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Abstract

In engineering, solving divergence and long solving time often occurs when solving
large complex dynamic equations. Comparative analysis of Newmark and Rungekutta
method fora complex dynamic model can provide a theory basis for the selection of
numerical integration method when solving complex dynamic equation. The comparative
analysis on the solving precision and solving time by Newmark method and Rungekutta
method for calculating a same complex dynamic equation is carried out. The calculation
results show that the response results by these two methods are in strong consistency. But
the Newmark method shortens the solving time by at least 3 orders comparing that of
Rungekutta method. Furthermore, the response displacement by Newmark method in
different integration steps is obtained. The results indicate that the response results
become stable with integration step continues reducing under 0.1.
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1. Introduction

In engineering, the dynamic characteristics of each component are analyzed by solving
the corresponding dynamic equations. The dynamic equations will become time-varying
and nonlinear when considering the time-varying stiffness and multi-DOF coupling
structure. Therefore, solving divergence and long solving time are the common problems
in the calculation process.

The foreign and domestic scholars have done lots of researches on Newmark numerical
integration method for solving dynamic equations. Some scholars carried out theoretical
derivation for deeper analyzing the precision volatility problem . Some put forward a
method that can automatically adjust the integration step based on the original Newmark
method ® 4. Newmark and Rungekutta method are the most used numerical integral
method for calculating large complex dynamic equations. Many scholars have done deep
researches on the solving precision and stability of Newmark method, Rungekutta
method, etc®®]. But the comparative analysis on the solving precision and solving time
by Newmark method, Rungekutta method for a same complex dynamic equations is still
not that deep.

TBM cutterhead multi-DOF dynamic model

This paper takes a TBM cutterhead complex dynamic model as an example [9], and the
dynamic responses of cutterhead system are obtained by using Newmark method. The
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Coupled nonlinear dynamic model of TBM cutterhead system is shown in figure 1. The
dynamic model contains 59 DOF totally. There are 20 DOF in torsional direction while
radial direction contains 26 DOF, and axis and pendulum coupled direction contains 14

DOF.
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(B) Torsional Coupledcutterhead System Dynamics Model
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(C) Axis and Pendulum Coupled Cutterhead System Dynamics Model

Figure 1. Coupled Nonlinear Dynamic Model of Tom Cutterhead System
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The dynamic equations are listed below:

I 0 +Cme( )+kme( epi):Tpi

mi ™~ mi

| e +(F_ +D_)n +cme(9pi—e'mi)+kmpq(epi—9mi)=o

pri pri

I er _Z(Fpl’l +D prl)rbr +CrL3(9r _éLB) + erB(Hr _0L3) =0
i=1

I L3éL3 + CLSr (9|_3 _Hr) + kL3r (9L3 - ‘9r) + CL2L3 (0L3 - HLZ) + kL2|_3 (‘9L3 - HLZ) =0

I LZéLZ + CL2L3 (9L2 - 0L3) + kL2L3 (9L2 - 0L3) + CL1L2 (‘9L2 - eu) + kL1L2 (0L2 - 0Ll) =0
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m.Z,+ Cequll(ZLxll Zsz1) CequlZ(ZLx12 - Zszz) + Cequll(ZLyll Ly21) + CequlZ( Ly12 ZLyZZ)
-7

+ kequll( Lx11 Lx21) kequlZ (ZLxlz - ZLxZZ) + kequll(ZLyll Ly21) + kequlZ( Ly12 - ZLyZZ) = FL

mLZZLZ + Cequ11(ZLx21 Zan) CequlZ (Zszz - Zinz) + Cequll(ZLyZI - ZLyll) + CequlZ (ZLy22 - ZLylz)
equ21 (ZLXZl ZLx31) + CequZZ( Lx22 ZLx32) + CequZl(ZLy21 Ly31) + Cequ22( Ly22 ZLy32)

+ kequll( Lx21 Lxll) + kequlZ (ZLXZZ ZLle) + kequll(ZLy21 Lyll) + kequlZ( Ly22 - ZLy12)

