
International Journal of Hybrid Information Technology

 Vol.8, No. 5 (2015), pp. 63-72

 http://dx.doi.org/10.14257/ijhit.2015.8.5.07

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Research on Detecting Design Pattern Variants from Source

Code Based on Constraints

Li Wen-Jin
1
, Pan Ju-long

2
 and Wang Kang-Jian

3

1
College of Modern Science and Technology; China Jiliang University;

Zhejiang Hangzhou
2,3

College of Information Engineering; China Jiliang University; Zhejiang

Hangzhou
1
liwenjin@cjlu.edu.cn,

2
pjl@cjlu.edu.cn,

3
Kangjian.wang@cjlu.edu.cn

Abstract

Identifying design patterns from source code is one of the most promising methods for

improving software maintainability, reusing experience and facilitating software

refactoring In the process of design pattern application, different methods of instantiation

usually lead to generation of pattern variants. The detection of these variants from source

code is a key point and a challenge of reverse engineering. In this paper, we propose an

approach of detecting design pattern variants from source code based on constraints.

More specifically, we first propose the method to describe the design pattern variants

based on constraints, input the constraint conditions of design patterns into the library of

pattern features, conduct static analysis on source code including analysis of control flow

and data flow to obtain representations of pattern participants in the source code,

conduct matching with the predicate matching tool, and then merge the instances by

clustering analysis and obtain the final collection of pattern instances. Finally, a tool of

extracting design pattern variants from source code is implemented and the feasibility of

our approach is verified through the results of running it on three open source software.

Keywords: design pattern, variants, constraints, clustering analysis

1. Introduction

Design pattern [1] is a high-level abstraction of object-oriented design. From the

perspectives of programmed understandability and software maintenance, a design pattern

provides the role information of all classes in the pattern structure as well as the

information about the relations among constituent elements of the pattern and the

relations between these elements with other parts in the system. Therefore, the extraction

of design patterns from the source code remains a key issue in reverse engineering. Since

GOF offers only the purposes and basic design methods of each design pattern, software

engineers tend to change the basic implementation methods while ensuring consistent

purposes which we called design pattern variants to improve the applicability. How to

effectively identify these pattern variants is of crucial importance for the understanding of

design of legacy system and a difficulty of detecting design patterns from the source code.

In the pattern detecting process, software engineers often choose to enhance the

constraints of identification to improve recognition accuracy. However, the enhancement

will increase the omission rate, which means that some candidates of pattern instances

may be missed out due to the enhanced constraints. In order to reduce such omission rate,

weakened constraints are usually chosen, which adversely reduces the recognition

accuracy. Some instances that are not candidates for design pattern will also be identified.

Therefore, how to achieve a balance between the omission rate and the recognition

accuracy is a rather difficult task to be tackled [2].

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

64 Copyright ⓒ 2015 SERSC

This paper proposes a constraint-based method to identify variants of design pattern in

the source code by decomposing the constraints of design pattern into basic constraints

and variant constraints. The basic constraints represent prerequisites for design pattern

instances, while the variant constraints vary based on different implementation methods

of design pattern. In this paper, we attempt to respectively match basic constraints and

variant constraints with the source code representation, summarize the matching results,

and the candidates which satisfy all of the basic constraints and one of the variant

constraint is design pattern instances. Compared with the method that use relaxed

constraints to improve the recognition rate, the approach proposed in this paper is an

attempt to improve the recognition accuracy of design pattern without affecting the

omission rate.

The structure of this paper is organized in the following sequence. Related work is first

introduced; forms and implementation methods of variants are then illustrated by taking

Adapter and Composite as examples; meta model of design pattern is defined; formal

methods of design pattern is then explained by giving examples of structural design

patterns; matching algorithm for the design pattern is presented; and finally the paper is

concluded with experimental results, conclusions and future work.

2. Related Work

Design pattern detection as an important branch of design discovery, has been

attracting widespread attention in the academic community. Related work has been

discussed in [3-4], so there is no need to repeat here. This paper focuses on discussing

researches of detecting design pattern variants.

