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Abstract 

In investment process, investors usually have the characteristic of loss aversion. This 

paper discusses the portfolio selection problem with loss aversion under uncertain 

environment. Return rates are described as uncertain variables; uncertain measure is 

used to measure the uncertainty. The optimal model of maximizing expected utility based 

on loss aversion is established. When return rates are special uncertain variables, the 

model can be transformed to the crisp one, for generic uncertain return rates, hybrid 

intelligence algorithm integrating genetic algorithm and 99-method is designed to solve 

the model. Finally, numerical example is given to illustrate feasibility and validity of this 

method. 
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1. Introduction 

The core problem of portfolio selection is return and risk. In 1952, Markowitz 

initialized the mean-variance model of portfolio selection [1]; the variance of investment 

return was used to measure the risk in the model, which opened up the era of financial 

quantitative analysis. Since then, many scholars devoted themselves to the research of 

portfolio selection and proposed many practical models. 

But the classical research of optimal model did often not consider the investors' 

psychology in the actual decision-making process, Kahneman and Tversky researched 

human action from the angle of cognitive psychology, proposed the famous Prospect 

Theory in 1979[2]. This theory considered that the investment actual decision-making 

process was affected by emotion, cognition and so on factors. They initialized the S-

utility function which can replace the traditional concave utility functions [3]. S-utility 

function emphasized that the investors had a subjective reference value, when the price 

exceeded the reference value, the investors were risk avoidance, and when the price was 

inferior to reference value, the investors were risk-seeking. And the reaction of investors 

was different when they face the same gain and loss; the pain produced by loss is far 

greater than the happiness brined by gain that was loss aversion feature. In this paper, we 

used this theory to build the optimal model of portfolio selection based on loss aversion 

under uncertain environment, for some special uncertain variables, the model can be 

changed to crisp one, for generic uncertain variables, hybrid intelligence algorithm 

integrating genetic algorithm and 99-method is designed to solve the model. 

 

2. Preliminaries 

Uncertainty theory was founded by Liu [4] in 2007. Nowadays uncertainty theory has 

become a branch of mathematics based on normality, monotonicity, self-duality, 

countable sub additively, and product measure axioms. An important concept in 

uncertainty theory is uncertain measure that is used to measure the belief degree of an 
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uncertain event. In order to better understand this paper, we first introduce some concepts 

about uncertainty theory. 

Definition 1. Let   be a nonempty set,   a ebraa lg  over  , each element   in 

the ebraa lg    is called an event. Uncertain measure }{M  is a function from   

to [0, 1]. }{M  indicates the belief degree that   will occur. Liu [4] proposed the 

following five axioms: 

Axiom 1 (Normality Axiom) 1}{ M  for the universal set . 

Axiom 2 (Monotonicity Axiom) }{}{
21

 MM  whenever
21

 . 

Axiom 3 (Self-Duality Axiom) 1}{}{ 
c

MM  for any event . 

Axiom 4 (Countable Subadditivity Axiom) for every countable sequence of 
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Axiom 5 (Product Measure Axiom) Let 
k

  be nonempty sets on which 
k

M  are 

uncertain measure, nk ,,2,1  ,  respectively.  Then the product uncertain measure M  
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Definition 2.  Let    be a  nonempty set,   a  ebraa lg  over  , and  M  an 

uncertain measure. Then the triplet ),,( M   is called an uncertainty space.  

Definition 3. An uncertain variable is a measurable function   from an uncertainty 

space ),,( M to the set of real numbers, i.e., for any Borel set B of real numbers, the 

set  })(|{}{ BrrB    is an event. 

Definition 4. The uncertainty distribution   of an uncertain variable   is 

defined by }{)( xMx    for any real number x  . 

Example 1 An uncertain variable   is called linear if it has a linear uncertainty 

distribution 
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denoted by  ),( baL  where a  and b   are real numbers with ba  ,  which can be 

shown as Figure 1. 

 

 

Figure 1. Linear Uncertainty Distribution 

The inverse uncertainty distribution of linear uncertain variable ),( baL  is 

ba  


)1()(
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Example 2 An uncertain variable   is called zigzag if it has a zigzag uncertainty 

distribution 
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denoted by ),,( cbaZ , where cba ,,  are real numbers with cba  ,  which can be 

shown as Figure2. 

 

 

Figure 2. Zigzag Uncertainty Distribution 

The inverse uncertainty distribution of zigzag uncertain variable ),,( cbaZ  is  
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Example 3 An uncertain variable   is called normal if it has a normal uncertainty 

distribution. 
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denoted by ),N e（  ,  where e  and    are real numbers with  0 ,  which can be 

shown as Figure 3.  

