
International Journal of Hybrid Information Technology

Vol.8, No.7 (2015), pp.149-160

http://dx.doi.org/10.14257/ijhit.2015.8.7.13

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

High-Precision Correlation Algorithm Based On Moments

Zhenbing Liu and Qijia He

Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,

Guilin University of Electronic Technology, Guilin, China

zbliu@guet.edu.cn

Abstract

Correlation is an important and useful operation in the fields of digital signal

processing. In this paper, based on the previous work of performing discrete Fourier

transform (DFT) via linear sums of discrete moments, we have made development to

eliminate multiplications in the DFTs by performing appropriate bit operations and shift

operations in binary system, which can be implemented by integer additions of fixed

points; then using the Correlation theorem with the DFT, we compute the Correlation

with two DFTs, a point-by-point product, and an inverse DFT. Since our algorithm

involves fewer multiplications, an efficient and regular systolic array is designed to

implement it which is a demonstration of the locality of dataflow in the algorithms. The

approach is also applicable to multi-dimensional DFT .

Keywords: multiplierless discrete Fourier transforms, moments, Correlation theorem,

systolic array

1. Introduction

Calculation of finite digital Correlation is frequently encountered in digital signal

processing applications [1-3]. A variety of algorithms for computing Correlation have

been proposed, for example, the Cook-Toom algorithm and Winograd Short Convolution

Algorithm [1,3,5,10], which can be used to compute correlation. On the other hand, many

researchers focus on realizing convolution with efficient VLSI systems. Amongst the

existing VLSI systems, systolic architectures have been extensively popular owing not

only to the simplicity of their design and development; but also for the potential of using

high level of pipelining in a small chip-area. Several different systolic architectures are,

therefore, suggested for VLSI implementation of digital Correlation [10, 16].

Meanwhile, computer vision and image analysis have propelled the advancement of

fast computation of discrete moments (DM) [14, 4, 11, 24]. Liu have constructed the

bridge between DFT and discrete moments (DM) by modular mapping and making use of

Taylor expansions and hence can transform DFT into computation involving moments [4,

20]. This method is more efficient and flexible, because we can get only a portion of the

frequency coefficients without computing all N frequency values of the DFT.

In this paper, we propose an algorithm to compute correlation using Correlation

theorem based on a novel DFT. First, the DFT algorithm without multiplications is

introduced. Then, we can complete Correlation by computing DFT using Correlation

theorem Based on the approach to the fast calculation of moments [4], new systolic arrays

to perform 1-D DFT and Correlation are presented, followed by a complexity analysis.

The rest of the paper is organized as follows. First we introduce an improved algorithm

for DFT in section 2, and design the systolic arrays and analyze the complexity of our

method in section 3.Then we give the systolic arrays designed to compute Correlation in

section 4. Finally, we include our paper in section 5.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

150 Copyright ⓒ 2015 SERSC

2. DFT Without Multiplications

The DFT of a length- N sampled sequence (0), (1), , (1)x x x N L is defined by:

1
2 /

0

() ()
N

j rk N

r

X k x r e 






 0,1,2, , 1k N L (1)

We give a brief introduction of the previous results below[20].

The first step partitions the set  0,1,2, , 1N L into N disjoint subsets, depending on

k and N .Specifically,

  , (mod), 0,1,2, , 1k iS r kr i N r N   L , 0,1,2, , 1i k N L . (2)

The sum of each of these subsets of sampled values is denoted by

,

,() if

()

0

k i

k i

r S
k

x r S

y i

otherwise




 


 



 , 0,1,2, , 1k i N L . (3)

So for 4N  ,

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

(0) (0) (1) (2) (3), (1) 0, (2) 0, (3) 0;

(0) (0), (1) (1), (2) (2), (3) (3);

(0) (0) (2), (1) 0, (2) (1) (3), (3) 0;

(0) (0), (1) (3), (2) (2), (3) (1).

y x x x x y y y

y x y x y x y x

y x x y y x x y

y x y x y x y x

      

   

     

   