Nikolas Tsantalis [5] adopted similarity scoring method to detect instances of design

patterns. This method is designed to represent information of target system and design

pattern, including association and inheritance relations between classes, abstract classes,

object creations, abstract method invocations etc. into matrices as the first step. Then, the

similarity scoring algorithm is used to calculate similarity between subsystems and

corresponding pattern matrices. Finally, a collection of instances of a design pattern is

constituted by subsystem classes that have the highest similarity with pattern roles. The

characteristic of this method lies in its support for detecting pattern variants from the

target system. Since it only relies on static analysis to identify pattern instances and

provides only a collection of instance candidates for the behavioral design patterns, we

should continue to combine it with dynamic analysis to verify whether these instances

have been accurately identified.

Ghulam Rasool [6-7] analyzed the purposes of Abstract Factory, Decorator, Adapter

and Proxy and possible variants that may arise during the process of implementation; used

feature types to define these variants and Java language to implement every type of

variant; and finally adopted the mainstream design pattern detection tool to test the

identification of these pattern variants. The work in the paper focuses more on defining

variants of design pattern than on identifying these variants.

K. Stencel and P. W. egrzynowicz [8-9] analyzed the possible pattern variants of three

patterns, singleton, factor method and abstract Factory; offered the detecting standards of

these three patterns in the form of predicate; and combined the structural analysis, control

flow analysis and data flow analysis to implement the process of identifying pattern

instances.

Alexander Binunv [10-11] improved design pattern description and put forward two

models: Super type forwarder and Decuples. Super type forwarders include design

patterns of Decorator, Proxy and Chains of Responsibility that forward invocations to an

identical “parent”. While Decuple contains the design patterns of Observer, Composite,

Bridge, State and Strategy that forward an invocation to all dependent objects. The

methodology discussed some constraints that may lead to faulty instances such as

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

Copyright ⓒ 2015 SERSC 65

attribute maintenance and status change, etc. and effectively combined the structural

constraints with behavioral constraints when searching for pattern instances to improve

the recognition accuracy of patterns. In addition, the methodology also discussed several

reasons that effect the recall rate. For example, some relevant role players are not

identified because they are situated among codes that have not been analyzed; the

attribute values of some role players are too strict; and some relational closures are

ignored due to insufficient analysis etc. To improve the recall rate of pattern recognition,

some stricter constraints are relaxed in the process of searching for pattern instances.

In comparison with the foregoing work, the work in this paper mainly is embodied in

the following aspects:

(1)It proposes a general method to define variants of design pattern and offers the meta

model for design pattern definition.

(2)It combines control flow analysis and data flow analysis to analyze the source code

and acquires more behavioral information that is crucial to search for pattern variants.

(3)It uses first-order logic tools to match the information library of source code with

the library of pattern features, provides instances collection of each design pattern, takes

the standard that instances of homologous constraints are similar and merges the instances

by clustering analysis, which improves the recognition accuracy.

3. Examples of Design Pattern Variants

The existence of design pattern variants is an important factor affecting the recognition

accuracy and omission rate. The principle of constraint relaxation is to remove some

constraints on pattern “variants” and retain the most essential features of the pattern,

which leads to the decline of recognition accuracy. This paper distinguishes the most

essential features of a pattern from the features associated with variants, that is, to divide

the forms of a design pattern into basic constraints and variant constraints. The

recognition standards of a pattern instance are to satisfy the most essential features as well

as features of a certain variant. The most essential features here are in fact equivalent to

the features after constraint relaxation. With variant features as constraints, we can filter

instances that satisfy essential features and thus significantly improve the recognition

accuracy without increasing the omission rate.

We take Adpater pattern and Composite pattern as examples to introduce instances of

pattern variants in the following:

Example 1: Adapter Pattern

Two common design methods of Adapter are generic class adapter and object adapter.

