
International Journal of Hybrid Information Technology

Vol.8, No.7 (2015), pp.27-36

http://dx.doi.org/10.14257/ijhit.2015.8.7.03

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

A Policy Conflict Detecting Algorithm of RBAC Based on Concept

Lattice Model

Daojun Han, Lei Zhang, Xiajiong Shen and Peiyan Jia

Institute of Data and Knowledge Engineering, Henan University,

KaiFeng, 475004, China

E-mail:{hdj,zhanglei,shenxj,jpy}@henu.edu.cn

Abstract

Access control policy conflict detecting is an important issue in the usage of

information system. To solve the problem that the expression of existing common Role-

Based Access Control(RBAC) policy conflict detecting is not intuitive and the

corresponding algorithm is not efficient, meanwhile, we observed that the concept lattice

model has natural advantages being a data representation method and is easy to be

combined with RBAC. Thus, this paper introduce the concept lattice model into RBAC

policy conflict detecting algorithm, aim at the problems of jurisdiction conflict, static role

conflict, and user conflict, utilizing the sub lattice on the basis of use two formal contexts

to denote user-role relation and role-permission relation respectively, we provide an

intuitive and efficient detecting algorithm. Experimental result shows the efficient of our

algorithm.

Keywords: concept lattice; Role-Based Access Control (RBAC); policy; conflict

detecting

1. Introduction

To ensure the system resources using can be under control and legal, access control is a

method to explicitly allow or limit the ability and range of the access from subject to

object, and it has become an important technique of information security. Nowadays,

there are many kinds of access control model, such as the role based access

control(RBAC), discretionary access control(DAC), mandatory access control(MAC),

usage control(UCON), attribute-based access control(ABAC), and task-based access

control(TBAC). In these popular models, RBAC has huge influence and widely applied

because of RBAC achieving the logical separation of user and permission, convenient to

manage. Furthermore, role is an important attribute, and RBAC has become the

foundation of access control model like ABAC [1]. In the application process of RBAC,

the policy conflict detecting is an important issue, which attracted researchers’ extensive

attention [2-4]. Cheng Xiangran formalized defined five kinds of RBAC policy conflict,

analyzed the reason of policy conflict, bring up and take simulation test of an integrated

policy conflict detecting algorithm, aiming at the conflict issue which is caused during

RBAC model is applying safety principle like duty separation and minimum privilege [5].

Liu Qiang revealed a series of logical and management issues: pseudo three valued logic

in authorization status, source of managerial authority, administrator’s accrual

synchronization, meaning of permission to leak, problem of authorization decision

supported model, which provided theoretical support of raising the safety and

applicability and reducing the complicacy of RBAC model[6].

In order to solve the problem that the expression of existing RBAC policy conflict

detecting is not intuitive and the algorithm is not efficient, we observed that the concept

lattice model has advantages being a data representation method and is easy to be

combined with RBAC [7-9]. So we introduce the concept lattice model to RBAC policy

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

28 Copyright ⓒ 2015 SERSC

conflict detecting algorithm, and provide an intuitive and efficient detecting algorithm.

Firstly, we build concept lattice according to the core factor of RBAC: user, role, and

limit of authority, which can visually express the relationship between user and role, role

and limit of authority. Then, we convert different kind of conflict to rule, make use of

extension and intension in formal concept, and do conflict detecting. Experimental result

shows availability of the algorithm.

2. Background

2.1 Role-Based Access Control

For access control purpose, it is much important to know what user’s organizational

responsibilities are, rather than who the user is. Thus, RBAC is suitable. Role-Based

Access Control, RBAC, introduce the concept of role into user and permission. User is

relevant to specific one or multiple roles. Role is relevant to one or multiple permissions

and can be created or revoked on the base of operational need. Users who register in

system can dynamically activate roles according to their own need. The RBAC has

greatly simplified permission management for it implements the logical separation

between user and permission by means of conferring or revoking permissions to a role

instead of the user.

The CORE RBAC model was released by ANSI in 2004[10], and the main components

are shown in Figure 1.