-Z
+ kequZl( Lx21 ZLxSl) equ22( x22 ZLx32) + kequZl(ZLy21 Ly31) + kequ22( Ly2 ZLy32) = 0

mLSZL3 + CequZi(ZLx31 Lx21) + CequZZ (ZLx32 Zszz) + CequZl(ZLy31 Ly21) + CequZZ( Ly32 ZLy22)
eqLXSl(ZLx31 m) + Cequ32( w3~ rxz) + Cequ31( 3t~ ) + Cequ32( Ly32 ZryZ)
equ21(ZLx31 Zip)+ kequ22 (Lo~ Lo+ kequZl(ZLy31 Ly21) + kequ22( 32~ ZLyzz)
equ31(ZLx31 Zy)+ kequ32( v~ L) + kequSl( Lyst ) + kequaz( Ly~ Zryz) =0
m; 4 +Cequ31(er1 - ZLxSl) +Cequ32(er2 ZLx32) +Cequ31( o Ly31) + CequSZ( 172 ZLySZ)

+ConulZoe=20)+ CapeZ0s=20)+ Cogy Ly =20)+Coo2,, = 24)
Ko (Zog = Zian) FReqos Loz = Z i) +Kequysr (Lo = Ziysn) + Koo (202 = Z1y0)
Kegua (Zog = Z3) + Ko (Zoa = Zg) + Kegn (20 = Z4) + Koo (21, = Z d) =0
m, Z + Ceqm(Z Zm) + Ceqzxz (Z erz) + Ceqzyl( ) + Ceqzyz( ) + CequZ
Koo (Zg = Zoa) Ko (Zg = o) + Kooy (g =21y ) + Koo (24 = ry2) +Keg,Zy =0
I 0, + Cequ( Lo equlz(ZLxlz Z,)a + Kegrar (Z s = Z o)A = Kegpan (Lo = Z )8y, = M

LlyaLly + Cequll( Ly11 ZLy21) equ12 (ZLy12 Ly22) L1 + kequll (ZLyll - ZLyZl)aLl - kequ12 (ZLy12 - ZLyZz)aLl = M Y

L2x9L2x + Cequll(ZLx21 - Lxll)aLZ - CequlZ (Zszz - ZLle)aLZ + CequZl(ZLx21 - ZLx3l)aL2 - CequZZ (Zszz - ZLxsz)aLz
+ kequll(ZLx21 - ZLxll)aLZ - kequ12 (Zszz - ZLle)aLZ + kequZl(ZLXZI - ZLx31)aL2 - kequZZ (Zszz - ZLXSZ)aLZ =0
I LZyéLZy + Cequll(ZLy21 - ZLyll)aLZ - CequlZ (ZLyZZ - ZLylZ)aLZ + Cequ21(ZLy21 - ZLy31)aLZ - CequZz (ZLyZZ - ZLySZ)aLZ
+ kequll( Lyt~ ZLyll)aLZ - kequ12 (ZLy22 - ZLylZ)aLZ + kequZl(ZLy21 - ZLySl)a'LZ - kequ22 (ZLyZZ - ZLyBZ)aLZ =0
I LSXéLSX + CequZl(ZLx31 - ZLle)aL3 - Cequzz (ZLXBZ - Zszz)aLs + Cequ31(ZLx31 - erl)aLB - Cequ32 (ZLxsz - er2)aL3
+ kequ21( X3l ZLle)aL3 - kequZZ (ZLx32 - ZLxZZ)aL3 + kequ31(ZLx31 - erl)aLS - kequ32 (ZLx32 - erz)aLa =0
L3y0L3y + CequZl(ZLy31 - ZLyZl)aL3 - CequZZ (ZLySZ - ZLyZZ)aLS + Cequ31(ZLy31 - Zwl)aLB - Cequ32 (ZLySZ - sz)aLS
+ kequZl( Ly31 — ZLy21)aL3 - kequ22 (ZLy32 - ZLyZZ)aLS + kequSl(ZLy31 - Zryl)aL3 - kequ32 (ZLy32 - Zry2)aL3 =0
I, ‘9 + CequBl( nd ZLx31)ar - Cequaz (erz ZLXBZ)a + Ceqle( T )a Ceqzxz ( ne " Zu )ar
+ kequ31(er1 - anl)a - kequ32 (erz Lx32)a + keqle( - )a keqzxz ( w2 Zd )ar =0
I 9 + CequSl( i ZLy31)a ~Coya (ZryZ Ly32)a + Ceqzyl( )a Ceqyz( Zd )3,
+ kequ31( Ly31)a kequ32( ZLy32)a + keqzyl( )a kequ( d )ar =0

In dynamic model, the meaning of each parameter is shown below.
| (e =L1L2,L3r, pi,mi) -The rotational inertia of each component.