The former uses multiple inheritances to implement the process of adaptation. The

advantages of this implementation method lies in that Adapter call method of Adoptee

conveniently, while the disadvantage lies in that for languages without private inheritance

mechanism such as Java, using multiple inheritance will expose the interface of Adoptee

to the Client. Therefore, this implementation method usually appears in the design

implemented in C++ language. The latter method designs Adapter and Adoptee into an

association relation to implement the adaptation process, commonly used in

object-oriented languages. The advantage of this implementation method is the

decoupling of the relationship between Adapter and Adapee, while the disadvantage is

that the calling is less convenient than the former method.

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

66 Copyright ⓒ 2015 SERSC

The example of class adapter (C++)：

Class Adapter: public Target, private

Adaptee{

 Public void request ()

 {

 ….

 Specific Request () ;}…}

The example of object adapter (Java) ：

Class Adapter extends Target

 {

 Private Adaptee adaptee;

 Public void request ()

 {

 Adaptee. specific Request()}

Example 2: Composite Pattern

The variants of Composite pattern are mainly manifested in whether to put the “Child”

operation into the “Component”. During the process of design, we choose to put it in the

Component or in the Composite according to different scenarios. The advantage of putting

Child operation in the Component lies in that Clients can treat Leaf and Composite

transparently and have no need of concerning whether each Component is “Leaf” or

“Composite”. However, the disadvantage is that the Child operation will be taken to the

implementation process of Leaf classes, so in the implementation of Leaf classes it should be

considered that how to handle the situation when add/remove operation is invoked. If we put

the Child operation in the Composite, the advantages and disadvantages are just the opposite.

Example of “parent-based” Composite：

Public abstract class Component {

 Private Set<Component> children;

 Public void add (Component c)

 {

 Children.add(c);

 }

 Public void remove (Component c) {

 Children.remove(c);

 }

 Public abstract void operation ();

}

Example of “child-based” Composite：

Public interface Component {

 Void operation () ;}

Public class Composite implements

Component {

 Private Set<Component> children;

 Public void add (Component c) {

 Children. Add(c) ;}

 Public void remove (Component

c) {

 Children. Remove(c);

}

In the process of actual software development, variants of each pattern are all possible to

show up. If we can identify the variants as many as possible and at the same time decide

which variant it belongs to, it will be of crucial importance to the understanding of design.

4. Definition and Detection of Variants

To detect variants, we need to describe pattern and its variants, and then analyze the source

code to obtain the internal representations, and finally match the internal representations with

the formalized results of patterns and conclude the final results.

The patterns and their variants is formalized in the following two steps: 1) define the meta

model which describes a collection of relations among pattern participants; 2) analyze the

features of each pattern based on the meta model, find out which features are essential to

satisfy and which features belong only to a certain variant. Formalize the essential features

and relevant features of variants into the form of predicate.

The variants of design patterns are extracted from source code in the following steps:

firstly analyze the source code and represent the information of source code into an

information library of participants, match the information library with pattern constraint

predicates, then filter and screen on the matching results.

The entire process of defining and detecting design pattern variants is shown in Figure 1.

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

Copyright ⓒ 2015 SERSC 67

Figure 1. The Pattern Detection Process

4.1. Metal Model Definition

As the basis for the representation of design pattern and pattern variants, we describe

features associated with the recognition of design patterns by the Meta model and describe

them respectively according to the relations among class, method, attribute, method

parameter.

1. Constraint of class relationship

(1) Inherit (class A × class B): Class A inherits Class B, which is manifested by the

inheritance relationship with Class B in the declaration of Class A;

(2) Association (class A × class B): Class A associates with Class B, manifested by Class A

possessing one attribute of Class B;

(3) Aggregation (class A × class B): Class A aggregates with Class B, manifested by Class

A being associated with Class B and Class A having created the instances of Class B at the

initial stage;

(4) Delegate (class A × class B): Class A delegates Class B, manifested by all public

methods of Class A containing the invocation of one or several methods of Class B;

2. Constraint of method relationship

Invoke (method A × method B): method A invokes method B.

