
International Journal of Hybrid Information Technology

Vol.8, No.6 (2015), pp.229-236

http://dx.doi.org/10.14257/ijhit.2015.8.6.22

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

A Billboard Manager Based Model That Offers Dual Features

Supporting Cloud Operating System And Managing Cloud Data

Storage

Rajesh Bose, Sandip Roy and Debabrata Sarddar

Ph.D. Scholar, Department of Computer Science & Engineering, University of

Kalyani, West Bengal, India

bose.raj0028@gmal.com, SANDIPROY86@gmail.com, dsarddar@rediffmail.com

Abstract

With an increasing focus on mobility and an innate desire to access data and

information efficiently and as quickly as possible, users are turning to technologies that

can service their needs with the minimum of fuss and a high degree of reliability. In this

paper, we have designed a proposed model that seeks to combine Billboard Manager with

an open source cloud operating system known as eyeOS that, together, can help achieve

the goals desired in a private cloud environment. The eyeOS is essentially a web-based

operating system that allows file read/write/update operations in cloud. The architecture

that we have proposed in this paper, involves a mix of the Internet, a private cloud zone,

and a Billboard Manager managing an eyeOS powered layer. In this model, any user

would be able to create, update, access, and delete almost any file from anywhere where

there is Internet connectivity options available. The Billboard Manager would enable

users to store or retrieve files across distributed storage nodes in a private cloud zone.

The architecture that we have proposed is aimed at providing a thin-client architecture to

any user with a PC, laptop, or a suitably-enabled mobile computing device, such that the

user is able to collaborate and communicate his/her work within a private cloud zone

from almost any location.

Keywords: Billboard Manager, eyeOS, Private cloud, Internet, Distributed storage

1. Introduction

Among the trending technologies powered by the Internet today, Cloud Computing has

begun opening up a new era. The production and proliferation of ever more cheaper and

more powerful processors have enabled to form data centers. A federation of data centers

interconnected via Internet is able to support "software-as-a-service" model - a computing

architecture which allows businesses and individuals alike, to rationalize operating costs

and maximize profits. With ever emergence of newer hardware technologies which are

able to sustain reliable network connectivity across vast regions, it becomes possible for

consumers to maintain their software and data on remote data centers, thus, minimizing

need to procure expensive hardware and software and maintain those in-house [1].

In this work, the primary advantage of the proposed system lies in that the same device

can provide a virtual desktop environment while allowing users to place and access data in

a cloud environment through secure means of connectivity. The dependency on hardware

resources can be significantly reduced and the potential to efficiently utilize energy can be

realized. The greatest benefit of this system, however, is that the only significant

investment that needs to be made is rather closely focused at the cloud level, and that

relating to Internet connectivity. With stable internet connectivity speeds, it would not be

difficult for users to enjoy similar degree of response times and data security as they

would enjoy directly working on their own computing devices. Regardless of what the

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

230 Copyright ⓒ 2015 SERSC

end-users use, with a standard computing device able to field modern web browsers, an

user would be able to work on any of his/her file, or even create new ones, without being

tied down to any particular location.

2. Cloud based Web Desktop and Cloud Storage

2.1. Cloud based Operating System

One new concept of operating environment is based on managing the processes and

threads of a single or cluster of virtual machines and servers within a computing-specific

environment. This is called cloud based operating system. The end user can use the light-

end of the cloud OS through a web browser to access preinstalled applications and

services made available. End users can use email, calendar, document and photo editor

and collaborative tools like chat and social networks through this virtual operating system.

Currently there are many cloud OS or web based operating environment available. For

example Glide OS, JoliCloud, iSpaces cloud computer, Slive OS, Zero PC, eyeOS etc.

Some of the available Cloud OS platforms are open source. We are going to use EyeOS

for our purpose.

EyeOS is one of the Open Source platforms designed as cloud OS or web based

operating environment. It provided all the benefits of a cloud OS, that is computing via

any device, may be a full-fledged desktop or laptop computer or a tablet computer or a

mobile phone. One can access applications and utilities, personal files like music and

video or documents just by logging into an eyeOS server through any browser. One can

upload files from any device and use word processor or pdf viewer or spreadsheet

application to get the work done. It is primarily written in PHP, XML, and JavaScript and

works as a platform for any applications written using eyeOS toolkit. By providing a full

desktop environment through any web browser and many handy utilities it enables the end

user to complete the computing task seamlessly even switching device while working is

not a problem.

