

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

44 Copyright ⓒ 2015 SERSC

[10] Patrick Dibb, Mohammad Hammoudeh. Forensic Data Recovery from Android OS Devices: An Open

Source Toolkit. In: Proceedings of 2013 European Intelligence and Security Informatics Conference,

Uppsala, Sweden, 2013:226.

[11] Beibei Wu, Ming Xu, Haiping Zhang, Jian Xu, Yizhi Ren, Ning Zheng. A Recovery Approach for SQLite

History Recorders from YAFFS2. In: Proceedings of Information & Communication Technology-

EurAsia Conference 2013, Yogyakarta, Indonesia, 2013:295-299.

[12] Ming Xu, Xue Yang, Beibei Wu, Jun Yao, Haiping Zhang, Jian Xu, Ning Zheng. A Metadata-based

Method for Recovering Files and File Traces from YAFFS2. Digital Investigation, 10(1), 2013:62–72.

[13] J. Katcher. PostMark: A New File system Benchmark. Technical Report TR3022, Network Appliance,

1997.www.netapp.com/tech_library/3022.html.

Authors

Na Huang, she is currently a M.S. student in the School of

Software Engineering at Beijing University of Technology in China.

Her research focuses on digital forensic.

He Jingsha, he received his B.S. degree from Xi'an Jiaotong

University in Xi’an, China and his M.S. and Ph.D. degrees from the

University of Maryland at College Park in USA. He is currently a

professor in the School of Software Engineering at Beijing University

of Technology in Beijing, China and an associate director in the Low

Carbon Research Center at Beijing Development Area Co., Ltd. in

Beijing, China. Professor He has published over 200 research papers

in scholarly journals and international conferences and has received

over 40 patents in the United States and in China. His main research

interests include information security, network measurement, and

wireless ad hoc, mesh and sensor network security.