3. Constraints of method-class relationship

(1) has Method (class A × method B): method B is a method of class A;

(2) Has Param (method A × class B): method A contains parameters of class B;

(3) Return Type (method A× class B): the return type of method A is class B.

4. Constraints of attribute-class relationship

(1) Is Type (attribute A × class B): the class type of attribute A is class B;

(2) Has Attr (class A × attribute B): class A contains attribute B.

4.2. Pattern Description

Definition 1: The function Participant (V) returns the collection of all participants appeared

in a constraint predicate V.

Firstly, we define a “complete collection” of participants: that is, all participants mentioned

in the feature description of a pattern are the elements of the complete collection”. Then, we

describe the predicates of basic constraints according to the basic features of the pattern, and

also describe the predicates of variant constraints according to the features of each variant,

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

68 Copyright ⓒ 2015 SERSC

thus forming a complete set of pattern description. On this basis, we use the triplet <M, N, K>

to describe a pattern.

.M represents the collection of all participants, including type, method, attribute etc.;

.N represents the basic constraints of a pattern which describes the necessary conditions

that the pattern must satisfy and satisfies participant (N) ⊆ M;

.K represents the collection of variant constraints of a pattern which describes the

necessary conditions that each variant should satisfy and satisfies T∈ K: participant (T) ⊆

M. The number of elements in the collection should be more than one, namely, the pattern

should have at least one variant.

There are some differences between the variant mentioned in this paper and the variant

mentioned in GOF [1]: the pattern variant mentioned in GOF [1] is defined as another form of

representation of a pattern; while for the convenience of identification, all forms of

representation of a pattern are all regarded as variants of the pattern in this paper. This leads

to no difference in terms of output results, only that we hope to treat the forms of

representation without discrimination for the convenience of description and identification.

Below we take Adapter and Composite as examples to illustrate the description method of

patterns.

1. Adapter Pattern

The operation of Adapter is completed by Adaptee. Therefore, Adapter and Adaptee should

satisfy a delegate relationship, and Adapter should inherit from Target. These are the two

basic constraints of Adapter pattern. Considering previous implementations of variants,

Adapter should inherit from Adaptee for class Adapter; while Adapter and Adaptee are in

association relationship for object Adapter. Therefore, the basic constraints and variant

constraints of Adapter are as follows.

The participant collection :{ Adapter, Target, Adaptee, attribute A}

The basic constraints: inherit (Adapter × Target) delegate (Adapter × Adapteee）

The variant constraints for class Adapter: inherit (Adapter × Adaptee)

The variant constraints for object Adapter: attribute A: has Attr (Adapter × attribute A)

 is Type (attribute A × A daptee)

2. Composite Pattern

Composite constructs a “tree” structure through the relations about Component, Leaf and

Composite. Therefore, the inheritance relationships between Component and Leaf and

between Component and Composite are necessary. When the operation of child nodes is

implemented in the Component class (known as the “parent-based” Composite), there is a

aggregation relationship between Component and Component. When the operation of child

nodes is implemented in the Composite class (known as “child-based” composite), there is a

aggregation relationship between Composite and Component. Therefore, basic constraints

and variant constraints of Composite are shown as below.

The participant collection :{ Leaf, Component, add Child, remove Child, and get Child}

The basic constraints: inherit (Leaf × Component) inherit (Composite × Component)

The variant constraints for “parent-based” Composite: aggregation (Component ×

Component) add Child: has Method (Component × add Child) has Param (add Child

× Component) remove Child: has Method (Component × remove Child) has Param

(remove Child × Component) get Child: has Method (Component × get Child)

return Type (get Child × Component)

The variant constraints for “child-based” Composite: aggregation (Composite ×

Component) add Child: has Method (Composite × add Child) has Param (add Child ×

Component) remove Child: has Method (Composite × remove Child) has Param

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

Copyright ⓒ 2015 SERSC 69

(remove Child × Component) get Child: has Method (Composite × get Child) return

Type (get Child × Component)

4.3. Pattern Matching

The methodology of pattern matching in this paper is to input the features of participants, basic

constraints and variant constraints of the pattern to be identified into a library of pattern features,

then analyzes the source code to generate the representations of pattern participants, use predicate

matching tool to carry out the matching work, and finally filter the matching results and get the

final collection of pattern instances.