2.2. Cloud Storage Definition and it’s Architecture

Cloud storage is a system that provides functions such as data storage and business

access. It assembles a large number of different types of storage devices through the

application software which are based on the functions of the cluster applications, grid

techniques, distributed file systems, etc. Cloud storage can be simply understood as the

storage in cloud computing, and also can be considered to be a cloud computing system

equipped with large capacity storage. Cloud storage system architecture mainly includes

storage layer, basic management layer, application interface layer and access layer.

2.2.1. GFS:

 2.2.1.1. System Architecture: Comprising a single master and a combination of

multiple servers and clients as shown in the following Figure 1, a GFS cluster takes shape.

Multiple servers are used to host large sections of files in blocks, or “chunks”. These

servers are mostly standard PC systems running Linux [2] as operating systems.

 2.2.1.2. GFS Master: A GFS master incorporates the directory structure which catalogs

the files and the metadata of the files listed in its directory. A single master policy is

adopted by GFS such that only one master is used to render services at the same time that

it takes to coordinate and synchronize between more than one masters. This translates to

savings in costs. A client only has to interact with the master for the metadata, and

communicates with the servers holding the “chunks”, directly for data other than the

metadata.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 231

 2.2.1.3. Chunk Server: Each fixed size chunk stored on a chunk server is sized to a

default of 64M. The GFS divides files into each such sized chunk which are identified

individually by uniquely identifiable 64 bit chunk handle. This globally unique identifier

is assigned by the master soon after a chunk has been created. A block is replicated on

three chunk servers leaving the users the option to choose different levels of replication

for separate name space regions of a given file. As would be evident from Figure 1, there

are four separate chunk servers with five distinct chunks labeled C0 through C4. Each of

which is saved on three chunk servers.

 2.2.1.4. Client: Every application that runs a GFS client code implements the GFS API.

This API enables each application, through the GFS client code, to establish contact with

the master and chunk servers to pass and/or retrieve metadata to/from the master.

However, it is the group of chunk servers which handle all communication containing

actual data.

Figure 1. GFS Architecture

2.2.2. Work Flow: The thin solid lines depict the information control exchanged

between the clients and the master, or between the master and the chunk servers, in Figure

1. The thick lines show the data flow between the client and the chunk servers. The

dashed lines represent the control information flowing between the clients and chunk

servers.

The clients, to begin with, compute a chunk index based on the structure of the

files and chunk size. Following which, the file name and the corresponding chunk

index is sent to the master. Next, the master sends the chunk handle and locations to

clients. Subsequently in the third stage, the clients then begin to transmit chunk

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

232 Copyright ⓒ 2015 SERSC

handle and the range of bytes to the nearest chunk server. In the last stage, the chunk

server sends the data to the client. Once the client is in receipt of the chunk locations

from the master and the interaction with the master ceases. The master does not save

the mapping based on the chunk server and the chunk. Instead, the master queries a

chunk server at master startup or whenever the chunk server joins the cluster, for its

record of chunks stored in the chunk server itself. At regular intervals, the master

establishes communication with each chunk server using a heartbeat message, to

transmit instructions and gather information on its state.

2.2.3. HDFS: Low cost and prone to failure hardware can work as a backbone of large

data set distributed across clusters of computers. In this model availability is achieved by

creating cluster of local computing and storage of thousands of computers called

commodity hardware scaled up to serve large data set. There are open-source software

projects which are developing reliable, scalable, distributed computing based on this

model. Apache Hadoop is one of the open source software framework which supports this

model. The basic of this model is the ability to detect and handle failure of the hardware at

the application layer to assure high availability on top of the cluster of the cheap

commodity machines.

Apache Hadoop framework consists of four basic modules: Hadoop common, Hadoop

Distributed File System (HDFS), Hadoop YARN, and Hadoop Map Reduce. Hadoop

Common contains utilities that are required by other modules. HDFS is a distributed file

system written in Java. This file system stores data in commodity machines and provides

high cumulative bandwidth throughout the cluster. Hadoop YARN (Yet Another Resource

Negotiator) manages the computing resource in a cluster so that user’s application can use

them as required. Hadoop Map Reduce is a programming model that handles large data

sets.