 

 

Figure 3. Normal Uncertainty Distribution 

The inverse uncertainty distribution of normal uncertain variable ),( eN  is 
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In the former research of portfolio selection, the return rates were often described as 

random variables or fuzzy variables [6-8], however, in many cases the portfolio selection 

return rates are neither like random nor like fuzzy variables. In this paper, we use 

uncertainty theory and describe return rates as uncertain variables, establish the optimal 

model to maximize expected utility based on loss aversion. The psychological study 

shows that the investors are more sensitive for the wealth reduction relative to the wealth 

increment, that is, the investors are loss aversion. 

In the traditional model of maximizing expected utility, the investor's utility is usually 

the function of final wealth,  and has not dealed with the wealth change. But Kahneman 

and Tversky discovered that investors most cared the change of final wealth relative to 

some reference value that is loss and increment of wealth. And investors more cared the 

loss when the final wealth was inferior to some reference value, so, the investors have the 

characteristic of loss aversion [9, 10]. 

Kahneman and Tversky defined the S-utility function as the following piecewise power 

function. 
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where 10   , 1 , 
0

w  is the objective reference value, w  is the final 

return, 
0

w  can be investors’ initial wealth or the investors hoping achieved level or 

riskless rate, etc. 
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3. Optimal Model of Portfolio Selection Based on Loss Aversion 

Supposing there are n  kinds of investment projects, ),,,(
21 n

xxxx   is decision 

vector, 
i

x represents the investment proportion for the thi  project,  
n

 ,,,
21
    

is the vector that is composed of return rates of n  kinds of investment projects,  each 

 ni
i

,,2,1   is an uncertain variable, 




n

i

i
x

1

1 ,  riskless rate 
f

   is objective 

reference value,  the optimal model of maximizing expected utility can be described as 

model (1) 
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After repeated test, using nonlinear regression analysis, we can know that 88.0 , 

25.2   best match investor’s loss aversion mind[3]. In this paper, we let   88.0 , 

25.2 , 1  . 

 

4. Crisp Equivalent Model 

For some special uncertain variables, we can transform the model (1) into crisp 

equivalent model; Liu [13] gave the following theorems. 

Theorem 1 Assume the objective function ),,,,(
21 n

xf     is strictly increasing 

with respect to 
m

 ,,,
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 ,,,
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Theorem 2 Assume the constraint function ),,,,(
21 n
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  }0),,,,({
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Theorem 3   Assume that 
1

  and 
2

  are independent linear uncertain variables 
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The produce of a linear uncertain variables ),( baL  and a scalar number 0k  is also 
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For model(1), supposing the return rates 
n
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So, model (1) is equivalent to the following crisp model (2) 
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For example, assume the return rates
n

 ,,,
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We can convert the model (2) to the following model (3). 
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After converting the uncertain programming model to a crisp one, we can solve it by 

traditional method. 

 

5. Hybrid Intelligent Algorithm 

When return rates are not special uncertain variables, it is difficult to solve model (1) in 

traditional method, so we design a hybrid intelligent algorithm integrating genetic 

algorithm (GA) and 99-method to solve model (1). 

 

5.1. 99-Method 

99-method was given by Liu [4]. It is suggested that an uncertain variable   with 

uncertainty distribution   is represented by a 99-table, which can be shown as Table 1. 

Table 1. 99-Table 

0.01 0.02 0.03 … 0.99 

1
y  

2
y  

3
y   

99
y  

 

Where  99.0,,03.0,02.0,01.0   in the first row are the values of uncertainty 

distribution  , and 
99321

,,,, yyyy   in the second row are the corresponding values 

of )01.0(
1

 , )02.0(
1

 , )03.0(
1

 , … , )99.0(
1

 . The 99-table is a discrete 

representation of uncertainty distribution  . Then for any strictly increasing 

function )( yf , the uncertain variable )( yf  has a 99-table as Table 2. 
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Table 2. 99-table of )(f  

0.01 0.02 0.03 … 0.99 
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yf  )(
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yf  )(
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yf   )(
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yf  

 

5.2. Genetic Algorithm 

Representation structure: A solution ),,,(
21 n

xxxX   is represented by the 

chromosome ),,,(
21 n

vvvV  , where the genes 
n

vvv ,,,
21
  are randomly generated 

in the interval [0,1], and the relation between X  and V  is formulated as follows: 
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[11, 12]. 

Initialization process: We randomly initialize sizepop  number of chromosomes by 

generating points 
n

vvv ,,,
21
  from the hypercube 

n
]1,0[  sizepop   times. Then solve 

X according to the relation between X  and V .  If X  satisfies the constraint, it is a 

feasible solution. 

Selection process: We select chromosomes by spinning the roulette wheel such that the 

better chromosomes will have. The selection process is as follows: [12] 

Firstly, if there are sizepop   chromosomes 
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generation, we can order these chromosomes from good to bad, the better the 
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genetic system be given, we can define the rank-based evaluation function as follows: 
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Note that 1i  means the best chromosome, sizepopi   means the worst one. 