 (4)

In other words, using (3) and (4), the sampled sequence ()x r is mapped into a new

sequence ()ky i for each value of k by summing the terms of the sampled sequence that

have the same multiplier of complex exponential function. We are then ready to rewrite

(1) in terms of ()ky i instead of ()x r as follows:

1 1
2 / 2 /

0 0

() () ()
N N

j rk N j i N

r i

X k x r e y i e 
 

 

 

   0,1,2, , 1k N L (5)

In deriving (6), we have used the periodic property that

2 / 2 (mod)/ 2 / .j rk N j rk N N j i Ne e e     

Applying the theorem of extended law of the mean to 2 /j i Ne  :

2 /

0

(2 /) / !
p

j i N r

i

r

e j i N r R 



   , 0,1,2, , 1i N L .

Substituting the above equation into (5), yields

1

1 0

() (0) () (2 /) / !
pN

r

k k p

i r

X k y y i j i N r R


 

 
    

 
 

1

0 1

(0) (2) / ! ()
p N

r r r

k k p

r i

y j N r y i i R


 

      

0

(0) () ,
p

k r k p

r

y a m r R


   0,1,2, , 1k N L (6)

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 151

where

(2) / !r r

ra j N r  (7)

1

1

() ()
N

r

k k

i

m r y i i




 (8)

 and

1
1

1

1

2

1 2

1

1

1

1

2

()(cos((1) / 2)(2 /) / (1)!)

 sin(/ 2)(2 /) / !)

 0 , 2 / , if is even

()(cos(/ 2)(2 /) / !)

 sin((1) / 2)(2 /)

N
p

k i

i

p

i

i i

p N
p

k i

i

p

i

y i p i N p

j p i N p

i N p
R

y i p i N p

j p i N

  

  

  

  

  












  

 

 




  





1 2

/ (1)!)

 0 , 2 / , if is odd.i i

p

i N p  













  

 (9)

If pR is ignored, ()X k can be computed as follows:

0

() (0) ()
p

k r k

r

X k y a m r


  , 0 1k N   . (10)

Suppose 2p  and p is even, thus the error introduced by ignoring pR is bounded by

1/2max () 2 (1)(2) / !.P

p
r

R x r N p  (11)

When 2p  and p is odd, the same results can be proved. For example, when

max () 256(0 1)
r

x r r N    , 2 , 34N K P  ,

63.45 10pR   .

Increasing p to 35, we get

76.20 10pR   .

Thus the error converges to zero very rapidly and uniformly and the approximation

(10) can satisfy the accuracy requirement of most applications without computing too

many terms. It is obvious that p is a slow-growing function of N . Suppose max ()
r

x r 

256(0 1)r N   ;

Some cases of N , p and pR are listed in Table 1.

Furthermore, we can prove that the least upper bound of p is not more than

2 2 2(log / log log)O N N as N tends to infinity. In Table 1, p can be expressed

approximately in the firm of 2 2 2[2log / log log] 32N N  .

The computation of ()X k using the approximation of (10) establishes the relationship

between DFT and moments which involves the generation of the r th order moments of

the transformed data sequence ()ky i and then performing a dot product of these moments

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

152 Copyright ⓒ 2015 SERSC

with a constant vector ()ra and an addition with (0)ky .

Table 1. Some Cases Of N , p , pR And '

pR

N 102 152 202 252 302 352 402 502

2
2log N

20 30 40 50 60 70 80 100

p 35 37 39 41 43 45 47 50

pR
7

3.1 10




7

2.9 10




7

2.5 10




7
1.9 10




7
3.1 10




7
3.1 10




7
3.1 10




7
3.1 10




'

pR
2

1.3 10




4

4.2 10




5
1.5 10




7
4.7 10




8
1.5 10




10
5 10




11
1.7 10




14
1.7 10




In (10), there is a dot product of the moments with a constant vector ()ra to compute.

When N is large, ()ra is too small to compute. We can resolve this problem and

transform the product of floating-point into additions of integers by the following steps.

