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Abstract 

Correlation is an important and useful operation in the fields of digital signal 

processing. In this paper, based on the previous work of performing discrete Fourier 

transform (DFT) via linear sums of discrete moments, we have made development to 

eliminate multiplications in the DFTs by performing appropriate bit operations and shift 

operations in binary system, which can be implemented by integer additions of fixed 

points; then using the Correlation theorem with the DFT, we compute the Correlation 

with two DFTs, a point-by-point product, and an inverse DFT. Since our algorithm 

involves fewer multiplications, an efficient and regular systolic array is designed to 

implement it which is a demonstration of the locality of dataflow in the algorithms. The 

approach is also applicable to multi-dimensional DFT . 

 

Keywords: multiplierless discrete Fourier transforms, moments, Correlation theorem, 

systolic array 

 

1. Introduction 

Calculation of finite digital Correlation is frequently encountered in digital signal 

processing applications [1-3]. A variety of algorithms for computing Correlation have 

been proposed, for example, the Cook-Toom algorithm and Winograd Short Convolution 

Algorithm [1,3,5,10], which can be used to compute correlation. On the other hand, many 

researchers focus on realizing convolution with efficient VLSI systems. Amongst the 

existing VLSI systems, systolic architectures have been extensively popular owing not 

only to the simplicity of their design and development; but also for the potential of using 

high level of pipelining in a small chip-area. Several different systolic architectures are, 

therefore, suggested for VLSI implementation of digital Correlation [10, 16]. 

Meanwhile, computer vision and image analysis have propelled the advancement of 

fast computation of discrete moments (DM) [14, 4, 11, 24]. Liu have constructed the 

bridge between DFT and discrete moments (DM) by modular mapping and making use of 

Taylor expansions and hence can transform DFT into computation involving moments [4, 

20]. This method is more efficient and flexible, because we can get only a portion of the 

frequency coefficients without computing all N frequency values of the DFT. 

In this paper, we propose an algorithm to compute correlation using Correlation 

theorem based on a novel DFT.  First, the DFT algorithm without multiplications is 

introduced. Then, we can complete Correlation by computing DFT using Correlation 

theorem Based on the approach to the fast calculation of moments [4], new systolic arrays 

to perform 1-D DFT and Correlation are presented, followed by a complexity analysis. 

The rest of the paper is organized as follows. First we introduce an improved algorithm 

for DFT in section 2, and design the systolic arrays and analyze the complexity of our 

method in section 3.Then we give the systolic arrays designed to compute Correlation in 

section 4. Finally, we include our paper in section 5. 
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2. DFT Without Multiplications 

The DFT of a length- N  sampled sequence (0), (1), , ( 1)x x x N L is defined by: 

1
2 /

0

( ) ( )
N

j rk N

r

X k x r e 






            0,1,2, , 1k N L                                  (1) 

We give a brief introduction of the previous results below[20]. 

The first step partitions the set  0,1,2, , 1N L  into N disjoint subsets, depending on 

k and N .Specifically,  

  , (mod ), 0,1,2, , 1k iS r kr i N r N   L   , 0,1,2, , 1i k N L .                 (2) 

The sum of each of these subsets of sampled values is denoted by  

,

,( ) if   

( )

0

k i

k i

r S
k

x r S

y i

otherwise




 


 



        , 0,1,2, , 1k i N L   .                          (3) 

So for 4N  , 
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In other words, using (3) and (4), the sampled sequence ( )x r  is mapped into a new 

sequence ( )ky i for each value of k  by summing the terms of the sampled sequence that 

have the same multiplier of complex exponential function. We are then ready to rewrite 

(1) in terms of ( )ky i  instead of ( )x r as follows: 

1 1
2 / 2 /

0 0

( ) ( ) ( )
N N

j rk N j i N

r i

X k x r e y i e 
 

 

 

            0,1,2, , 1k N L                   (5) 

In deriving (6), we have used the periodic property that 

2 / 2 ( mod )/ 2 / .j rk N j rk N N j i Ne e e       

Applying the theorem of extended law of the mean to 2 /j i Ne  : 
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Substituting the above equation into (5), yields  
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where 

( 2 ) / !r r

ra j N r                                                      (7) 
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If  pR  is ignored, ( )X k can be computed as follows: 

0

( ) (0) ( )
p

k r k

r

X k y a m r


  ,        0 1k N   .                                (10) 

Suppose 2p  and p is even, thus the error introduced by ignoring pR  is bounded by 

1/2max ( ) 2 ( 1)(2 ) / !.P

p
r

R x r N p                                       (11) 

When 2p   and p is odd, the same results can be proved. For example, when 

max ( ) 256(0 1)
r

x r r N     , 2 , 34N K P  , 

63.45 10pR   .  

