
International Journal of Hybrid Information Technology

Vol.8, No.6 (2015), pp.341-356

http://dx.doi.org/10.14257/ijhit.2015.8.6.33

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

A Program Model Based Regression Test Selection Technique For

D Programming Language

Nitesh Chouhan
1
, Dr. Maitreyee Dutta

2
 and Dr. Mayank Singh

3

1
Assistant Professor,

2
Associate Professor,

3
Associate Professor,

1
Department of IT, MLVTEC Bhilwara, India

2
Department of CSE, NITTTR, Chandigarh, India

3
Department of CSE, KEC Ghaziabad, UP, India

1
niteshchouhan_9@yahoo.com,

2
dr_maitreyee@gmail.com,

3
mayanksingh2005@gmail.com

Abstract

Software testing can be stated as the process of validating and verifying that a

computer program, application and product [1]. Software testing can also provide an

objective, independent view of the software to allow the business to appreciate and

understand the risks of software implementation. Software testing, depending on the

testing method employed, can be implemented at any time in the development process.

Traditionally most of the test effort occurs after the requirements have been defined and

the coding process has been completed. Testing can never completely identify all the

defects within software. A primary purpose of testing is to detect software failures so that

defects may be discovered and corrected. Testing cannot establish that a product

functions properly under all conditions but can only establish that it does not function

properly under specific conditions. There are many approaches to software

testing. Reviews, walkthroughs, or inspections are referred to as static testing, whereas

actually executing programmed code with a given set of test cases is referred to

as dynamic testing.

Regression testing is an important but expensive software maintenance activity

performed with the aim of providing confidence in modified software. Regression test

selection techniques reduce the cost of regression testing by selecting test cases for a

modified program from a previously existing test suite. Regression testing is done every

time when a program is modified to ensure that the modifications do not introduce new

bugs into previously validated code. Regressions Testing can be done by collectively

perform Regression Test Selection, Test Minimization and Test Case Priotrization

Technique.

An important research problem, in this context, is the selection of a relevant subset of

test cases from the initial test suite. Regression test selection (RTS) techniques minimize

both the regression testing time and effort. Regression test selection (RTS) techniques

select a subset of valid test cases from an initial test suite (T) to test that the affected but

unmodified parts of a program continue to work correctly. Use of an effective regression

test selection technique can help to reduce the testing costs in environments in which a

program undergoes frequent modifications.

D is a new programming language. This is an object-oriented, imperative, multi-

paradigm system programming language. Regression testing on D programming

language still untouched by researchers. Our research attempts to bridge this gap by

introducing a techniques to revalidate D programs. A framework is proposed which

automates both the regression test selection and regression testing processes for D

programming language. As part of this approach, special consideration is given to the

analysis of the source code of D language. In our approach system dependence graph

representation will be used for regression test selection for analyzing and comparing the

mailto:dr_maitreyee@gmail.com
mailto:mayanksingh2005@gmail.com
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Software_walkthrough
http://en.wikipedia.org/wiki/Software_inspection
http://en.wikipedia.org/wiki/Static_testing
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Dynamic_testing

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

342 Copyright ⓒ 2015 SERSC

code changes of original and modified program. First we construct a system dependence

graph of the original program from the source code. When some modification is executed

in a program, the constructed graph is updated to reflect the changes. Our approach in

addition to capturing control and data dependencies represents the dependencies arising

from object-relations. The test cases that exercise the affected model elements in the

program model are selected for regression testing. Empirical studies carried out by us

show that our technique selects on an average of 26.36. % more fault-revealing test cases

compared to a UML based technique while incurring about 37.34% increase in

regression test suite size.

Key Words: System Dependence Graph, Regression testing, Regression Test Selection

(RTS) and Control Flow Graph

1. Introduction

Programming languages are used for controlling the behavior of a machine (often a

computer). There are thousands of programming languages and new ones are created

every year. Few languages ever become sufficiently popular that they are used by more

than a few people, but professional programmers may use dozens of languages in a career.
D appeals to programmers who are interested in writing high performance code, want a

C++ style language, but need a language that is much easier to master with support for

modern techniques like automatic memory management, modules etc.

Regression testing is an expensive activity and is carried out after each modification to

software [11, 12]. The objective of regression testing is to ensure that no new errors have

been introduced in the unmodified parts of the code due to the changes made [13].