When 2kN  , multiplying ra by
2log 102 2

r
rg N   (0,1, ,r p L), we get:

2 2 2log 10 log 10 log 1[2] [(2) / ! 2] (2) / ! 2 () 86 2
r

rg r r N r N r N

ra j N r j r j 
             which

are integers and can be represented as sums of distinct powers of 2:

1

2

1 2

1 1, 1,0 1,1 1,2 1, 1 1,

0

2 2 1 2

2 2, 2,0 2,1 2,2 2, 1 2,

0

1

, ,0 ,1 ,2

0

[2] 2 (2 2 2 2)

[2] () 2 () (2 2 2 2)

[2] () 2 () (2 2 2p

t
g t i t t t

i t t

i

t
g t i t t t

i t t

i

t
g p t i p t t t

p p i p p p

i

a jn j n n n n n

a j n j n n n n n

a j n j n n n

  





  





  



         

         

      







L

L

L

2

, 1 ,2)p t p tn n  L

(12)

where , 0 1m in or (1, , ,m p L 1, , .i t L). Since
2log 1[2] () 86 2rg r N

ra j     , we can

know
2log 12 86 2t N   , i.e. 2log 17 2log 17t N N    . For convenient, we let

2log 17t N  in the below equations.

Then:

0 1

(0) (()) (0) (0) (())
p p

k r k k k r k

r r

y a m r y m a m r
 

    

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 153

2 1 3log 10 log 10 log 20

1

(0) (0) (2)(() / 2) / 2
r r

p
N N N

k k r k

r

y m a m r
   



   

1log 10 3log 20 '

1

(0) (0) ([2][() / 2]) / 2
r

r

p
g N N

k k r k p

r

y m a m r R
  



    

' 3log 20 '

,

1 0

(0) (0) (() 2 ()) / 2
p t

r t i N

k k r i k p

r i

y m j n m r R 

 

    

' 3log 20 '

,

0 1

(0) (0) (() ()) 2 / 2
pt

r t i N

k k r i k p

i r

y m j n m r R 

 

       (13)

(
1' log 10() [() / 2]

rN

k km r m r
 ),

where

1 1

1 1

' log 10 3log 20 log 10 3log 20

1 1

log 10 3log 20 log 10 3log 20

1 1

((2)(() / 2)) / 2 ([2][() / 2]) / 2

((2)(() / 2)) / 2 ([2](() / 2)) / 2

([2](() /

r r
r r

r r
r r

r

p p
g gN N N N

p r k r k

r r

p p
g gN N N N

r k r k

r r

g

r k

R a m r a m r

a m r a m r

a m r

 

 

   

 

   

 

   

  



 

 

 

1 1log 10 3log 20 log 10 3log 20

1 1

2)) / 2 ([2][() / 2]) / 2
r r

r

p p
gN N N N

r k

r r

a m r
    

 

  

1

1 1

1

log 10 3log 20

1

log 10 log 10 3log 20

1

log 10 3log 20 3log 20

1 1

(2 [2])(() / 2) / 2

[2](() / 2 [() / 2]) / 2

(() / 2) / 2 [2] / 2

r
r r

r r
r

r
r

p
g m N N

r r k

r

p
g N N N

r k k

r

p p
gN N N

k r

r r

a a m r

a m r m r

m r a



 



 



  



  

 

   

  

  





 

11 log 10 3log 20 2log 10 3log 20

1 1

log 10 log 10

1 1

log 2 log 10

(256 / 2) / 2 84 2 / 2

256 /2 84 / 2

/ 2 84 / 2

/ (4) / (8) 3 / (8)

r
p p

r N N N N

r r

p p
N N

r r

N N

N

p p

p N p N p N

    

 

 

 

 

   

 

 

  

 

 

(supposing max () 256
r

x r  ,we can get that
1

1

() () 256
N

r r

k k

i

m r y i i N N




  ).

It is obvious that the larger the N , the smaller the error
'

pR , which can satisfy the

accuracy requirement of most applications. Some cases of N , p and
'

pR are listed in

Table 1.