Increasing p to 35, we get  

76.20 10pR   .  

Thus the error converges to zero very rapidly and uniformly and the approximation 

(10) can satisfy the accuracy requirement of most applications without computing too 

many terms. It is obvious that p is a slow-growing function of N . Suppose max ( )
r

x r   

256(0 1)r N   ; 

Some cases of N , p and pR are listed in Table 1. 

Furthermore, we can prove that the least upper bound of p  is not more than 

2 2 2(log / log log )O N N as N tends to infinity. In Table 1, p can be expressed 

approximately in the firm of 2 2 2[2log / log log ] 32N N  . 

The computation of ( )X k using the approximation of (10) establishes the relationship 

between DFT and moments which involves the generation of the r th order moments of 

the transformed data sequence ( )ky i  and then performing a dot product of these moments 
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with a constant vector ( )ra  and an addition with (0)ky .  

 

Table 1. Some Cases Of N , p , pR And '

pR  

N  102  152  202  252  302  352  402  502  

2
2log N

 
20  30  40 50 60 70 80 100 

p  35 37 39 41 43 45 47 50 

pR  
7
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



 

7
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7
3.1 10




 

7
3.1 10




 

7
3.1 10




 

'
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2
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
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1.5 10


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10
5 10


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11
1.7 10




 

14
1.7 10




 

 

In (10), there is a dot product of the moments with a constant vector ( )ra to compute. 

When N is large, ( )ra  is too small to compute. We can resolve this problem and 

transform the product of floating-point into additions of integers by the following steps. 

When 2kN  , multiplying ra by
2log 102 2
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rg N   ( 0,1, ,r p L ), we get: 
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are integers and can be represented as sums of distinct powers of 2: 
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where , 0 1m in or  ( 1, , ,m p L 1, , .i t L ). Since 
2log 1[ 2 ] ( ) 86 2rg r N

ra j     , we can 

know
2log 12 86 2t N   , i.e. 2log 17 2log 17t N N    . For convenient, we let 

2log 17t N  in the below equations. 

Then:  
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It is obvious that the larger the N , the smaller the error
'
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accuracy requirement of most applications. Some cases of N , p  and 
'

pR are listed in 

Table 1.  

Thus, ( )X k can be approximately computed as follows: 
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where , 0 1r in or  and 2 1j   . 

By doing so, all the products of floating-point constants with moments in (10) are 

eliminated, replaced by shifting the digits and accumulations of integers. Since ,r in  can be 

computed advance and reused in a real-time system, less than ( 1) 2p t    additions of 

integers and 2t p  shifts are required to implement ( )X k with (14) once all moments 

are produced. ( 1) 2 (2log 17) 2p t N N p N N N     additions and ( 2 )t p N   shifts 

are required to perform (0), (1), , ( 1)X X X N L ( 2log 17t N  ). 

When 2kN  , log N is not an integer, but substituting 3log 202 N  by [3log 1] 202 N  , 
1log 102

rN    by
1[log 1] 102

rN    , and 
2log 102 2

r
rg N    by 

1[3log 1] [log 1] 102
rN N     in (14), we can get the 

same result and prove  ( 1) 2p t N N   (here [2log 18]t N  ) additions are required and 

' 3 / (8 )pR p N . 

For convenient, we let [2log 18]t N   either when 2kN  or when 2kN  . In effect, 

the additions and error '

pR  are much less than the above result because there are so many 

0s of ,r in . 

 

3. Complexity Analysis And Systolic Implementation Of DFT 

According to section 2, our 1-D DFT can be implemented by the following three 

procedures: 

(Input initial  , , , (0), (1), , ( 1)N p t x x x N L  ) 

1. Compute ( )ky i  and ,r in  for , 0,1,2, , 1k i N L  and 1, , ,r p L ; 

2. Compute ( )km r  for , 0,1,2, , 1k r N L ; 

3. Compute ( )X k  with (14) for 0,1,2, , 1k N L . 

Next we analyze the complexity of the algorithm. Step 1 constitutes a preprocessing 

step which involves three equations, (3), (4), (8) and (12). The parameters ra and the 

index set kiS  can be computed in advance, so these computations are not part of the real-

time system. It is noteworthy that [ 2 ]rg

ra   is a real number or a pure imaginary one only 

with relation to N  and can be obtained and expressed as (12) in advance. It remains to 

consider the generation of ( )ky i . In next section, we introduce a method to compute all 

( )ky i  with 
12

0
/ gcd( , )

N

k
N N k N




 additions. 