USERS ROLES OPS OBS

SESSIO

NS

PRMS

(PA)

Permission

Assignment
(UA)

User Assignment

session_rolesuser_sessions

Figure 1. The Main Components of Core RBAC

CORE RBAC has the following components:

 USERS, ROLES, PRMS, and SESSIONS denote user set, role set, permission

set and session set. Commonly used objects USERS, ROLES, PRMS are

shorthand for U, R, P, there is P=2(OPS×OBS)

 PA P×R, which is a many-to-many permission-role relation;

 UA U×R, a many-to-many user-role relation;

 User: S→U, a function mapping each session si to a single user, user (si). Note

that user(si) is constant during the session lifetime;

 Roles: S→2R, a function mapping each session si to the subset of all roles,

roles (si) {r| (user (si), r) UA} (which can change over time) and there are

permissions in session si.

2.2 RBAC Security Constraint and Conflict

Nowadays, the definition of RBAC security constraint and conflict is not yet complete.

Aiming at the conflict issue which is caused during RBAC model is applying safety

principle like duty separation and minimum privilege, Cheng Xiangran defined five kinds

of RBAC policy conflict as permission, static role, dynamic role, user and role loop

inheritance, the main definition is as follows [5].

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 29

Definition 1 (conflict permission constraint, permission conflict PRMS_CF) conflict

permission constraint cp= (ps,n), ps={prms1, prms2,…, prms|ps|}⊆PRMS, |ps|≥n≥2，it

means at most n-1 number of permissions in ps can be assigned to one role. If n=2,

permissions in ps are mutually exclusion. The conflict permission set is denoted by CP=

{cp1, cp2… cp|CP|}.

Definition 2 (static conflict role constraint, static role conflict SR_CF) static conflict

role constraint dcr= (rs,n), cr=(rs,n), rs={r1,r2,…,r|rs|}⊆ROLES, |rs|≥n≥2, a user can own

at most n-1 number of roles in rs. SCR= {scr1, scr2… scr|SCR|} is static conflict role

constraint set.

Definition 3 (dynamic conflict role constraint, dynamic role conflict DR_CF) conflict

user constraint dcr= (rs,n), rs={r1, r2,…,r|rs|}⊆ROLES, |rs|≥n≥2, it means one session can

activate at most n-1 number of roles in rs. If n=2, roles in rs are mutually exclusion.

Dynamic conflict role constraint set denoted by DCR= {dcr1, dcr2,…,dcr|DCR|}.

Definition 4(conflict user constraint, user conflict USER_CF) conflict user constraint

is that cu= (us,n,r), where us={u1,u2,…,u|us|}⊆USERS, r∈ROLES, |us|≥n≥2, it means

that a role r is assigned at most n-1 number of users in us. If us=USERS, conflict user

constraint can express cardinality constraint. Conflict user set denoted by CU= {cu1,

cu2,…,cu|CU|}.

Definition 5 (role inheritance path, role inheritance loop conflict RIC_CF) according

to transitivity of inheritance, role inheritance path (n≥1) denote the transmit inheritance

relationship from role ri to role rj. If exist a role inheritance path, role inheritance loop

conflict is occurring.

2.3 Concept Lattice

Concept lattice is main data structure in formal concept analysis theory, and it is a

common data analysis tool. Every node in concept lattice is a formal concept, it is made

up with two parts: the one is extension, means instance of concept; the other is intension,

means expression of concept, also means common characters of concept instance. In

addition, concept lattice vividly and compactly give expression to generalization and

specialization relationship between concepts.

Given a context as triples K= (G, M, R), G is objects set, M is attribute set, R is a

binary relation between G and M. There is only one ordered set corresponding with K,

and a lattice structure is generating according to the ordered set. The lattice L constructed

by context (G, M, R) is a concept lattice. Each node in lattice L is an ordered pair (named

formal concept or concept), denoted as (X, Y), X∈P (G) is extension of concept (P (G) is

power set of G); Y∈P (M) is intension of concept. Every ordered pair is complete about

relationship R, has two characters.

(1)X= {x∈G| y∈Y, xRy};

(2)Y= {y∈M| x∈X, xRy}。

In context K, we define two mapping f：P(G)→P(M) and g：P(M)→P(G),

)}(|{)(: 111 xRmGxmGfGG

)}(|{)(: 111 xRmMmxMgMM

They are called Galois connection between P (G) and P (M). For two-tuples (G1, M1)
∈P (G) ×P (M), if satisfy G1=g (M1) and M1=f (G1), then this two-tuples is a formal

concept of information table K. For given formal concept C=(G1,M1), G1 is extension of

formal concept C, denoted by Extension(C), M1 is intension of formal concept C, denoted

by Intension(C). All formal concept sets of K are denoted by CS (K).