Agreement: each pattern, each constraint and each variant constraint is assigned with a unique

identifier to identify it.

Definition 2: The function dpid(N) returns the unique identifier of the pattern that constraint N

belongs to.

We use the two-tuple <vid, insts> to represent an instance that satisfies the specified constraints.

Among them, vid represents the unique identifier of the constraint; while insts represents a

collection of the two tuple <pv,ps>,which describe the mapping relation between constraint

participants and participant instances. pv represents the participant in the constraint, while ps

represents the instance corresponding to the pv participant.

The matching begins from constraints (including basic constraint and variant constraint), and

we need to gradually merge the instances that satisfy the constraints according to the clustering

approach and finally deduce the pattern instances. Therefore, we should know which constraint

instances are “relevant” and give the following definition.

Definition 3 Homologous Constraint instance: The constraint instances A and B are

homologous; and mark A∽B only when dpid (A)=dpid (B) ∧ <pvi,psi>∈A.insts,<pvj,psj>∈
B.insts: pvi=pvj  psi=ps.

Because homologous constraint instances have no transitivity (namely, A∽B and B∽C cannot

reach the conclusion A∽C), we extend the definition of multiple homogenous instances: R1,

R2……and Rn are homologous, when and only when 1≤i, j≥n: Ri∽Rj. According to the

definition, two and multiple homogenous constraint instances can serve as the basis for deducing

pattern instances.

Pattern detecting steps:

1. Preparation Step: analyze the participants of the pattern to be identified, define the predicates

of basic constraints and variant constraints according to known variants of the pattern, assign a

unique identifier to each basic constraint and each variant constraint, and then input the

information into the library of pattern features. Data structures recorded in the library of pattern

features are described by domain model as shown in Figure 2.

2. Step of Source Code Analysis: analyze the source code, ignore all information irrelevant to

identification, identify the participants in the source code and the relationship among participants,

input them into the information library of source code, and use the domain model to describe the

organization mode of information as shown in Figure 3. Dynamic analysis needs more complete

testing cases, which is a difficult issue for the majority of software system. In this paper, we use

the method of static analysis to analyze the control flow and data flow and thus extract the data of

method invocation. Specific methods have been discussed in [4], so we will not explain them

again here.

3. Matching step: take the constraint predicate as a unit, use first-order logic tools to match the

information in the library of source code with the information in the library of pattern features, get

a collection of instances of each constraint. In the matching step, we do not care whether the

constraint itself is a basic pattern constraint or a variant constraint, but care that which participants

in the information library of source code are matched with the constraints in the library of pattern

features.

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

70 Copyright ⓒ 2015 SERSC

4. Filtering step: use the clustering method to merge the pattern candidates based on the

standard that homologous constraint instances are similar. There are several clusters as follows:

1) Contain a basic constraint + a variant constraint: merge the participants of two instances, get

a complete collection of instances of pattern participants, and output the information according the

method <unique pattern identifier, unique variant identifier, pattern instance >

2) Contain a basic constraint + several variant constraints: namely, both two variants satisfy the

constraint conditions, which mean that the definition of pattern variant constraint has ambiguity;

print a warning of ambiguity.

3) Contain 0 basic constraints + one to multiple variant constraints: do not satisfy the pattern

conditions, throw them away.