Thus, ()X k can be approximately computed as follows:

' 3log 20

,

0 1

() (0) (0) (() ()) 2 / 2
pt

r t i N

k k r i k

i r

X k y m j n m r  

 

      (14)

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

154 Copyright ⓒ 2015 SERSC

where , 0 1r in or and 2 1j   .

By doing so, all the products of floating-point constants with moments in (10) are

eliminated, replaced by shifting the digits and accumulations of integers. Since ,r in can be

computed advance and reused in a real-time system, less than (1) 2p t   additions of

integers and 2t p  shifts are required to implement ()X k with (14) once all moments

are produced. (1) 2 (2log 17) 2p t N N p N N N     additions and (2)t p N  shifts

are required to perform (0), (1), , (1)X X X N L (2log 17t N ).

When 2kN  , log N is not an integer, but substituting 3log 202 N by [3log 1] 202 N  ,
1log 102

rN   by
1[log 1] 102

rN    , and
2log 102 2

r
rg N   by

1[3log 1] [log 1] 102
rN N     in (14), we can get the

same result and prove (1) 2p t N N  (here [2log 18]t N ) additions are required and

' 3 / (8)pR p N .

For convenient, we let [2log 18]t N  either when 2kN  or when 2kN  . In effect,

the additions and error '

pR are much less than the above result because there are so many

0s of ,r in .

3. Complexity Analysis And Systolic Implementation Of DFT

According to section 2, our 1-D DFT can be implemented by the following three

procedures:

(Input initial , , , (0), (1), , (1)N p t x x x N L)

1. Compute ()ky i and ,r in for , 0,1,2, , 1k i N L and 1, , ,r p L ;

2. Compute ()km r for , 0,1,2, , 1k r N L ;

3. Compute ()X k with (14) for 0,1,2, , 1k N L .

Next we analyze the complexity of the algorithm. Step 1 constitutes a preprocessing

step which involves three equations, (3), (4), (8) and (12). The parameters ra and the

index set kiS can be computed in advance, so these computations are not part of the real-

time system. It is noteworthy that [2]rg

ra  is a real number or a pure imaginary one only

with relation to N and can be obtained and expressed as (12) in advance. It remains to

consider the generation of ()ky i . In next section, we introduce a method to compute all

()ky i with
12

0
/ gcd(,)

N

k
N N k N




 additions.

To compute ()ky i (, 0,1,2, , 1k i N L), we use the p -network method presented in

[3], which require less than (1)(2)(2) / 2p p N N   additions because many ()ky i are

0’s. In fact, the number of () 0ky i  is
1

0
/ gcd(,)

N

k
N k N



 (see Appendix 1). In another

words, only

1

0
(1/ gcd(,))(1)(2)(2)

2

N

k
k N p p N




  

 additions are required to complete

all the moments. From section 3, the computation of (14) involves [2log 18] 2p N N N 

additions and ([2log 18] 2)N p N   shifts

So there are all together about
1

12 0

0

(1/ gcd(,))(1)(2)(2)
/ gcd(,) [2log 18] 2

2

N

N k

k

k N p p N
N N k N p N N N



 



  
    




Additions in the algorithm. If N is a prime number, then these are

 (1)(2)(2) / 2 [2log 18] 2p p N N p N N N      additions in the algorithm. All the

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 155

'sp mentioned above can be expressed in the form of
2 2 2[2log / log log] 32N N  in the

case of 1002N  and max () 256(0 1)
r

x r r N    . In any

case,
2 2 2(log / log log)p O N N .

Compared with the direct method having a computational complexity 2()O N and the

conventional FFT having 2(log)O N N , our method is superior to the direct method and

seems to be inferior to FFT if the calculations are executed in a sequential machine (for

example given in Section 2,
22 ,log 11, 34N K N P   or 35). However, if the sampled

data are real numbers, since ra (1, , ,r p L) is either a real number or a pure imaginary

one, then additions involved in our method are all real operations. Even though sampled

data are complex numbers. Since one complex addition is equivalent to two real

additions, our method has an advantage over a FFT which involves complex operations.