An ordered relationship can be built between those concept lattice nodes. Given

H1=(X1, Y1) and H2=(X2, Y2), then H1<H2 Y1 Y2, lead order signify H1 is father node

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

30 Copyright ⓒ 2015 SERSC

or direct generalization of H2. Hasse diagram of lattice can be created by the ordered

relationship: if H1<H2 and there is no other element H3 meet H1<H3<H2, then exist an

edge from H1 to H2. Table 1 show a formal context, 1 in row u and line m means uRm, in

which u is object and m is attribute. There is G={1,2,3,4} and M={a, b, c, d, e}, and R

describe elements in G have attribute set in M. Figure 2 shows a concept lattice created

from K1, which represented by Hasse diagram.

Table 1. A Context K1

 A B c d e

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1 1 1

(1234, e)

(24, abe)

(4, abcde)

(14, bde)

(124, be) (234, ae)

(34, ace)

Figure 2. A Concept Lattice And Its Hasse Diagram Corresponding With

K1

3. Policy Conflict Detecting Algorithm Based on Concept Lattice Model

3.1. Concept Lattice Express RBAC

Concept lattice can express generalization and specialization relationship among

formal context, also, extension and intension set of formal concept describe the mapping

relationship between objects and attribute. Those two characters of concept lattice are

familiar with RBAC: (1) according to permissions included, some roles have inclusion

relations among themselves; (2) mapping relations exist between role and permission as

well as role and user. In this way concept lattice model can closely integrated with RBAC

and do some research and operation in RBAC on the basis of concept lattice model [8-9].

It is known that the core factors in RBAC are user, role, and permission from the

analysis of the above. Role plays an important role like as the uses of bridge and it make

the user and permission logical disjunction. We can use two formal contexts K1 and K2 to

denote user-role relation and role-permission relation respectively. Assume there exist

user set Suser, role set Srole and permission set Sright in system.

We construct K1=(G1,M1,R1), G1={x|x∈Suser}, M1={x|x∈Srole},R1={(x,y)|P(x,y),

x∈Suser, y∈Srole }, where P(x,y) means user x has role y.

In a similar way, we construct K2=(G2,M2,R2), G2={x|x∈Srole}, M2={x|x∈Sright},

R2={(x,y)|Q(x,y), x∈Srole, y∈Sright}, where Q(x,y) means role x has permission y.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 31

Apply concept lattice construction algorithm on K1 and K2, and denote core factor in

RBAC by concept lattice model, then we obtain CS (K1) and CS(K2). We can acquire the

contain relation of user-role and role-permission from CS(K1) and CS(K2) by using the

relationship between extension and intension and partial order organization in formal

concept, which is easy for quick search of corresponding information.

3.2 Policy Conflict Analysis and Detecting Algorithm

During the process of applying user and permission, that is, apply one or some roles to

a user and apply one or some permissions to an role, adding role inheritance and role

activated, we can implement policy conflict detecting of the system current session state.

In this section, we will introduce detecting idea for different conflicts, then provide

corresponding detecting algorithm.

3.2.1 Policy Conflict Analysis and Detecting Idea: Aiming at five kinds of conflict

definitions in section 2.2 and analyzing the practical significance of conflict style, we

provide a total detecting idea based on use concept lattice model to represent RBAC

model, which is shown as Table 2.

Table 2. Total Conflict Detecting Idea Based On Use Concept Lattice Model
to Represent RBAC

Conflict style Conflict explanation Detecting idea based on concept lattice
model

Definition 1:
permission
conflict PRMS_CF

If a role gets more than n-1
permissions in ps directly or
indirectly, permission
conflict is occurring.

According to the method of concept
lattice explanation for role-permission,
the detecting method of permission
conflict is to analyze node and get the
sub-lattice in CS(K2), then apply the detect
method to system.

Definition 2:
static role conflict
SR_CF

For static conflict role
constraint scr = (rs,n), if
there are more than n-1
roles are assigned to one
role in rs, static role conflict
is occurring.

According to the method of concept
lattice explanation for user-role, the
detecting method of static role conflict is
similar with permission conflict. That is,
analyze nodes of concept lattice in CS (K1),
then get sub-lattice and use it in detect
method.