Regression Test Selection (RTS) is carried out to ensure that changes do not adversely

affect unmodified portions of the software. It often accounts for almost half of the

software maintenance costs [14]. To reduce regression testing costs, it is necessary to

eliminate all those test cases that solely run the unaffected parts of the code, because they

are unlikely to detect any bug. At the same time, it is also important to ensure that no test

case that has the potential to detect a regression bug is overlooked. Regression testing is

carried out at various phases of software development life cycle such as, at unit,

integration, system testing as well as during maintenance phase [8]. RTS techniques help

to reduce the time and effort required to carry out regression testing. Regression testing on

object oriented programming language still not touched by researchers efficiently. Our

research attempts to bridge this gap by introducing a techniques to revalidate object

oriented programs of Java.
RTS techniques based on analysis of both source code [1, 5, 4] and model [7, 8, 2] have

been proposed in the literature for object-oriented program. Many RTS techniques first

construct either the control flow [11, 4] or the dependency representation [5] of programs

based on code analysis and then select test cases. These techniques compare the original

and modified versions of the program model and select test cases that execute the affected

model elements. In case of UML model-based RTS techniques, regression test cases are

selected by comparing the original model with the model of the modified program [7, 8, 1].

A problem with this approach is that models being abstraction after all, are often

insensitive to minor code changes. In this context, we propose an RTS technique that

considers control and data dependence information of D programs.

This paper is organized as follows: In Section 2, we discuss certain Basic concepts that

provide the basic details needed to understand our approach. We explain our proposed

approach in Section 3. We describe our empirical study in Section 4 and finally conclude

the paper in Section 5.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 343

2. Basic Concepts

In this section, we discuss certain basic concepts that underlie our approach to RTS for

object oriented programs. We first present introduction about Software Testing,

Regression Testing, D programming language and some definitions used in the context of

regression test selection and then discuss a few models proposed for object oriented

programs. Subsequently, we discuss some features of object oriented program that are

relevant to regression test selection and also discuss a UML based RTS technique

proposed by Naslavsky et al. [26] which we have used to compare our experimental

results. For notational convenience, in the rest of the paper we denote the original and the

modified programs by P and P`, respectively. The initial test suite for P is denoted by T,

and a test case in T is denoted by t.

2.1 D Language

During the past few years, programming languages have come a long way. In

comparison to the dawn of UNIX and C, when compiled languages were just getting their

start, today's world is full of languages with all sorts of goals and features. In this paper,

we focus on one such language, D from Digital Mars. D is a general purpose systems and

applications programming language. It is a higher level language than C++, but retains the

ability to write high performance code and interface directly with the operating system

API's and with hardware. D's features include the lack of a preprocessor, a garbage

collector, flexible first-class arrays, contracts, inline assembler and more. It isn't unusual

for a D program to have 30% less source code than the equivalent C++, yet run at the

same speed or faster [27]. It's simply faster to develop code in D, and faster to get it

debugged. D is well suited to writing medium to large scale million line programs with

teams of developers. It is easy to learn, provides many capabilities to aid the programmer,

and is well suited to aggressive compiler optimization technology. It is a promising

language that is able to supply many different needs in the programming community.

Features such as arrays, SH syntax and type inference make D comparable to languages,

such as Ruby and Python, in those regards, while still it is open for low-level system

programmers with the inline assembler and other features. It brings in features of

imperative languages, such as Lisp, with the lazy storage class, which drastically speeds

up efficiency. The language is relatively stable, with the occasional new features or

changes added in. There are two major versions of the language - D1 and D2. D1 is stable

(will undergo no other changes), and D2 is a major revision of the language that sacrificed

some backwards compatibility, and for adding a few crucial features related to generic

programming. There are also two essential D libraries, the official -Phobos, and a

community-driven library called Tango. Tango, designed for D1, is being ported to D2,

and Phobos is undergoing major changes and additions to take full advantage of D2's

capabilities. Last but definitely not least, two windowing libraries complete the language's

offering quite spectacularly. The mature library DWT is a direct port of Java's SWT. A

newer development is that the immensely popular Qt Software windowing library has

recently released a D binding. D supports these programming paradigms of C,

C++,JAVA- imperative, object-oriented, meta programming, functional and concurrent.

1000 random number has been generated using same program logic explain in algorithm 1

in different language i.e C, java, C# and D language[27]. And calculate the how much

time is required to run the program in different language which is shown in table 1.