The traditional FFT requires 2(log)O N N complex multiplications and additions, for

example, radix-2 FFT require 2log / 2N N multiplications that are equivalent to

22 logN N real number multiplications and 2logN N real additions. When N is large

enough (202N ), p can get a value much lower than 22log N and still satisfy the

accuracy requirement as demonstrated in Table 1 and 2 2 2(log / log log)p O N N .

Our proposed algorithm seems to require a larger number of additions than many fast

Fourier transforms, but it is easily implemented by systolic arrays because it only involves

integer additions and shifts.

The general network for implementing DFT is shown in Figure 1. It consists of the

moment generator [4], the preprocessing arrays, and the shift and accumulation array. The

moments generator formed of 2N  sections of Pascal triangles with a row of adder-latch

could be used to generate the 1-D moments. It receives ()ky i (0,1,2, , 1i N L) that the

processing arrays produce. The shift and accumulation array (Figure 1) receives ' ()km r

which can be performed by shifting digits of ()km r to the left 1log 10rN   places and

computes (14) . The numbers in square brackets that are below the horizontal line denote

the amount of time delay to keep synchronous pace in Figure 1. The scheduling of the

dataflow is

 ' 3log 20

,

0 1

(() ()) 2 / 2
pt

r t i N

r i k

i r

j n m r  

 

   such that produced by the shift and accumulation

array moves from left to right, and accumulates with (0) (0)k ky m to produce the ()X k .

The total execution time of the systolic arrays is

(1)(2) 2 log(([2log 18] 2))N p N p N       .

 The first term N is for preprocessing, the second for producing moments [3], and last

for (14).

It remains to consider the generation of ()ky i .In the general case, we propose using a

special linear array to implement ()ky i , 0,1,2, , 1k N L . Each element ()x r is tagged

with a rank (mod)kr N before it is sent into the array. For example, for 2k  and

4N  , the samples become ((0),0),((1),2),((2),0),((3),2).x x x x These are sent into the

linear array one element at a time. An element is percolated from left to right until reaches

a cell in the array whose position is identical to its rank. When this happens, the value is

accumulated in that cell in case it receives multiple values (i.e., 1kiS ).Figure 2

illustrates an example. A cell in a linear contains an adder only if the corresponding

partition kiS has a size greater than 1. In 8 clocks, 2 (0)y will emerge at the right-hand

side, as shown in Figure 2. In general, it takes 2N clocks for the vector to appear on the

right. It can be proved that the number of additions required in the preprocessing array for

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

156 Copyright ⓒ 2015 SERSC

each k is equal to / gcd(,).N N k N So the total number of additions required in the

preprocessing array is equal to
1 12

0 0
(/ gcd(,)) / gcd(,)

N N

k k
N N k N N N k N

 

 
    . we

can prove that
12 2 2

2 20
/ gcd(,) / log log

N

k
N N k N N e N N 


   ( is the Eular’s constant), when

N tends to infinity. Exactly,
12 2

0
/ gcd(,) [/ 3]

N

k
N N k N N




  when 2kN  ,

and
12 2

0
/ gcd(,) [3 / 4]

N

k
N N k N N




  when 306 2N   .

The moments generator was formed by 2N  p -network which contains pN latches

and (1) / 2p p N pN  adder-latches [4].

The shift and accumulation array (Figure 3) can compute (14) once the moments are

produced. Since , 0 1r in or and ' ()km r which can be performed by shifting digits of

()km r to the left 1log 10rN   places in binary system are integers, the computation of

'

,

1

() ()
p

r

r i k

r

j n m r


 only involves accumulations of ()km r 0, 1, ..., pi  . By shifting digits

of '

,

1

() ()
p

r

r i k

r

j n m r


 to the left t i places in binary system, the multiplication of 2t i

can be performed, and shifting '

,

0 1

(() ()) 2
pt

r t i

r i k

i r

j n m r 

 

   to the right 3log 20N 

places in binary system, ' 3log 20

,

0 1

(() ()) 2 / 2
pt

r t i N

r i k

i r

j n m r  

 

   can be performed. This

array was formed by about log()pt pt adder-latches and some shifters and the execution

time is about log(([2log 18] 2))p N   .