HDFS has Master/Slave architecture. The master in a HDFS Cluster is the NameNode

which sits on a central server. This server manages the file system namespace and controls

access to files by clients. The Data Nodes can reside in multiple computers in the cluster

and work as slave of the Name Node. Name Nodes control the Data Nodes and Data

Nodes run on the storage attached to it. The Client of the file system can access the name

space presented by the Name Node in normal ways like opening, closing and renaming

files. Inside Data Nodes, it splits files in blocks and controls the creation deletion and

replication of these files blocks which is transparent to the Client. These Blocks are

replicated for fault tolerance and this replication is managed by Name Nodes. Data Nodes

only follows the instructions from Name Nodes. As HDFS is written in Java, it is OS

independent and can run on any Java enabled OS, typically in an open source operating

system like Linux.

3. Related Work

Recently, much of growing interest has been pursued in the context of Web operating

system and cloud storage system. Some typical research projects and cases are presented

in the following. A complete outline on various researches and trends in Web operating

system and storage has been presented [3]. This paper introduces the concept of Web

operating system and cloud storage as well as the architecture of cloud storage. The

authors discuss on two fundamental technologies: distributed data store and complex

event processing, and workflow description for distributed data processing [4]. The

authors focus on, How EyeOS useful in Higher Education System. In this model, students

are accessing their own account at anywhere [5]. It looks like a regular desktop operating

system, but they can be accessed from anywhere.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 233

4. Proposed Work

With a view to providing a light-weight platform to execute applications, we propose

an architecture which would revolve around a Billboard Manager. The purpose of the

Billboard Manager would be to host an environment which would act as an operating

system as well as distribute read write operations across distributed nodes on the cloud.

The Billboard Manager itself would be based off of eyeOS. This revolutionary operating

system offers a cloud-based operating system environment that is powered by Apache,

MySQL and PHP (AMP). It is a web-based operating system and forms the basic structure

of our Billboard Manager. With the aid of this eyeOS engine, the Billboard Manager

would be able to receive and act on access requests from users and carry our user

authentication procedures.

In our proposed architecture, the link to our Billboard Manager's application usability

would be published on a SSL device. To begin with, the user hits the SSL link. He then

inserts his credentials for accessing the link and to view the remote desktop hosted by our

proposed Billboard Manager. In turn, the Billboard Manager would support user actions

of writing and reading files. The process of reading, displaying, managing, and then

storing back again on the cloud storage system would be handled directly by Billboard

Manager and its underlying eyeOS. The files are read when users log into the web-based

operating system from a browser. The icon of the file is displayed in the browser

supported by the web operating system.

To access this file, the request is channeled to another functional part of Billboard

Manager. The Billboard Manager receives the request, then locates the related information

from the files, and then calculates the location of the file within the distributed storage

nodes that are registered and connected to the Billboard Manager. Blocks of a file are

saved separately by the nodes, and these are sent back to the Billboard Manager which

then processes and joins the blocks together to form the original file that was stored in the

first place. The appropriate file association is identified by the web operating system

before it is started automatically for display.

To write the files, users log onto our proposed Billboard Manager using any compatible

browser supporting the URL published through the SSL device. The designated web

application is used to conduct necessary modifications, and to save files. The Billboard

Manager, subsequently, and upon being signaled to save the file, begins uploading the file

from the user's terminal. Next, the Billboard Manager identifies the storage blocks to

allocate and splits the file into sections. These sections are turned over to the storage

nodes registered with the Billboard Manager either singly, or in multiples as decided by it.

Depending on the integrity and proper formation of the file, the Billboard Manager would

complete the operation and confirm action taken. The response, success or failure, is

flashed by the web-based software application for the user to take onward action.

5. Algorithm

1) The Billboard Manager stores data related to cloud nodes which are connected to it.

The data comprises capacity of each node, IP address and shortest node distance from

the Billboard Manager.

2) The Billboard Manager manages the file system name-space and further computes the

mapping from files to storage nodes, and allocates storage nodes to save file blocks.

3) All the registered cloud nodes send periodic information to the Billboard Manager.

The information consists of channel capacities, and storage space available.

4) The information varies from time to time and is recorded by Billboard Manager to

maintain a historical data sheet from where it cans build-up index values.

5) The Billboard Manager begins be analyzing the request type, i.e., upload or download,

as initiated by a user.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

234 Copyright ⓒ 2015 SERSC

6) If the request type is found to be of upload, the Billboard Manager splits the file into

blocks.