Definition 3:
dynamic role
conflict DR_CF

For dynamic conflict role
constraint dcr= (rs,n), if
there are more than n-1
roles are activated by one
session, dynamic role
conflict is occurring.

In a session, according to concept lattice
explanation of role, if the smallest
extension is null, we can get a sequence
of smallest intension and get the union
set to intersect with rs.

Definition 4: user
conflict USER_CF

For every conflict user set
cu= (us,n,r), if there are
more than n-1 users can
get role r in us, user conflict
is occurring.

In a session, we find the biggest concept
node relevant to r in CS (K1), then explain
it according to extension of concept node.
If the number of biggest node extension is
small than n-1, then it does not exist.

Definition 5: role
inheritance loop
conflict RIC_CF

If a role inherits itself
indirectly, role inheritance
loop conflict is occurring.

Role inheritance loop conflict can be
detect when building concept lattice CS
(K2) by constrains of set union operate. If
exist inheritance loop, it is a formal
concept in essence.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

32 Copyright ⓒ 2015 SERSC

Conflict style Conflict explanation Detecting idea based on concept lattice model

Definition 1: permission conflict PRMS_CF If a role gets more than n-1 permissions

in ps directly or indirectly, permission conflict is occurring. According to the method

of concept lattice explanation for role-permission, the detecting method of permission

conflict is to analyze node and get the sub-lattice in CS(K2), then apply the detect method

to system.

Definition 2: static role conflict SR_CF For static conflict role constraint scr =

(rs,n), if there are more than n-1 roles are assigned to one role in rs, static role conflict is

occurring. According to the method of concept lattice explanation for user-role, the

detecting method of static role conflict is similar with permission conflict. That is, analyze

nodes of concept lattice in CS (K¬1), then get sub-lattice and use it in detect method.

Definition 3: dynamic role conflict DR_CF For dynamic conflict role constraint dcr=

(rs,n), if there are more than n-1 roles are activated by one session, dynamic role conflict

is occurring. In a session, according to concept lattice explanation of role, if the

smallest extension is null, we can get a sequence of smallest intension and get the union

set to intersect with rs.

Definition 4: user conflict USER_CF For every conflict user set cu= (us,n,r), if there

are more than n-1 users can get role r in us, user conflict is occurring. In a session, we

find the biggest concept node relevant to r in CS (K¬1), then explain it according to

extension of concept node. If the number of biggest node extension is small than n-1, then

it does not exist.

Definition 5: role inheritance loop conflict RIC_CF If a role inherits itself indirectly,

role inheritance loop conflict is occurring. Role inheritance loop conflict can be

detect when building concept lattice CS (K2) by constrains of set union operate. If exist

inheritance loop, it is a formal concept in essence.

3.3.2 Policy Conflict Detecting Algorithm: 1 Sub-lattice Definition: There is a core

application, i.e., solving the sub-lattice of one node and denote by SubLattice(x) during

the process of policy conflict detecting based on concept lattice model. It satisfies the

following definition.

Definition 6 sub-lattice x: visits from a node x in CS (K) to the lower node until the

least element. All these visited nodes can form a lattice L0, in which node x is the greatest

element, called sub-lattice x, denoted by SubLattice(x).

(1234, e)

(24, abe)

(4, abcde)

(14, bde)

(124, be) (234, ae)

(34, ace)

Figure 3. A Concept Lattice and Sublattice(X) Example

Node with shadow is SubLattice(x) in Figure 3, where x is (124, be).

Refer to breadth-first calendar calculation method, the sub-lattice building algorithm is

explained as Table 3.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 33

Table 3. The Sub-Lattice Building Algorithm

Input: lattice L, node X
Output: lattice L0

Begin
NodeSet :={X}, where NodeSet is the node set of L0;

PartialOrderSet:= , where PartialOrderSet is the partial order set of L0；

IF X is the greatest element of L，THEN L0:=L, return L0;

Else get the sub nodes of X，obtain set Children(X)，NodeSetTemp:= Children(X)；

 Label 1： IF NodeSetTemp is not empty

 THEN for Y NodeSetTemp

IF YNodeSet；

THEN add Y to NodeSet；
Add (X,Y) to PartialOrderSet

 Obtain Children(Y)，NodeSetTemp:= Children(Y)，turn to Label 1；

ELSE return L0；
End

4. Conflict Detecting Algorithm

(1)Policy Conflict Detecting Algorithm

Theorem 1: in a session, for the node X satisfied Intension(X) =ps. If Children(X) is

not empty, roles in sub concept of X can’t be assigned role set.