Algorithm#1

IM 139968

IA 3877

IC 29573

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

344 Copyright ⓒ 2015 SERSC

last 42

gen_random(double max) {

last = (last * IA + IC) % IM;

return(max * last / IM);}

 int N =1000;

while (N--) {

result = gen_random(100.0);}

printf(result);

Table 1. Execution Time for Random Number Genrator

Language Execution time in second

C 2.0879

Java 0.141

C Sharp 0.14

D 0.119

0

0.5

1

1.5

2

2.5

C

JAVA

C SHARP

D

Figure 1. Performance Chart

2.2. Software Testing

We are all human beings and therefore it is natural for us to make mistakes. It is

generally accepted, and also noted that for programmers it is natural to introduce bugs

into software during the development process. Beizer also high- lights the statistic that

says for every 100 statements written by a good programmer there are still 1-3 bugs. In

our modern life software is used in almost everything that surrounds us. Take, for

example, home appliances like microwave ovens or washing machines, cell phones; take

a car that alone might have up to several dozen computers installed in it, and so on. Bugs

revealed in some of those would make one feel upset, but in others it might cost human

lives. And that is why software testing is an important stage of the development process

that cannot be omitted or ignored. There are many published definition of software

testing, however all definitions boil down to essentially the same thing: software testing is

the process of executing software in controlled manner in order to answer the question

“Does the software behave as specification”.

Software testing often used in associated with the term verification and validation.

Verification is checking and testing of the item for conformance and consistency.

Software testing is the one kind of verification which also uses technique reviews,

analysis audit, inspections and walkthrough. Validation is the process of checking that

what has been specified is what the user actually wanted.

2.3 Regression Testing

Regression testing (also referred to as program revalidation) is carried out to ensure

that no new errors (called regression errors) have been introduced into previously

validated code (i.e., the unmodified parts of the program) [2]. Let P be an application

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 345

program and P′ be a modified version of P. Regression testing is done after certain

changes have been introduced to a piece of software or program P. It is performed during

the maintenance phase of the evolution of the program. Regression testing's purpose is to

verify that modified software preserves the expected behavior and does not introduce

errors. Even if the change is very small, the impact caused by that change can be very

tangible and would affect the behavior of the software, perhaps by introducing new

unexpected faults. Although regression testing is usually associated with system testing

after a code change, regression testing can be carried out at unit, integration or system

testing levels.

The sequence of activities that take place during the maintenance phase after the

release of software is shown in Figure 2. The Figure 2 shows that after software is

released, the failure reports and the change requests for the software are compiled, and the

software is modified to make necessary changes. Resolution tests are carried out to verify

the directly modified parts of the code, while regression test cases are carried out to test

the unchanged parts of the code that may be affected by the code change. After the testing

is complete, the new version of the software is released, which then undergoes a similar

cycle.

In the development phase, regression testing may begin after the detection and

correction of errors in a program. At the last stages of program development when the

program has been reasonably tested, testing is aimed at revealing the hidden persistent

software errors [2].

At this stage, a well- developed test plan should be available. It makes sense to reuse

the existing test cases, rather than redesigning all new test cases, in retesting the program

after it is corrected for any errors. Many modifications may occur during the maintenance

phase where the software system is corrected, updated and fine-tuned.

Software maintenance is defined as the performance of those activities required to keep

a software system operational and responsive after it is accepted and placed into

production.

Figure 2. Activities that Take Place during Software Maintenance and
Regression Testing

2.3.1. Types of Regression Testing

Two types of regression testing can be identified based on the possible modification of

the specification [2]: Progressive and Corrective Regression testing. Progressive

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

346 Copyright ⓒ 2015 SERSC

regression testing involves a modified specification. Whenever new enhancements or new

data requirements are incorporated in a system, the specification will be modified to

reflect these additions. In most cases, new modules will be added to the software system

with the consequence that the regression testing process involves testing a modified pro-

gram against a modified specification.

In corrective regression testing, the specification does not change. Only some

instructions of the program and possibly some design decisions are modified. This has

important implications because most test cases in the previous test plan are likely to be

valid in the sense that they correctly specify the input-output relation.

2.3.2 Regression Test Cases

Leung and White categorize test cases into five classes [2].

The first three classes

consist of test cases that already exist in test suit T of original program P.

1. Reusable: Reusable test cases only execute the parts of the program that remain

unchanged between two versions, i.e. the parts of the program that are common to P and

P`. It is unnecessary to execute these test cases in order to test P`; however, they are called

reusable because they may still be retained and reused for the regression testing of the

future versions of P.

2. Resettable: Resettable test cases execute the parts of P that have been changed in P`.

Thus resettable test cases should be re-executed in order to test P`.