To compute ( )ky i  ( , 0,1,2, , 1k i N L ), we use the p -network method presented in 

[3], which require less than ( 1)( 2)( 2) / 2p p N N   additions because many ( )ky i are 

0’s. In fact, the number of  ( ) 0ky i   is 
1

0
/ gcd( , )

N

k
N k N



 (see Appendix 1). In another 

words, only  

1

0
( 1/ gcd( , ))( 1)( 2)( 2)

2

N

k
k N p p N




  

 additions are required to complete 

all the moments. From section 3, the computation of (14) involves [2log 18] 2p N N N   

additions and ([2log 18] 2 )N p N    shifts 

So there are all together about 
1

12 0

0

( 1/ gcd( , ))( 1)( 2)( 2)
/ gcd( , ) [2log 18] 2

2

N

N k

k

k N p p N
N N k N p N N N



 



  
    
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Additions in the algorithm. If N is a prime number, then these are 

 ( 1)( 2)( 2) / 2 [2log 18] 2p p N N p N N N       additions in the algorithm. All the 
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'sp  mentioned above can be expressed in the form of 
2 2 2[2log / log log ] 32N N   in the 

case of 1002N   and max ( ) 256(0 1)
r

x r r N    . In any 

case,
2 2 2(log / log log )p O N N . 

Compared with the direct method having a computational complexity 2( )O N  and the 

conventional FFT having 2( log )O N N , our method is superior to the direct method and 

seems to be inferior to FFT if the calculations are executed in a sequential machine (for 

example given in Section 2, 
22 ,log 11, 34N K N P   or 35). However, if the sampled 

data are real numbers, since ra  ( 1, , ,r p L ) is either a real number or a pure imaginary 

one, then additions involved in our method are all real operations. Even though sampled 

data are complex numbers. Since one complex addition is equivalent to two real 

additions, our method has an advantage over a FFT which involves complex operations. 

The traditional FFT requires 2( log )O N N complex multiplications and additions, for 

example, radix-2 FFT require 2log / 2N N  multiplications that are equivalent to 

22 logN N  real number multiplications and 2logN N  real additions. When N is large 

enough ( 202N  ), p can get a value much lower than 22log N  and still satisfy the 

accuracy requirement as demonstrated in Table 1 and 2 2 2(log / log log )p O N N .  

Our proposed algorithm seems to require a larger number of additions than many fast 

Fourier transforms, but it is easily implemented by systolic arrays because it only involves 

integer additions and shifts. 

The general network for implementing DFT is shown in Figure 1. It consists of the 

moment generator [4], the preprocessing arrays, and the shift and accumulation array. The 

moments generator formed of 2N   sections of Pascal triangles with a row of adder-latch 

could be used to generate the 1-D moments. It receives ( )ky i ( 0,1,2, , 1i N L ) that the 

processing arrays produce. The shift and accumulation array (Figure 1) receives ' ( )km r  

which can be performed by shifting digits of  ( )km r  to the left  1log 10rN    places and 

computes (14) . The numbers in square brackets that are below the horizontal line denote 

the amount of time delay to keep synchronous pace in Figure 1. The scheduling of the 

dataflow is 

 ' 3log 20

,

0 1

( ( ) ( )) 2 / 2
pt

r t i N

r i k

i r

j n m r  

 

   such that produced by the shift and accumulation 

array moves from left to right, and accumulates with (0) (0)k ky m   to produce the ( )X k . 

The total execution time of the systolic arrays is 

( 1)( 2) 2 log( ([2log 18] 2))N p N p N       . 

 The first term N is for preprocessing, the second for producing moments [3], and last 

for (14). 

It remains to consider the generation of ( )ky i .In the general case, we propose using a 

special linear array to implement ( )ky i , 0,1,2, , 1k N L . Each element ( )x r is tagged 

with a rank (mod )kr N before it is sent into the array. For example, for 2k   and 

4N  , the samples become  ( (0),0),( (1),2),( (2),0),( (3),2).x x x x  These are sent into the 

linear array one element at a time. An element is percolated from left to right until reaches 

a cell in the array whose position is identical to its rank. When this happens, the value is 

accumulated in that cell in case it receives multiple values (i.e., 1kiS  ).Figure 2 

illustrates an example. A cell in a linear contains an adder only if the corresponding 

partition kiS  has a size greater than 1. In 8 clocks, 2 (0)y will emerge at the right-hand 

side, as shown in Figure 2. In general, it takes 2N clocks for the vector to appear on the 

right. It can be proved that the number of additions required in the preprocessing array for 
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each k is equal to / gcd( , ).N N k N  So the total number of additions required in the 

preprocessing array is equal to
1 12

0 0
( / gcd( , )) / gcd( , )

N N

k k
N N k N N N k N

 

 
    . we 

can prove that 
12 2 2

2 20
/ gcd( , ) / log log

N

k
N N k N N e N N 


    (  is the Eular’s constant), when  

N  tends to infinity. Exactly,
12 2

0
/ gcd( , ) [ / 3]

N

k
N N k N N




   when 2kN  , 

and
12 2

0
/ gcd( , ) [3 / 4]

N

k
N N k N N




  when 306 2N   . 