4) Contain only one basic constraint: they may be variants that are not defined in the library of

pattern features, and may not be the instances of the pattern. Under this circumstance, the cluster

is handed over to the software engineer for judgment.

basic Constraint

Constraint Predicate

+identifier
+predicate

Variant constraint

design pattern

+pattern identifier

participant

Class participant

+className

Attribute participant

+attributeName

Method participant

+methodName

+constraintPredicate

+belongsConstraints

1

0..1

+constraintPredicate

+belongsConstraints

1

0..1

+belongsPattern

+variant constraint

1

1..*

+belongsPattern

+basic Constraint

1

1

dependencyActors

+participants

1..*

Figure 2. Domain Model for the Library o Pattern Features

Type

+typeName
+modifier

ReturnType

+isVoid

Attribute

+attributeName
+modifier

Method

+methodName
+modifier
+isConstructor

Parameter

+paramName
+isFinal

+type

0..1

+returnType 1

+invokes 0..*

+extends|implements

0..*

+type +containsAttr

1 0..*

+params

0..*

+type

1

+methods

+belongsType

0..*

1

Figure 3. Domain Model for the Information Library of Source Code

5. Tool Development and Experimental Results

We have developed an extraction tool DPET4V (Design Pattern Extract Tool for Variant)

according to the approach described in this paper. The extraction tool uses the JJ Tree[12] of Java

to analyze Java source codes, analyzes and builds the information library of source code on the

basis of AST; represents the information library of source code and the library of pattern features

into the form of predicate; uses the open source tool Drools [13] to perform rule matching; and

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

Copyright ⓒ 2015 SERSC 71

finally uses the Apache Mahout[14] to merge the results into clusters and generates the result

report.

 Experimental results are measured according to following standards:

1) True Positive (tp for short): the number of instances that are manually verified as true in

the result report;

2)Recall (rec for short): the number of instances that are manually verified as true in the

result report/the number of instances actually existing in the software system;

 3) Total (tot for short): the number of instances contained in the result report;

4) Precision (pre for short): the number of instances that are manually verified as true in the

result report/the number of instances in the result report;

5)Total Precision (tpre for short):for a concrete pattern, the number of its instances manually

verified as true/the number of its instances in the final report;

6)Total Recall (trec for shot): for a concrete pattern, the number of its instances manually

verified as true /the number of its instances actually existing in the software system.

To obtain the analytical results, we choose the Composite pattern and Adapter pattern as

examples, detect them from the JavaIO, AWT in the open source library JDK5.0, and a open

source modeling tool ArgoUML. The results are shown as Table1.

Table 1. Experiment Result 1

 JavaIO AWT ArgoUML

t

ot

t

p
pre

re

c

t

ot

t

p
pre

re

c

t

ot

t

p

p

re

r

ec

Compo

site
0 0 100

1

00
2 2 100

1

00
3 2

6

7

1

00

Adapte

r
2 2 100

1

00

1

0
2 11

1

00

5

0
6

1

2

1

00

Take the Total Precision and Recall as evaluation criteria, and compare the identifying results

of DPET4V with PINOT [15], PTIDEJ [16], SSA [5] and DPJF [9]. The results are shown as

Table2.

Table 2. Experiment Result 2

 PINOT PTIDEJ SSA DPJF DPET4V

tpre
t

rec
tpre

t

rec

tpr

e

t

rec
tpre

t

rec
tpre

tre

c

Compo

site
20

7

5
--

-

-

10

0

2

5
100

5

0
80

10

0

Adapte

r
15

1

00
13

1

00
12

1

00
14

1

00
16

10

0

For the identification of Composite pattern, DPET4V maintains 80% recognition accuracy

under the condition of 100% Recall and shows some advantages compared with other tools. DPJF

uses appropriate formal method for Composite pattern and achieves 100% recognition accuracy,

but there is still a pattern instance missed out.

For the identification of Adapter pattern, even though DPET4V shows a slim advantage in

recognition accuracy, the rate reaches only a relatively low level of 16%. It is because that the

pattern features of Adapter, Mediator and Bridge are delegate relation and the instances that

satisfy the delegate relation far outnumber the actual existing instances. How to filter these

instances or how to define these patterns more accurately is a topic worthy of further studies.