3. Obsolete/Redundant: Test cases can be rendered obsolete because:

 Their input/output relation is no longer correct due to changes in specifications,

 They no longer test what they were designed to test due to modifications to the

program,

 They are ‘structural’ test cases that no longer contribute to structural coverage of

the program.

The remaining two classes consist of test cases that have yet to be generated for the

regression testing of P`.

4. New-Structural: New-structural test cases test the modified program constructs,

providing structural coverage of the modified parts in P`.

5. New-Specifications: New-specifications test cases test the modified program

specifications, testing the new code generated from the modified parts of the specifications

of P`.

2.3.3 Regression Testing Technique
The three major branches include test suite minimization, test case selection and test case

prioritization [11].

Test Suite Minimization is a process that seeks to identify and then eliminate the

obsolete or redundant test cases from the test suite.

Test Case Selection deals with the problem of selecting a subset of test cases that will be

used to test the changed parts of the software.

Test Case Prioritization concerns the identification of the ‘ideal’ ordering of test cases

that maximize desirable properties, such as early fault detection.

2.4 Program Models

Some of the popular procedural graph models reported in the literature include control

flow graphs (CFG) [24], program dependence graphs (PDG) [25], and system dependence

graphs (SDG) [12]. In the following, we briefly review an SDG graph model since it is

related to our work.

System Dependence Graph (SDG) was first introduced by Horowitz et al. and was used

to model procedural programs [12]. Later on, SDG was extended by Larsen and Harrold

to model object-oriented programs [7].

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 347

An SDG is a directed, connected graph G = (V, E), consisting of a set V of vertices and a

set E of edges. In the following, we describe the different types of edges and vertices in an

SDG.

Let V be the set of all node types of an SDG. Then, V can be expressed as follows.

V={Ve, Vs, Vp }, where each member of these represents a particular node type. In the

following, we explain the different types of nodes in an SDG.

• Entry vertices (Ve): In an SDG, classes and methods have entry vertices. A method

entry vertex represents an entry into a method and a class entry vertex represents an entry

into a class.

• Statement vertices (Vs): Statements that are present in the methods are represented by

statement vertices. There are two types of statement vertices: simple statement vertices

and call vertices. Method call statements are represented by call vertices and all other

statements such as assignments, conditionals loops and are represented by simple

statement vertices.

• Parameter vertices (Vp): The parameter vertices are of four types. These include formal-

in, formal-out, actual-in, and actual-out. The formal-in and formal-out vertices are created

for each method entry vertex and actual-in and actual-out vertices are created for each call

vertex.

Let E denote the different types of edges of an SDG. It can be expressed as E ={Ecd, Edd,

Ece, EPin, EPout, ESum}, where each member of these E represents a particular edge

type. In the following, we explain the different types of edges of an SDG.

• Control (Ecd)- and data (Edd)-dependence edges represent the control and data

dependence relationships among the nodes of an SDG, respectively.

• Call edges (Ece) link the call-site nodes with the corresponding procedure entry nodes.

• Parameter-in edges (EPin) connect the actual-in nodes with the respective formal-in

nodes.

• Parameter-in edges (EPin) connect the actual-in nodes with the respective formal-in

nodes.

• Parameter-out edges (EPout) connect the formal-out nodes with the respective actual-

out nodes.

• Summary edges (ESum) are used to represent the transitive dependencies that arise due

to function calls. A summary edge from an actual-in node a to an actual-out node b is

constructed if the value associated with b can get affected by the value associated with the

node a due to control or data dependence, that is, a summary edge from a to b is

constructed if there exists either a control or data-dependence edge from the

corresponding formal-in node a` to the formal-out node b`. Below program example

shows a sample program and Figure 3 shows the SDG representation of this program.

__
Example 1:

CE1: Class Cal {

 S2: int a;

 S3: int b;

 E4: void set (int i,intj)

 S5: a=i;

 S6: b=j:

 }

 E7: int add(){

 S8: int result = a+b;

 S9: return result;

 }

 }

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

348 Copyright ⓒ 2015 SERSC

Figure 3. SDG representation for the Program Example 1

2.5. Effectiveness of a Regression Test Suite

A regression test suite should include only that subset of original test suite that is likely

to detect a regression error. To determine the effectiveness and quality of a regression test

suite, Rothermel et al. have defined the concept of fault-revealing test cases for a program

P [23].