The moments generator was formed by 2N   p -network which contains pN latches 

and ( 1) / 2p p N pN   adder-latches [4].  

The shift and accumulation array (Figure 3) can compute (14) once the moments are 

produced. Since , 0 1r in or and ' ( )km r which can be performed by shifting digits of  

( )km r  to the left  1log 10rN   places in binary system are integers, the computation of 

'

,

1

( ) ( )
p

r

r i k

r

j n m r


  only involves accumulations of ( )km r  0, 1,  ..., pi  . By shifting  digits 

of  '

,

1

( ) ( )
p

r

r i k

r

j n m r


  to the left t i  places in binary system, the multiplication of 2t i  

can be performed, and shifting   '

,

0 1

( ( ) ( )) 2
pt

r t i

r i k

i r

j n m r 

 

   to the right 3log 20N   

places in binary system, ' 3log 20

,

0 1

( ( ) ( )) 2 / 2
pt

r t i N

r i k

i r

j n m r  

 

   can be performed. This 

array was formed by about log( )pt pt  adder-latches and some shifters and the execution 

time is about log( ([2log 18] 2))p N   . 

Compared with the designs in [2, 6, 17, 22] (Table 2), our systolic arrays do not need 

multipliers though the adders are more (in most case, our p  is nearly a constant no larger 

than 50 and [2log 18]t N  , so the adders are not much more). This means that our 

method is easily implemented by hardware and is very suited to a real-time processing. 

Meaning while, our method does not have limits on N , which is better than other FFTs. 

 

Table 2. Comparison of Parameters for Linear Array, 2-D Systolic, Base-4, 
Pipelined FFT and Our Systolic Circuits  

Architecture multiplications Multipliers Adders Limits 

on N   

Linear array 2N  N  N  none 

2-D systolic 

[10],[21] 
1 2( 1)N N N   N  N  

1 2N N N

 

Base-4 [19] 
1 2( ) /16N N N  1 / 4N  22N  256N n

 

pipelined 

FFT  
( (3 8) ( 1) ) / 9 1nN n   

 

4log 1N   4log N  2nN   

Our method none none ( 1) / 2p p N pN 

log( )pt pt  

none 
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Figure 1. The Systolic Array for 1-D DFT 

 

Figure 2. The Preprocessing Arrays 

(x(3),2),(x(2),0),
(x(1),2),(x(0),0)

cell# 3 2 1 0

0
x(1)+x(3

) 0
x(2)+x(4

)

2 (2)y

1 0( 1), , ( 1)Ny N y N  

1 0( 2), , ( 2)Ny N y N  

1 0(2), , (2)Ny y

1 0(1), , (1)Ny y

[ 1]p 

[( 3)( 1) ( 2)]n p n   

[( 2)( 1) ( 1)]n p n   

1(0)Nm  1(1)Nm  1(2)Nm  1( 1)Nm p 
1( )Nm p

1(0)m 1(1)m 1( 1)m p  1( )m p
1(2)m

0 (2)m0 (0)m 0 (1)m 0 ( 1)m p  0 ( )m p

1 0(0), , (0)Ny y

[( 2)( 1) ( 1) 1]n p n    

[ ]p [ 1]p  [1]

[ ]p [ 1]p 

[ 2]p 

[ 2]p  [1]

[ ]p [ 1]p  [ 2]p  [1]

    :shift   

( 1), , (1), (0)x N x x

:adder-latch:latch

   102
log 101/ 2 N 2log 101/ 2

pN   1log 101/ 2
pN  

( 1), , (0)X N X

The shift and accumulation array
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Figure 3. The Shifting and Accumulation 

 

4. Computing Correlation By Correlation Theorem And Complexity 

Analyses 

The Correlation of two N -point sequences { ( )}x n and { ( )}h n can be given by  

1
*

0

1
( ) ( ) ( ) ( )

N

i

x n h n x i h n i
N





 o                                                (15) 

where  *( )x i denotes Complex conjugation the of ( )x n . 