Compared with the designs in [2, 6, 17, 22] (Table 2), our systolic arrays do not need

multipliers though the adders are more (in most case, our p is nearly a constant no larger

than 50 and [2log 18]t N  , so the adders are not much more). This means that our

method is easily implemented by hardware and is very suited to a real-time processing.

Meaning while, our method does not have limits on N , which is better than other FFTs.

Table 2. Comparison of Parameters for Linear Array, 2-D Systolic, Base-4,
Pipelined FFT and Our Systolic Circuits

Architecture multiplications Multipliers Adders Limits

on N

Linear array 2N N N none

2-D systolic

[10],[21]
1 2(1)N N N  N N

1 2N N N

Base-4 [19]
1 2() /16N N N 1 / 4N 22N 256N n

pipelined

FFT
((3 8) (1)) / 9 1nN n   

4log 1N  4log N 2nN 

Our method none none (1) / 2p p N pN 

log()pt pt

none

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 157

Figure 1. The Systolic Array for 1-D DFT

Figure 2. The Preprocessing Arrays

(x(3),2),(x(2),0),
(x(1),2),(x(0),0)

cell# 3 2 1 0

0
x(1)+x(3

) 0
x(2)+x(4

)

2 (2)y

1 0(1), , (1)Ny N y N  

1 0(2), , (2)Ny N y N  

1 0(2), , (2)Ny y

1 0(1), , (1)Ny y

[1]p 

[(3)(1) (2)]n p n   

[(2)(1) (1)]n p n   

1(0)Nm  1(1)Nm  1(2)Nm  1(1)Nm p 
1()Nm p

1(0)m 1(1)m 1(1)m p  1()m p
1(2)m

0 (2)m0 (0)m 0 (1)m 0 (1)m p  0 ()m p

1 0(0), , (0)Ny y

[(2)(1) (1) 1]n p n    

[]p [1]p  [1]

[]p [1]p 

[2]p 

[2]p  [1]

[]p [1]p  [2]p  [1]

 :shift

(1), , (1), (0)x N x x

:adder-latch:latch

   102
log 101/ 2 N 2log 101/ 2

pN   1log 101/ 2
pN  

(1), , (0)X N X

The shift and accumulation array

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

158 Copyright ⓒ 2015 SERSC

Figure 3. The Shifting and Accumulation

4. Computing Correlation By Correlation Theorem And Complexity

Analyses

The Correlation of two N -point sequences { ()}x n and { ()}h n can be given by

1
*

0

1
() () () ()

N

i

x n h n x i h n i
N





 o (15)

where *()x i denotes Complex conjugation the of ()x n .

The Correlation theorem says that in the frequency domain,

*() () ()S k X k H k  0, ,2 1k N L (16)

where { ()}S k is the DFT of { () ()}x n h no , and { ()}X k and { ()}H k are the DFT of the

sequences 1{ ()}x k and 1{ ()}h k which are augmented by { ()}x n and { ()}h n as follows ,

1

() 0,1, , 1
() {

0 , 2 1

x k k N
x k

k N N

 


 

L

L
 and 1

() 0,1, , 1
() {

0 , 2 1

h k k N
h k

k N N

 


 

L

L

So it is computationally efficient to implement the Correlation of { ()}x n and { ()}h n by

the following procedures:

1) Compute the DFT of { ()}X k and { ()}H k , 1{ ()}x k and 1{ ()}h k using method in

section 4, respectively;

2) Compute the product of { ()}X k and{ ()}H k for 0 2 1k N   ;

3) Compute the sequence { ()* ()}x n h n as the inverse DFT of *{ () ()}X k H k using

method in section 4.