Fault - Revealing Test Cases:

Rothermel and Harrold [21] have defined a fault- revealing test case for a traditional

program P as a test case t∈ T that can cause P to fail by producing in correct outputs for P.

A test case t ∈ T is said to be fault-revealing for programs P and P` if and only if it can

cause P` to fail by producing an incorrect output or cause the output to be produced too

late.

2.6 Program Slicing

A program slice consists of all those program statements that can affect the values

computed at some point of interest called the slicing criterion [6, 12, 7].

2.7 Naslavsky’s UML-Based RTS Technique

Naslavsky et al. [26] presented a model-based RTS technique that uses UML class and

sequence diagrams for test selection. They transformed sequence diagrams of both the

original and modified versions of a program into model-based control flow graphs. The

control flow graphs of both original and modified versions are analyzed and the test cases

are selected using analysis.

2.8 Types of Program Changes

An arbitrary change to a program could be any one of the following three types: (1)

addition of a statement, (2) deletion of a statement, or (3) modification of a statement. A

change to P might require addition and deletion of some nodes and edges of the

corresponding SDG model. Any arbitrary modification could be considered to be

composed of a deletion operation followed by an addition operation.

In the following, we elaborate how the control flow and dependency relations are

affected due to the two basic types of code changes: addition and deletion.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 349

 -Addition of Statements: Adding new statements to P requires creating new nodes and

edges in the SDG model M. The additional edges created could be of types control flow,

control or data dependence, parameter-in, etc. It may also be required to delete certain

existing control flow and dependency edges during edge creation.

-Deletion of Statements. Deletion of one or more statements could affect the dependencies

existing among certain other statements, Before a statement (i.e., one or more nodes) is

deleted, first the other nodes in M that are data or control dependent on the deleted

node(s) are identified and are marked as affected. Then, the node(s) in M corresponding to

the deleted statement are deleted. The different edges which are incident on or emanate

from the node(s) corresponding to the deleted statement are also deleted.

3. P-ReTEST: PROPOSED APPROACH

We have named our proposed approach for regression test case selection as P-ReTEST

(Program Model Based Regression Test case Selector). Our technique selects regression

test cases based on an analysis of control and data dependencies. In the following, we

describe the important activities that are carried in P-ReTEST. As shown in Figure 4, the

important activities in the first regression test selection cycle include constructing SDG

model, collecting test coverage information and marking the test coverage information in

SDG model are not repeated for subsequent regression test selection cycles in our

approach. We now describe the different activities that are carried out during the first

regression testing cycle.

The important steps in purposed approach is as follows as shown in figure 4

Step1: Construct SDG model: Very first, the SDG model for the original program P

will construct using a technique specified by Larsen and Harrold [20].

Step2: Identify changes: The changes between P and the modified program P' will be

identified through analysis.

Step3: Instrument and execute the program: In this step, original program P will be

instrumented by inserting print statements. The print statements will insert to collect test

coverage information. The original source code P will be executed with the original test

suite T to generate information, which statements are executed for each test case.

Step 4: Mark the SDG model: The test coverage information will be marked on SDG

model.

Step5: Update the SDG model: The model constructed for original program P will

update during each regression testing cycle to make it correspond to the modified

program.

Step6: Select test cases: In this step, regression test cases will select based on analysis of SDG

model.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

350 Copyright ⓒ 2015 SERSC

Figure 4. Activity Diagram Representation

3.1. Determination of Regression Test Cases

Regression test cases, TReg, are determined based on an analysis of the constructed

SDG model.Our Proposed Algorithm 2 selects test cases from SDG model. Algorithm

takes updated SDG model denoted by M and the set of tagged nodes denoted by Tag

obtained during update SDG model step as input, and produces the selected set of

regression test cases as the output, TReg. Algorithm computes the set of all affected nodes

denoted by Affected nodes on basis of data and control dependencies, the steps are given

in lines 2 to 5 in Algorithm1. After all the affected nodes in SDG have been identified, the

test cases that execute these affected nodes are selected for regression testing. This is done

by traversing the SDG model and visiting each node in Affected nodes to determine the

test cases that execute these affected nodes.

Algorithm 2 to select Regression Test Cases

Input: M, Tag

1. SDGSELECT(M, Tagged, TReg)

2. For each node n in Tagg do

3. Find the node that are data and control dependent

4. Affected = NULL

5. Affected = Affected U{all nodes that are data and control dependent }

6. end

7. if Affected ≠ ᶲ then

8. for each node n € Affected do

9. Add all test cases that execute n to TReg

10. End

Output: TReg __

Where, TReg denotes the test cases selected through control and data dependence

analysis and dependencies due to object-relations. It is also called regression test cases.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 351

4. Experimental Studies

We have named our prototype tool as P-ReTEST (Program Model Based Regression

TEST case selector).We have implemented a tool based on our proposed approach for

RTS.