The Correlation theorem says that in the frequency domain, 

*( ) ( ) ( )S k X k H k                0, ,2 1k N L                                 (16) 

where { ( )}S k is the DFT of { ( ) ( )}x n h no , and { ( )}X k  and { ( )}H k are the DFT of the 

sequences 1{ ( )}x k  and 1{ ( )}h k which are augmented by { ( )}x n and { ( )}h n as follows , 

1

( ) 0,1, , 1
( ) {

0 , 2 1

x k k N
x k

k N N

 


 

L

L
 and 1

( ) 0,1, , 1
( ) {

0 , 2 1

h k k N
h k

k N N

 


 

L

L
 

So it is computationally efficient to implement the Correlation of { ( )}x n and { ( )}h n by 

the following procedures: 

1) Compute the DFT of { ( )}X k  and { ( )}H k , 1{ ( )}x k  and 1{ ( )}h k  using method in 

section 4, respectively; 

2) Compute the product of  { ( )}X k  and{ ( )}H k for 0 2 1k N   ; 

3) Compute the sequence { ( )* ( )}x n h n as the inverse DFT of *{ ( ) ( )}X k H k using 

method in section 4. 

' (1)km ' (2)km ' (3)km ' ( )km p

   

2

2,0( )j n 3

3,0( )j n ,0( ) p

pj n



'

,

1

( ) ( )
p

r

r i k

r

j n m r




2t

'

,

1

( ( ) ( ))2
p

r t

r i k

r

j n m r




' (1)km ' (2)km ' (3)km ' ( )km p

   
0,tjn 2

1,( ) tj n 3

2,( ) tj n ,( ) p

p tj n


02

'

,

1

( ) ( )
p

r

r i k

r

j n m r




2t i

'

,

1

( ( ) ( ))2
p

r t i

r i k

r

j n m r 





'

,

0 1

( ( ) ( )) 2
pt

r t i

r i k

i r

j n m r 

 

  

3log 201/ 2 N

(0) (0)k ky m ( )X k

:latch :adder-latch

 shifter
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In other words, to calculate Correlation of two length- N  sequences, we need to 

compute two length- 2N DFT, an length- 2N  inverse DFT, and a product of two length-

2N  vector. From section 4, we can know that there are all together about 

12

0

1

0

4 2 / gcd( ,2 )

( 1 / gcd( ,2 ))( 1)( 2)(2 2)

2

2 [2log 2 18] 4

N

k

N

k

N N k N

k N p p N

p N N N











  


  




 

Integer additions and 2N multiplications to complete the computation of two length-

N  sequences.. Similarly, a systolic array can be designed to calculate the Correlation 

(Figure 4). It consists of four parts, two systolic arrays for DFT designed in section 4, a 

multiplier, and a systolic array for inverse DFT. So the whole arrays require 

( 1) 2 log( )p p N pN pt pt   adders and one multiplier. The total execution time of the 

systolic arrays is 2(2 ( 1)(2 2) 2 log( ([2log(2 ) 18] 2)) 1N p N p N        . The first 

term is for DFT and inverse DFT, the second for product of ( )X k and ( )H k . In this case, 

2 2 2(log (2 ) / log log (2 ))p O N N  and [2log(2 ) 18]t N  . 

 

1
{ ( )}x k

1{ ( )}h k

*{ ( )} { ( )}X k X k

{ ( )}H k

*{ ( ) ( )}X k H k ( ) ( )x n h n
Systolic 
array for 
inverse DFT

Systolic 
array for 

DFT

Systolic 
array for 

DFT

Multiplier

Figure 4. The Systolic Arrays for Correlation 

 

5. Discussion and conclusion 

By transforming the floating-point multiplication into operation of shifts and 

accumulation of integers, we introduce an improved algorithm and systolic arrays for 1-D 

DFT and have analyzed the computational complexity, then we extend our algorithm to 

calculate Correlation.  

Compared with the work in [17], our DFT does not have multiplications and the 

amount of additions to eliminate all the multiplications is very small. Our method has also 

the following advantages: there are no multiplications in our method, which is superior to 

the 2( log )O N N in classical FFT; exponential functions have been replaced by simple 

polynomial functions and all multiplications have been changed into additions, which 

decreases the computational cost and memory requirement. One important advantage is 

that it can accommodate data samples of arbitrary length and compute any portion of 

frequency. In addition, since our method only involves integer operations, it produces 

nice accuracy and convergence property. Compared with the systolic arrays in [4], our 

systolic arrays require less multipliers and have the property of regularity. What is more 

important, our method can control the accuracy and hence can get high precision. 
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