' (1)km ' (2)km ' (3)km ' ()km p

   

2

2,0()j n 3

3,0()j n ,0() p

pj n



'

,

1

() ()
p

r

r i k

r

j n m r




2t

'

,

1

(() ())2
p

r t

r i k

r

j n m r




' (1)km ' (2)km ' (3)km ' ()km p

   
0,tjn 2

1,() tj n 3

2,() tj n ,() p

p tj n


02

'

,

1

() ()
p

r

r i k

r

j n m r




2t i

'

,

1

(() ())2
p

r t i

r i k

r

j n m r 





'

,

0 1

(() ()) 2
pt

r t i

r i k

i r

j n m r 

 

  

3log 201/ 2 N

(0) (0)k ky m ()X k

:latch :adder-latch

 shifter

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

Copyright ⓒ 2015 SERSC 159

In other words, to calculate Correlation of two length- N sequences, we need to

compute two length- 2N DFT, an length- 2N inverse DFT, and a product of two length-

2N vector. From section 4, we can know that there are all together about

12

0

1

0

4 2 / gcd(,2)

(1 / gcd(,2))(1)(2)(2 2)

2

2 [2log 2 18] 4

N

k

N

k

N N k N

k N p p N

p N N N











  


  





Integer additions and 2N multiplications to complete the computation of two length-

N sequences.. Similarly, a systolic array can be designed to calculate the Correlation

(Figure 4). It consists of four parts, two systolic arrays for DFT designed in section 4, a

multiplier, and a systolic array for inverse DFT. So the whole arrays require

(1) 2 log()p p N pN pt pt   adders and one multiplier. The total execution time of the

systolic arrays is 2(2 (1)(2 2) 2 log(([2log(2) 18] 2)) 1N p N p N        . The first

term is for DFT and inverse DFT, the second for product of ()X k and ()H k . In this case,

2 2 2(log (2) / log log (2))p O N N and [2log(2) 18]t N  .

1
{ ()}x k

1{ ()}h k

*{ ()} { ()}X k X k

{ ()}H k

*{ () ()}X k H k () ()x n h n
Systolic
array for
inverse DFT

Systolic
array for

DFT

Systolic
array for

DFT

Multiplier

Figure 4. The Systolic Arrays for Correlation

5. Discussion and conclusion

By transforming the floating-point multiplication into operation of shifts and

accumulation of integers, we introduce an improved algorithm and systolic arrays for 1-D

DFT and have analyzed the computational complexity, then we extend our algorithm to

calculate Correlation.

Compared with the work in [17], our DFT does not have multiplications and the

amount of additions to eliminate all the multiplications is very small. Our method has also

the following advantages: there are no multiplications in our method, which is superior to

the 2(log)O N N in classical FFT; exponential functions have been replaced by simple

polynomial functions and all multiplications have been changed into additions, which

decreases the computational cost and memory requirement. One important advantage is

that it can accommodate data samples of arbitrary length and compute any portion of

frequency. In addition, since our method only involves integer operations, it produces

nice accuracy and convergence property. Compared with the systolic arrays in [4], our

systolic arrays require less multipliers and have the property of regularity. What is more

important, our method can control the accuracy and hence can get high precision.

International Journal of Hybrid Information Technology

Vol.8, No.7 (2015)

160 Copyright ⓒ 2015 SERSC

Acknowledgments

Our study was funded in part by the the National Natural Science Foundation of

China (Grant No. 61105004), NSFC of Guangxi (No 2013GXNSFBA019279) and

Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (No.

YQ14103). We would like to express our appreciation to all supporters above

mentioned for their strongly financial support.

References

[1] R. Agarwal and J. Cooley, New algorithms for digital convolution, IEEE Trans Acoust., Speech, Signal

Process., 25(Oct. 1977), 392,

[2] J. A. Beraldin, T. Aboulnasr, W. Streenaart, Efficient 1-D systolic array realization for the discrete

Fourier Transform, IEEE Trans. Circuits Syst., 36 (1989), .95-100,

[3] R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1984.