oo Ly (0 = LLL2,L3,1)_ The radial rotational inertia of each component.
m (c=L1L2,L3r pi,d) -The mass of each component.
Keqe (K =0, yi, L) -The radial stiffness of eachcutterheadcomponent.

eq"(K_ r.rz,d,dz) -The radial, axial stiffness of bull gear and shield.
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Koo Kizis Kisr The torsional stiffness of front panel, support rod and flange of
cutterhead.
k K., K

mpQ* Teap’ (1) _The torsional stiffness of transmission shaft, the support stiffness of
pinions, the time-varying meshing stiffness.
T.T, F.F.F.M,,M

piv T Ty vy -The load torque on cutterhead, the input motor torque,
horizontal unbalance force, vertical unbalance force, axial force, horizontal overturning
moment, vertical overturning moment.

or oo _The base radius of bull gear and pinions.

O %o Yoo T The angle, horizontal displacement, vertical displacement and axial

displacement of each component.

The nonlinear equations can be established according to the dynamic model.

The solution principle and solving process of Newmark method

The analytical approaches to solving system dynamic equation mainly include
perturbation method, harmonic balance method, fourier series method, etc™. It is difficult
to obtain the accurate analytical solution in solving a multi-factor coupling nonlinear
dynamic equation. The Newmark method and Rungekutta method are the mostly used
methodin engineering.

Newmark method belongs to step by step integral method.The time step length does
not affect the solving stability, and the values of this step length can be determined
according to the solving precision. Newmark method avoids the error stack effect in
solving process, and can adapt to the nonlinear response analysis. Its disadvantage exists
in forming the complicated stiffness matrix. The core part of Newmark method is

establishing a recursive relationship from t tot+ At Thedisplacement X4t | velocity

X . X .
t+at gnd acceleration “t+At are unknowns in stept +At,

Newmark method assumes the velocity and displacement are:

Xt+At:Xt+[(1_7/))'<t+7xt+At]At O§7S1

. 1 " y
Xt+At:Xt+XtAt+[(§_ﬂ)Xt+ﬂXt+At]At2 OSZﬂSI D

The above formulas are the basic formula of Newmark method. Parameters 7 and B

are of great influence on the calculation results. The values of 7 and B should be
determined fully considering the integral precision and stability. According to the

Newmark method, the acceleration of the method is constant when y20.5 ,

1.
2 _(Xt + Xt+At)
P25+ 14 1he vale of acceleration is 2 /At this time, the Newmark

method is unconditionally stable.
The differential equation of next step is

[M ]Xtmt + [C]X&At + [K]XHAt = [F]t+A’[ (2)
Plug that intointo equation (1), and the equation in step T+ At s obtained.

[K]Xum = [IE]HAI ©)

The [K] iseffective stiffness matrix which can be calculated by following equations.
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1
yAt?

M1+ 2 [c]

[K1=[K]+ —
yAt 4)

— 1 1 .. 1 ,
[F1=[F]x +[M ](W{U}t + E{U}t + (2—7 -D{uk)

P 1yat{i,)

HCILA + C-dan + (£
Y (5)

ety

According to (3), the displacement of next moment Xt:at can be obtained. The velocity

and acceleration of next moment Xt+at : X2at can be calculated by equation (1). Based on

the analysis above, the calculation process of Newmarkmethod is shown in figure 2.

The

calculation of
initial value

(1)Forming the stiffness L . (3)Determining . .
matrix, damping matrix BET e T e integration step and (4)F_orm|ng effegnve
; . value stiffness matrix
and mass matrix parameters y 3

| |
v

Calculating each time step

l \ 4 l

Calculating the effective
velocity and
acceleration int + Af]

Calculating the effective Calculating the effective
load int + At displacement in t + At

Figure 2. Calculation Process

The calculation process of a complicated dynamic model by Newmark method
3.1 The mass matrix M | stiffness matrix K , damping matrix C and load matrix F .
The total mass matrix is a 99*59diagonal metrix which is listed below.

M:dlag(lml Ipl ImZ Ip2 Im3 Ip3 Im4 Ip4 Im5 Ip5 Im6 Ip6 Im7 Ip7 Im8 Ip8
I IL3 IL2 IL1 m, My M, My, mL3 mL3 m, m, md md mpl mpz

r

Mg My, Mpg Mg Mz Mg My M, Ms M, Mg m e m, mg
le mL2 mL3 mr md Ile ILly IL2>< IL2y IL3>( IL3y Irx Iry)

Stiffness matrix K is the most complicated factor that influences the system’s
dynamic characteristics. The stiffness matrix may contain time-varying stiffness element
which make the whole matrix nonlinear.