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

72 Copyright ⓒ 2015 SERSC

6. Conclusion and Future Work

This paper presents an approach to extract the design pattern variants based on constraints. This

approach improves the recognition accuracy of design pattern instances while maintaining the

omission rate unchanged and recognizes which patterns or variants the design pattern instances

belong to, which is of crucial importance to design recovery of software system. Meanwhile, the

work of this paper also shows certain significance for extracting anti-patterns and restructuring

software architectures.

For the work in this paper, further researches need to be done: 1) due to different ways of

implementation, there are many varieties of patterns, so it is difficult for software engineers to

enumerate them one by one, thus leading to the result that some recognition still needs human

judgment. How to reduce or even remove human intervention is a topic in need of further

discussion. 2) How to improve the formal methods of design patterns and enable them to represent

various variants of patterns more flexibly is also an issue for further research.

Acknowledgment

This research was supported by a grant of the Fund of the National Natural Science

Foundation of China (No.6110016), the Project of Education Department of Zhejiang

Province (No. Y201018837). The authors would like to express their sincere appreciation to

these supports.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable Object- Oriented

Software”, Addison W- esley, Menlo Park, CA, (1995).

[2] F. A. Fontana, M. Zanoni, A. Caracciolo, “A benchmark platform for design pattern detection”, // PATT

ERNS 2010, The Second International Conferences on Pervasive Patterns and Applications,(2010), pp.

42-47.

[3] F. Tie, L. Wen-jin, Z. Jia-Chen, “Research on Design Pattern Detection Technology Towards Java”,

Computer Engineering and Applications, vol. 41, no. 25, (2005), pp. 28-33.

[4] L. Wen-jin and W. Kang-jian, “Research on detecting and validating design pattern instances from source

code”, Application Research of Computers, vol. 29, no. 11, (2012), pp. 4199 -4205.

[5] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and S. T. Halkidis, “Design pattern detection using

similarity scoring”, IEEE TSE, vol. 32, no. 11, (2006), pp. 896–909.

[6] G. Rasool and H. Akhtar, “Discovering variants of design patterns”, Journal of Basic and Applied Scientific

Research, vol. 3, no. 1, (2013), pp. 139-147.

[7] G. Rasool and P. Mader, “Flexible Design pattern detection based on feature types”, //Automated Software

Engineering (ASE), 26th IEEE/ACM International Conference, (2011), pp. 243 - 252.

[8] K. Stencel and P. Wegrzynowicz, “Detection of diverse design pattern variants”, // Pro. of the 2008 15th

Asia-Pacific Software Engineering Conference, Washington, DC, USA: IEEE Computer Society, (2008),

pp. 25–32.

[9] K. Stencel and P. Wegrzynowicz, “Implementation variants of the singleton design pattern”, On the Move to

Meaningful Internet Systems: OTM 2008 Workshops, (2008), pp. 396-406.

[10] A. Binun, G. Kniesel, “Joining forces for higher precision and recall of design pattern detection”, CS

Department III, Uni. Bonn, Germany, Technical report IAI-TR-2012-01, (2012).

[11] A. Binu and G. Kniesel, “DPJF - Design Pattern Detection with High Accuracy”, CSMR (2012), pp.

245-254.

[12] JavaCC. https://javacc.java.net/

[13] Jboss Drools. http://www.jboss.org/drools/

[14] The Apache Mahout Project.http://lucene.apache.org/mahout/.

[15] N. Shi and R. A. Olsson, “Reverse engineering of design patterns from java source code”, in ASE’06.

Washington, USA: IEEE Computer Society, (2006), pp. 123–134.

[16] Y. G. Guéhéneuc, “A reverse engineering tool for precise class diagrams”, in CASCON’04, IBM Press,

(2004), pp. 28–41.

https://javacc.java.net/
http://www.jboss.org/drools/