4.1 P-ReTEST

A Prototype Implementation of RTS P-ReTEST has been developed using the

programming language Java on a Microsoft Windows 7 environment. The code size of P-

ReTEST is approximately 10 KLOC. The user interface of P-ReTEST is developed using

Java Swing. In the following, we describe the various open source software packages used

to implement RTS.

4.2 Open source software packages used

We have developed the tool P-ReTEST using the following open source software

packages: Eclipse [3], Cygwin [1] and Graphviz [4]. We have used eclipse as an IDE and

Cygwin is used to provide Linux Environment on window OS to run Linux command to

find out difference using a Java Program. To graphically visualize the SDG model

constructed by P-ReTEST, we have used Graphviz.

4.3 Experiments

In this section, we discuss the specific experimentation carried out by us using P-

ReTEST to measure the effectiveness of our approach. We have used the following

programs namely, Addition, Deletion, Looping, and Demo in our experimentation.

Where, changes in Addition program is done by adding a statement, changes in Deletion

program is done by deleting a statement, changes in Looping program is done by adding

one more for loop, changes in Demo program is done by modification in a if else

statement. Each of the considered programs had on an average of 20 test cases. For each

program, we created several modified versions. We have considered the different types of

modifications that are made in each version of a program from Ren et al. [18]. We tested

each modified version of a program by running the original test cases on each modified

version of a program to note the number of test cases failed after modification.

Figure 5. Source Code of Looping

(a) Certified

public class ForLoop
{
 public main()
 {
 int c;
 for (c = 1; c <= 10; c++) {
 println(c);
 }
 }
}

 (b) Modified

public class ForLoopModified
{
public main()
{
 int c,d;
for (c = 1; c <= 10; c++)
{
for(d=0; d<5; d++)
{
println(c);
 }
 }
 }
}

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

352 Copyright ⓒ 2015 SERSC

Then, each time the test cases were selected using P-ReTEST and also from

Naslavsky’s UML based analysis. To measure the effectiveness of our RTS technique, we

have calculated the average percentage of fault- revealing test cases selected by P-

ReTEST and by Naslavsky‘s UML model analysis.

Source code of a Looping program and after modification in a statement in this

program is shown in Figure 5. A snapshot of the SDG model using Graphviz for the both

program is shown in Figure 6.

Figure 6. Graphviz GENERATEd System Dependence Graph

4.4. An Evaluation of the Effectiveness of P-ReTEST

The aim of our experimental studies using P-ReTEST was to evaluate the performance

and effectiveness of our RTS approach. Obviously, it is desirable to have regression test

cases as small as possible. However, for effective RTS, it is more important for a

technique not to miss out selecting any fault-revealing test cases. In the following, we

briefly describe these two metrics with which we evaluated the effectiveness of P-

ReTEST.

Percentage of Test-Cases Selected for RTS (ϒ) - This measure indicates the size of the

regression test suite as a percentage of the initial test suite.

Fault-Revealing Effectiveness (Ω) - The fault-revealing effectiveness metric can be

defined as the percentage of test cases selected by an RTS technique from the set of test

cases that fail when the valid test cases in the initial test suite are run. That is, the fault-

revealing effectiveness of the test suite selected by a safe RTS technique is equal to 75%,

that is, it is equal to that of the initial test suite.

4.5 Result

In this section, we describe the results obtained from experimental studies carried out

by us to determine the effectiveness of our RTS technique.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 353

Table 2. Summary of Regression Test Selection Results
Program Number

of test
cases

Percenta
ge of test
cases
selected
by - P-
ReTEST

Percentage
of test cases
selected by
Naslavsky’s
Approach

Percenta
ge
Increase

Addition 31 45 28 53.66

Deletion 21 46 34 34.11

Looping 20 48 32 32.77

Demo 26 68 47 33.53

Table 2 and Table 3 summarize our experimental results. Table 2 summarizes the

percentage of test cases selected by our approach and Naslavsky’s approach. In column 2,

we list the total number of test cases in the initial test suite and the percentage of test

cases selected while executing the entire test suite on the modified programs by P-

ReTEST and by Naslavsky’s approach is reported in column 4 and column 5 respectively.