In the numerical example, the stiffness elements of torsional and radial DOF are time-
varying. There are 20 DOF in torsional direction while radial direction contains 26 DOF.
Therefore, the first 46 orders of the stiffness matrix is a multi-DOF coupling time-varying
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matrix. This time-varying matrix is defined as K111 and its corresponding damping

matrix is defined as €111, The last 13 orders of the stiffness matrix represent the stiffness
of each component in axial and capsized DOF, and the corresponding stiffness matrix and

damping matrix are named K222and €222 The system stiffness matrix is defined as:

k111
Klz{

} c {clll }
k222 While the damping matrix is defined as €222 .

The load matrix contains the external load, time-varying meshing load, cumulative
error, etc. It is a complicated vector with time-varying characteristic, and is listed below.

8
F=[T,., 1, *(fy + D) Ty - O (fu + Dy),0,0,~T, , FX, FY,0,0,0,0,

i=1

28:(— fui + Dyi) -Sin(e, +0¢),Zal( fui + Dyi) -cos(e, + a),—(f, + Dy;)-cose,

i=1 i=1

—(fy + Dy)-sine, FL,0,0,0,0, MX, MY, 0,0,0,0,0,0]"

1.2 Integration step and parameters 7 and B :
In order to make the Newmark method unconditionally stable, the integration
parameters are selected and calculated as follows.

1 4
At =0.02,7=0.5, B=1/ 4, ay=—— , o, = ——
r=05.0 ©opatttTt pat
1 1

_ _ _7 _At ¥ _ _
a——,a———l,a ———1,C( - ——2,0( =At(1- ,O{—At
2 BAL 3 25 4 5 575 (,3 ) 6 -7 7=N

1.3 The calculation of effective stiffness matrix
The effective stiffness matrix is calculated as equation below.

K=K+ag,M+aC

1.4 Calculation for each time step
The system effective load vector is computed as:

R = R tM(aX + % + % ) +ClanX + @ X + a:X,)
The displacement in moment t + Atjs calculated as:
KXt+At = Ft+At
The velocity and acceleration in momentt + Atjs calculated as:
{Xum =y (X = %) — X% — %,
Xt+At :Xt + aﬁxt +6¥7 XHAt
The comparative analysis of Newmark and Rungekutta method:
For this dynamic system, the displacement, velocity and acceleration calculation results
by Newmark and Rungekutta method are show in figure 3.In figure, curve S represents

the displacement response, curve V represents the velocity response and curve a
represents the acceleration response.

370 Copyright © 2015 SERSC



|8
5 o v
4 |I \ d a
i N
3’ ;-r./
| A
- A
LI !
)
/ _
o __
1 1 2 3 4
time(s)

(A) Runge-Kutta Method

5

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

amplitude
Pk [~} dm [0

=
o

=

-

=]

ti.Ele(s}

(B) Newmark Method

Figure 3. Solving Results

From the figure 2, it can be seen that the response results by these two methods are in
strong consistency which ensures the solving results are in the same precision.
The response displacementbyNewmark method in different integration steps are shown

in Figure 4.

amplitude

— 0.01

1
0.1 1

0.001
0.0001
0.00001

25 3

time(s)

Figure 4. Solving Step to the Results

It can be seen that the response results become stable with the integration steps
reducing from 1 to 0.00001. Especially when integration step reduces from 1 to 0.1, the
response results tend towards the analytical solution rapidly.

The computing time and memory statistics using these two methods are listed in Table

1.

Table 1. Contrast of the Calculation Statistics

Method Truncation S_olving M_emory
error time statistics
Rungekutta 2.6e5 503
Newmark 155 1167
Ratio 0.0006 2.32
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As can be seen above, the Newmark method shortens the solving time by at least 3
orders comparing that of Rungekutta method. Therefore, applying Newmark method to
the nonlinear time-varying system can largely shorten the solving time.

2. Conclusion

The Newmark and Rungekuttamethod are used in calculating a same complex
nonlinear dynamic equation. The results show that when integration step reduces from 1
to 0.1, the response results tend towards the analytical solution rapidly, and the response
results become stable with integration step continues reducing. Moreover, the Newmark
method shortens the solving time by at least 3 orders comparing that of Rungekutta
method. These results provide the theory basis for the selection of numerical integration
method solving complex dynamic equation.
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