[4] F. H. Y. Chan, F. D. Lam, H. F. Li, J. G. Liu. An all adder systolic structure for fast computation of

moments, J.VLSI Signal Process, 12 (1996), 159-175.

[5] H. -C. Chen , J. -I. Guo , C. -W. Jen and T. -S. Chang, Distributed arithmetic realisation of cyclic

convolution and its DFT application, Proc. IEE, Circuits, Devices, Syst., pp. 615, Dec. 2005.

[6] C. Cheng, K. K. Parhi, Low-cost fast VLSI algorithm for discrete Fourier Transform, IEEE

Transactions on circuits and systems I, 54(2007), 791-806.

[7] J. B. Cooley , J. W. Tukey, An algorithm for machine computation of complex Fourier series, Math.

Comput. , 19 (1965), 297-301.

[8] P. Duhamel, Paper on the Fast Fourier Transform, IEEE Press, New York, 1995.

[9] P. Duhamel, M. Vetterli. Fast Fourier transform: A tutorial review and a state of the art, Signal

Processing. 19 (1990), 259-299.

[10] J. I. Guo, A new distributed arithmetic algorithm and its hardware architecture for the discrete hartley

transform, Pattern Recong. Image Anal., 10(2000), 368-378.

[11] M. Hatamian. A real-time two-dimensional moment generating algorithm and its single chip

implementation, IEEE Trans. Acoust, Speech Signal Process, 34(1986), 546-553.

[12] S. He, M. Torkelson, Designing pipeline FFT Processor for OFDM (de) Modulation, in Pro .IEEE URSI

Int. symp. Signals, syst., Electron. (1998) 257-262.

[13] S. He, M. Torkelson, A systolic array implementation of common factor algorithm to compute DFT, in

Proc. Int. Symp. Parallel Architectures, Algorithms and Networks, Kanazawa, Japan, (1994), 374-381.

[14] M. K. Hu, Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, 8(1962), 179-

187.

[15] L. Jia, Y. GAO, J. Isoaho, H. Tenhunen, A new VLSI-oriented FFT algorithm and implementation, in

Proc. Eleventh Annuo IEEE. Int. ASIC Conf., (1998), 337-341.

[16] K. J. Jones , Prime number DFT computation via parallel circular convolvers, Proc. IEE, Radar Signal

Process., 137(Jun. 1990), 205,.

[17] D. C. Kar , V. V. B. Rao, A new systolic realization for the discrete Fourier transform, IEEE Trans.

Signal Process, 41(1993), 2008-2010.

[18] H. T. Kung, C. E. Leiserson, Systolic arrays (for VLSI), in Symp. Sparse Matrix Computations, (1978),

256-282.

[19] H. Lim, E. E. Swartzlander, Multidimensional systolic arrays for the implementation of the discrete

Fourier transform, IEEE Trans. Signal process, 47(1999), 1359-1370.

[20] J. G. Liu, H. F. Li, F. H. Y. Chan, F. K. Lam, A novel approach to fast discrete Fourier transform,

Journal of Parallel and Distributed Computing, 54(1998), 48-58.

[21] P. K. Meher, Highly concurrent reduced- complexity 2-D systolic array for discrete Fourier transform,

IEEE signal processing letters,.13(2006),.481-484

[22] J. G. Nash, Computationally efficient systolic architecture for computing the discrete Fourier Transform,

IEEE Trans. Signal process, 53(2005), 4640-4651.

[23] W. Yeh, and C. Jen, High-speed and low-power split-radix FFT, IEEE Trans. Signal process, 51(2003),

4640-4651.

[24] M. F. Zakaria, L. K. Vroomen, P. J. A. Zsombar-Murray, J. M. H. M. Van Kessel, Fast algorithm for

computation of moment invariants, Pattern Recognition,.20(1987), 634-643.

[25] P. K. Meher, Hardware-Efficient Systolization of DA-Based Calculation of Finite Digital Convolution,

IEEE Transactions on circuits and systems Ⅱ, 53(2006), 707-711.