The percentage increase in the regression test suite size is given in column 6. P-ReTEST

on an average selects 38.21 % more than the only Naslavsky’s approach. This increase

may be due to the fact that, our approach selects test cases based on code analysis.

Table 3 summarizes the average percentage of fault-revealing test cases selected by

both approaches. In Table 3, the test cases failed is given in column 2. The average

percentage of fault-revealing tests selected by P-ReTEST and Naslavsky’s approach is

given in columns 3 and 4 respectively. The results show that P-ReTEST selects all the

fault-revealing test cases and the percentage of fault-revealing test cases selected by P-

ReTEST is on an average of 27.89 % higher than a Naslavsky’s UML -based analysis.

4.5 Analysis

The results of Table 2 have been presented in the form of a bar graph in Figure 7. In the

Figure 7, the y-axis shows the percentage of selected test cases while the labels on the x-

axis represent the different programs. It can be observed from Table 2 and Figure 7 that P-

ReTEST selected around 45% to 68% of test cases for regression testing of the modified

programs.

Table 3. Summary of Quality Results
Program Name Percentage of

test cases failed
Percentage of
fault-revealing
tests selected
by P-ReTEST

Percentage of
fault-revealing
tests selected
from
Naslavsky’s
UML -based
analysis

Addition 29 75 54

Deletion 20 74 52

Looping 21 78 56

Demo
Controller

19 72 50

Considering the results for all the programs, the number of test cases selected by P-

ReTEST was on average 37.34% greater than Naslavsky’s approach [26]. This increase

can be explained by the fact that, in addition to control dependence, our approach also

selects test cases based on system dependencies that are ignored by Naslavsky’s approach.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

354 Copyright ⓒ 2015 SERSC

Figure 7. Percentage of regression test cases selected (ϒ)

The results of Table 3 have been presented as a bar graph in Figure 8. In the figure, the

y-axis shows the percentage of failed test cases selected while the labels on the x-axis

represent the different programs. The results show that P-ReTEST is able to select all the

fault-revealing test cases present in T. In other words, the regression test suite selected by

P-ReTEST has the same fault-revealing effectiveness Ω as the initial test suite. The fault-

revealing effectiveness of Naslavsky’s approach is lower by 26.36% on average compared

to ReTEST.

Figure 8. A comparison of the fault-revealing effectiveness (Ω) of P_ReTEST
and Naslavsky’s approach

5. Conclusion
We have presented an approach for regression test selection of object-oriented programs

that selects test cases by analyzing source code. We have applied the proposed RTS

technique to small example programs to prove the applicability of our approach. The

results of our study show the effectiveness in selecting more fault-revealing test cases

from the original test suite. In our empirical studies, we observe an average increase of

26.36% selection of fault-revealing test cases in P-ReTEST as compared to Naslavsky’s

UML model based analysis.

References

[1] http://www.cygwin.org/.

[2] http://www.bugzilla.org/.

[3] http://www.eclipse.org/.

[4] http://www.graphviz.org/.

[5] R. V. Binder, “Testing Object-Oriented Systems: Models”, Patterns, and Tools, Addison-Wesley,

(2003).

[6] L. Briand, Y. Labiche and S. He, “Automating Regression Test Selection Based on UML Designs”,

Journal of Information and Software Technology, (2009), pp. 16-30.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 355

[7] H. Do, S. Mirarab, L. Tahvildari and G. Rothermel, “The Effects of Time Constraints on Test Case

Prioritization: A Series of Controlled Experiments”, IEEE Transactions on Software Engineering, vol.

36, no. 5, (2010), pp. 593-617.

[8] M. Harrold, J. Jones, T. Li, D. Liang and A. Orso, “Regression Test Selection for Java Software”, In

Proceedings of the 16th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages and Applications, (2001), pp. 312-326.

[9] S. Horwitz, T. Reps and D. Binkley, “Interprocedural Slicing Using Dependence Graphs”, Transactions

on Programming Languages and Systems, vol. 12, no. 1, (1990), pp. 26-60.

[10] Y. K. Jang, M. Munro and Y. R. Kwon, “An Improved Method of Selecting Regression Tests for

C++Programs”, Journal of Software Maintenance: Research and Practice, vol. 13, (2001), pp. 331-350.

[11] G. Kapfhammer, “The Computer Science Handbook”, Chapter Software Testing, (2004), CRC Press,

Boca Raton, FL.