7) Next, the Billboard Manager allocates storage space according the file size blocks and

the storage space available on its registered nodes. The split file blocks are uploaded

into the appropriate registered cloud nodes by the Billboard Manager.

8) To download a file, the Billboard Manager locates the related information related to

the file from its database.

9) It calculates and arrives at the information related to the location of the file within its

distributed storage nodes that are connected to it.

10) Blocks of the files that were saved separately and discretely in the nodes, are now

pulled in by the Billboard Manager which, subsequently, upon arrival of all the blocks,

proceeds to join them to form the file that was saved.

Figures 2. Proposed System Architecture

6. Conclusion

Our proposed architecture would be able to boost productivity and extend operating

efficiency to users with access to the Internet and web-browsing capabilities on their

computing devices. But in our paper, we have also expounded on what more could be

achieved using Billboard Manager coupled with eyeOS. While the benefits of a web-based

operating system are readily apparent, what is important is that the Billboard Manager

allows an efficient way of splitting and aggregating user data. By itself, the Billboard

Manager acts as a layer that allows seamless integration of nodes in a private cloud

environment such that the users are able to work individually or in teams to create, share

and collaborate information and data without the need to use higher end-user hardware

resources. Further, an user is assured of a secured method of accessing files. User

validation and authentication is a key component of our proposed architecture. Our

proposed model, offers a combination of security, portability and high-availability of data

in a private cloud environment managed by Billboard Manager, with the added light-

weight advantage of a web-based operating system in the form of eyeOS.

References

[1] Q. Wang, C. Wang, K. Ren, W. Lou and J. Li, “Enabling Public Auditability and Data Dynamics for

Storage Security in Cloud Computing”, IEEE Transactions, vol. 22, (2011), pp. 847-859.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

Copyright ⓒ 2015 SERSC 235

[2] S. Ghemawat, H. Gobioff and S. T. Leung, “The Google File System”, Proceedings of the 19-22nd ACM

Symposium on Operating Systems Principles, New York: ACM Press, (2003), pp. 29-43.

[3] K. Liu and L.-J. Dong, “Research on Cloud Data Storage Technology and Its Architecture

Implementation”, Procedia Engineering, vol. 29, (2012), pp. 133- 137.

[4] S. Tsuchiya, Y. Sakamoto, Y. Tsuchimoto and V. Lee, “Big Data Processing in Cloud Environments”,

FUJITSU Sci. Tech. J., vol. 48, (2012), pp. 159–168.

[5] A. P. Patil and V. S. Ahire, “Use of EyeOS in Higher Education System for Rural Area Students”,

IJSER, vol. 4, (2013), pp. 1103-1105.

Authors
Rajesh Bose is currently pursuing Ph.D from Kalyani University.

He is an IT professional employed as Senior Project Engineer with

Simplex Infrastructures Limited, Data Center, Kolkata. He received

his degree in M.Tech. in Mobile Communication and Networking

from WBUT in 2007. He received his degree in B.E. in Computer

Science and Engineering from BPUT in 2004. He has also several

global certifications under his belt. These are CCNA, CCNP-BCRAN,

and CCA(Citrix Certified Administrator for Citrix Access Gateway 9

Enterprise Edition),CCA(Citrix Certified Administrator for Citrix

Xen App 5 for Windows Server 2008).His research interests include

cloud computing, wireless communication and networking.

Sandip Roy is currently pursuing Ph.D from University of

Kalyani. He is an Assistant Professor in the Department of

Information Technology, Brainware Group of Institutions, Kolkata,

West Bengal, India. He has completed M.Tech in Computer Science

& Engineering from HIT under WBUT in 2011. He has also done his

B.Tech in Information Technology from WBUT in 2008. His

main areas of research interest are Cloud Computing, Data Structure

and Algorithm.

Debabrata Sarddar, Assistant Professor in the Department

of Computer Science and Engineering, University of Kalyani,

Kalyani,Nadia, West Bengal, INDIA. He has done PhD at Jadavpur

University. He completed his M. Tech in Computer Science &

Engineering from DAVV, Indore in 2006, and his B.E in Computer

Science & Engineering from NIT, Durgapur in 2001. He has

published more than 75 research papers in different journals and

conferences. His research interest includes wireless and mobile

system and WSN, Cloud computing.

International Journal of Hybrid Information Technology

Vol.8, No.6 (2015)

236 Copyright ⓒ 2015 SERSC