Proof: The proof process can be divided into two steps.

Firstly, we prove there exist X in CS (K2). Because K2=(G2,M2,R2), G2={x|x∈Srole},

M2={x|x∈Sright},R2={(x,y)|Q(x,y), x∈Srole, y∈Sright}, it also means K2 describe the

incidence relation of role and permission. All role-permission relations can be described

by formal concept for the completeness of concept lattice. So node X exists in CS (K2).

Secondly, we prove roles in sub concept of X cannot be assigned role set. For any node

in Y SubLattice(X), there is Y SubLattice(X) according to definition and construction

algorithm of sub-lattice. Because Intension(X) =ps, ps Intension(Y). So roles in Y cannot

be assigned roles.

 □

Theorem 1 explain that, if we construct SubLattice(X) by using elements in ps as

intension set retrieval node X, elements in these sets cannot be assigned roles during

authorization.

According to theorem 1, the permission conflict detecting algorithm can be describe as

follows, in which DenyRoleSet is forbidden assign roles set and cannot assign any role in

the set for user during authorization.

1) Select node X in CS (K2), satisfy Intension(X) =ps; DenyRoleSet: =;

2) According to sub-lattice information constructed in advance, get SubLattice(X);

3) If Extension(X) =, make FatherNodeSet(X) be the father node set of node X;

(2)Static Role Conflict Detecting Algorithm

According to the definitions of static role conflict and policy conflict, there is similarity

among them. On the basis of user-role relation in CS(K1) and refer to permission conflict

detecting algorithm, the static role conflict can be described as below, in which

StaticUserSet is forbidden use user set in the session.

1. Select node X in CS (K1), satisfy Intension(X) =rs；StaticRoleSet:=;

2. According to sub-lattice information constructed in advance, get

SubLattice(X);

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

34 Copyright ⓒ 2015 SERSC

3. If SubLattice(X), for any node Y SubLattice(X), StaticUserSet: =

StaticUserSet∪Extension(Y).

(3) Dynamic Role Conflict Detecting Algorithm

On the basis of definition of dynamic role conflict and the user-role relation described

by CS (K1) in one session, detecting algorithm is as follows by means of concept lattice’s

completeness:

1) Select the least element X, TempResult: =;

2) If Extension(X), turn to 5);

3) If Extension(X) =, make FatherNodeSet(X) be father nodes set of node X;

4) For node Y FatherNodeSet(X), TempResult: = Intension(Y) ∪TempResult；

5) TempResult: = Intension(X) ∩rs. If ||TempResult||≥n，there exist dynamic role

conflict in the session. Otherwise there is no conflict.

(4) User Conflict Detecting Algorithm

According to the definition of user conflict and the user-role relation explained by

CS(K1), we can find the first concept node X obtain role r by means of concept intension

set ranking. If ||Extension(X) ||>n-1, there exist user conflict.

(5) User Inheritance Loop Detecting Analysis

User inheritance loop detecting can be eliminate after analysis, also means two roles of

loop inheritance is one concept.

Proof: assume there exist role inheritance loop, then Intension(R) Intension (Rk, 1)

Intension (Rk, 2) … Intension (Rk,n) Intension(R). The expression is false on basis of set

inclusion definition.

That is to say that role inheritance loop is commonplace and can be detected and

eliminated directly when using concept lattice model to express RBAC.

4. Experimental Analysis

A human resource management system is mainly due with employee, cheek, and

payment. In this testing environment, the number is 56, 146, and 23 for user, permission,

and role respectively. For role loop inheritance can be detected directly, also means that if

there exist roles in inheritance sequence are the same formal concept during the role

inheritance, we consider it is role loop inheritance.