[12] D. Kung, J. Gao, P. Hsia, Y. Toyoshima and C. Chen “Firewall Regression Testing and Software

Maintenance of Object - Oriented Systems”, Journal of Object-Oriented Programming, (1997).

[13] H. Leung and L. White. Insights into regression testing. In Proceedings of the Conference on Software

Maintenance, pages 6069, 1989.

[14] N. Wilde and R. Huitt Maintenance support for object-oriented programs, IEEE Transactions on

Software Engineering, December 1992.

[15] Mr. Rohit N. Devikar, Prof. Manjushree. D. Laddha, “Automation of Model-based Regression Testing”,

International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012.

[16] G. Kapfhammer. The Computer Science Handbook, chapter on Software testing. CRC Press, Boca

Raton, FL, 2nd edition, 2004.

[17] S. Yoo, M. Harman, “Regression Testing Minimization, Selection and Pri- oritization: A Survey” Softw.

Test. Verif. Reliab. 2007,Wiley InterScience.

[18] X. Ren, O. C. Chesley and B. G. Ryder, “Identifying Failure Causes in Java Programs: An Application

of Change Impact Analysis”, IEEE Transactions on Software Engineering, vol. 32, no. 9, (2006), pp.

718 – 732.

[19] A. Orso, N. Shi, and M. Harrold. Scaling regression testing to large software systems. In Proceedings of

the 12th ACM SIGSOFT Twelfth International Symposium on Foundations of Software Engineering,

pages 241251, November 2004.

[20] GUAN, J., OFFUTT, J.,AND AMMANN, P. 2006. An industrial case study of structural testing applied

to safety- critical embedded software.In Proceedings of the ACM/IEEE International Symposium on

Empirical Software Engineering. ACM, New York, NY, 272– 277.

[21] ROTHERMEL, G.AND HARROLD, M. 1996. Analyzing regression test selection techniques. IEEE

Trans. Softw. Eng. 22, 8, 529–551.

[22] LIANG, D.AND HARROLD, M. 1998. Slicing objects using system dependence graphs. In Proceedings

of the International Conference on Software Maintenance. IEEE Computer Society, Los Alamitos,

CA,358– 367.

[23] CLEVE, A., HENRARD, J., AND HAINAUT, J. 2006. Data reverse engineering using system

dependency graphs. In Proceedings of the 13th Working Conference on Reverse Engineering. IEEE

Computer Society, Los Alamitos, CA, 157–166.

[24] AHO, A., SETHI, R.,AND ULLMAN, J. 2008. Compilers: Principles,Techniques and Tools 2nd

Ed.Dorling Kinder- sley (India) Pvt Ltd.

[25] FERRANTE,J.,OTTENSTEIN,K.,ANDWARREN,J.19 87. The program dependence graph and its use

in optimization. ACM Trans. Program.Lang. Syst. 9, 3, 319–349.

[26] L. Naslavsky, H. Ziv and D. J. Richardson, “A Model-Based Regression Test Selection Technique”, In

25th IEEE International Conference on Software Maintenance, (2009). Edmonton, Alberta, Canada.

[27] www.digitalmars.com/d, Jan 2013.

Authors

Mr. Nitesh Chouhan is Head and Assistant Professor in

Department of IT at MLV Government Textile & Engineering

College, Bhilwara (Rajasthan). He has completed M.E. and B.E. in

Computer Science & Engineering. He is having 10 years of

academic experience. His research interests are Distributed

Computing and Information System Security. E-mail:

niteshchouhan_9@yahoo.com

http://www.digitalmars.com/d

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

356 Copyright ⓒ 2015 SERSC

Dr. Maitreyee Dutta is Head and Associate professor in

Computer Science & Engineering Department at National Institute

of Technical Teachers Training and Research (NITTTR),

Chandigarh. She has rich cross-functional experience in

continuously delivering in the capacity of teacher and researcher.

She has Hands on experience in guiding M.E. and PhD students

and producing excellent results. Her research interests are Software

Testing and Image processing. E-Mail: dr_maitreyee@gmail.com

Dr. Mayank Singh is Associate professor in Computer Science

& Engineering Department at Krishna Engineering College,

Ghaziabad. He has good experience in continuously delivering in

the capacity of teacher and researcher. He has experience in

guiding M.E. and PhD students and producing excellent results. His

research interests are Software Testing and Wireless Networks. E-

Mail:mayanksingh2005@gmail.com

mailto:dr_maitreyee@gmail.com