In this test, we mainly test the permission conflict situation. We build five cases whose

conflict permission constraint amount is 3, 5, 10, 20, 30 respectively, and aiming at each

cases, we test the average probabilities of permission conflict if the amount of permission

assignments is 100, 200, 300, 400, and 500 respectively.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 35

Figure 4. Relation of Permission Conflict Probability and Conflict
Constraint

From the experimental results in Figure 4, we can find that, the probability of

permission conflict is rising along with the increase of permission assignment amount. If

the number of permission assignment is identical, permission conflict probability also

increase as long as the number of conflict permission constraint is rising. To be sure that

the sub-lattice X of two concept lattices which is used in the test of permission conflict

based on concept lattice model can be constructed in advance and repeated used.

Therefore, the average probability of permission conflict during permission assignment

does not contain the time complexity of algorithm.

5. Conclusion

Access control policy conflict detecting is the core of information system usage.

Concept lattice as a common method of data expression and analysis, has its natural

advantages, and can be combined with RBAC easily. In this study, we introduce concept

lattice model to RBAC policy conflict detecting algorithm for the detecting method is not

intuitive and the algorithm is not efficient. We analyze permission conflict, static role

conflict, user conflict and use two formal contexts to express user-role and role-

permission relations respectively. Then, provide an intuitional and efficient detecting

algorithm. The future study will make use of concept lattice model and surround the

aspect of conflict detecting during automation authorization.

Acknowledgements

We thanks for the support of National Natural Science Foundation of China

(61272545, 61402149) and Scientific and technological project of Henan Province

(142102210390, 14A520026).

References

[1] HAN Daojun, GAO Jie, ZHAI Haoliang, LI Lei. Research Development of Access Control Model [J].

Computer Science, 37(11):29-33(2010)

[2] Yuan Chunyang, He Yeping, He Jianbo, Zhou Zhouyi. Formal Specification and Proof of the RBAC

with Constraints of Conflict [J]. Journal of Computer Research and Development. 43(suppl.):498-

508(2006)

[3] H.T. Pham, N.-T. Truong, and V.-H. Nguyen, Analyzing RBAC security policy of implementation using

AST[C], Proceedings of the 2009 International Conference on Knowledge and Systems Engineering

(KSE '09), Oct'2009

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 5 10 20 30

th
e

 a
v

er
a

g
e

p
ro

b
a

b
il

it
y

 o
f

p
er

m
is

si
o

n
 c

o
n

fl
ic

t

Constraint Number of permission conflict

10
0

20
0

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

36 Copyright ⓒ 2015 SERSC

[4] Fuchs, L., Pernul, G., Sandhu, and R.: Roles in information security: A survey and classification of the

research area [J]. Computer and Security. (2011)

[5] CHENG Xiangran, CHEN Xingyuan, ZHANG Bin, YANG Yan. Research on RBAC Policy Conflict

and Its Detection Algorithm [J]. Computer Engineering, 36(18):135-137(2010)

[6] LIU Qiang, WANG Lei, HE Lin. Research on a Series of Problems in RBAC Model [J]. Computer

Science, 39(11):13-18(2012)

[7] JIAO Suyun, LIU Yanheng, WEI Da. Dynamic policy access model based on classification concept

lattice [J]. Journal on Communications, 32(2):27-33(2011).

[8] HAN Daojun, HOU Yane, JIA Peiyan. Roles Acquisition Based on Concept Lattice Model [J]. Computer

Science, 39(12):162-166. (2012)

[9] JIA Xiaoming, HAN Daojun, Wang Baoxiang. Roles Evaluation Based on Concept Lattice in RBAC [J].

Journal of Henan University (Natural Science). 41(3):308-311(2011)

[10] ANSI, ANSI INCITS 359-2004 for Role Based Access Control (2004).

Authors

Daojun Han, he received Ph.D. degree in 2011. He is an

associate professor at the School of Computer and Information

Engineering, Henan University, Kaifeng, China. His major study

fields include information security, knowledge discovery and

spatial data process.

 Lei Zhang, he received the M. Sc. degree from Henan

University, Kaifeng, China, in 2006. He is a Ph.D. candidate of

Harbin Institute of Technology, Harbin, China. His research

interests include formal concept analysis, data mining, and

information security.

 Xiajiong Shen, he received Ph.D. degree in 2006. He is a

professor at the School of Computer and Information Engineering,

Henan University, Kaifeng, China. His major study fields include

software engineering, knowledge discovery and spatial data

process.

Peiyan Jia, she received the M. Sc. degree from Henan

University, Kaifeng, China, in 2006. Her research interests include

formal concept analysis, data mining, and information security.