Secondly, calculate the cumulative probability 
i

q  for each chromosome
i

V , 

sizepopiVEvalqq

i

j

ji
 



,,2,1,)(,0

1

0
  

where )(VEval  is evaluation function. 

Thirdly, generate a random number r in ]0
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we generate a random number c  from the open interval )1,0( ,  then the operator on 
'

1
V   

and 
'

2
V  will product two children X  and Y  as follows: 

'

2

'

1
)1( VccVX  , 

'

2

'

1
)1( cVVcY   



International Journal of Hybrid Information Technology 

Vol.8, No. 5 (2015) 

 

 

Copyright ⓒ 2015 SERSC   59 

If ),,,(
21 n

xxxX  , ),,,(
21 n

yyyY  , let )/(
21 nii

xxxxx   , 

)/(
21 nii

yyyyy   , ni ,,2,1   which ensure that 




n

i

i
x

1

1  and 






n

i

i
y

1

1 always holds. 

Checking whether 
2

1

1
}{ rrxM

n

i

ii




  and 
2

1

1
}{ rryM

n

i

ii




  through 99-

method, if both children are feasible, then we replace the parents with them. If not, we 

keep the feasible one if it exists, and then redo the crossover operator by regenerating a 

random number c  until two feasible children are obtained or a given number of cycles is 

finished. 

Mutation operation: We define a parameter 
m

p as the probability of mutation. This 

probability gives us the expected number of sizepopp
m

 of chromosomes undergoing 

the mutation operations. Repeating the following Steps from 1i  to sizepop  : 

generating a random number r  from the interval ]1,0[ , the chromosome 
i

V  is selected as 

a parent for mutation if 
m

pr  . For each selected parents
i

V , we mutate it in the 

following way. Let M  be an appropriate large positive number. We choose a mutation 

direction d  in 
n

R  randomly. Let dMVX  , if ),,,(
21 n

xxxX  , checking the 

feasibility through 99-method, if X  is not feasible, we set M  as a random number 

between 0  and M  until it is feasible. If the above process cannot find a feasible solution 

in a predetermined number of iterations, then we set 0M . 

 

5.3. Hybrid Intelligent Algorithm 

The hybrid intelligent algorithm integrating genetic algorithm (GA) and 99-method is 

as follows: 

Step 1 Determine the population size sizepop  , crossover probability, mutation 

probability in genetic algorithm. 

Step 2 Initialize sizepop   chromosomes whose feasibility may be checked by 99-

method. 

Step 3 Update the chromosomes by crossover and mutation operation in which the 99-

method may be employed to check the feasibility of off springs. 

Step 4 Calculate the objective values for all chromosomes by the 99-method. 

Step 5 Compute the fitness of each chromosome based on the objective values. 

Step 6 Select the chromosomes by spinning the roulette wheel. 

Step 7 Repeat the third to sixth Steps a given number of cycles. 

Step 8 Report the best chromosome as the optimal solution. 

 

Number Example 

To illustrate the modeling idea and to demonstrate the effectiveness of the proposed 

algorithm, one numerical example is presented here. 

Supposing there are five kinds of investment project, each project’s return rate is 

)5,,2,1( i
i

 , 
i

  is uncertain variable, where 
21

,  are linear uncertain variables,  

)75.3,57.0(
1

L～ ,  )93.4,85.0(
2

L～ , 
541

,,   are zigzag uncertain variables, 

)658.2,23.1,134.0(
3

Z～ , )658.4,13.2,5.0(
4

Z～ ,  )88.3,13.2,95.0(
5

Z～ , 
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riskless return rate 115.1
f

 , 02.0
1

 , 15.0
2
 , ),,,(

21 n
xxxX   is 

decision vector, 
i

x  represents the investment proportion for the thi project, each 
i

  is 

represented by 99-table as Table 3. 

Table 3. 99-Table of 
i

  

0.01 0.02 0.03 … 0.99 

i
b

1
 

i
b

2
 

i
b

3
 … i

b
99

 

 

The return rate of portfolio selection is represented by 99-table as Table 4. 

Table 4. 99-Table of Portfolio Selection Return Rate 

0.01 0.02 0.03 … 0.99 




5

1

1

i

i

i
xb  



5

1

2

i

i

i
xb  



5

1

3

i

i

i
xb  … 



5

1

99

i

i

i
xb  

 

Because )( wu  is strictly increasing with respect to )5,,2,1( i
i

 , the utility of 

portfolio selection return rate is represented by 99-table as Table 5. 

Table 5. 99-Table of Utility Function 

0.01 0.02 0.03 … 0.99 

)(

5

1

1
i

i

i
xbu  )(

5

1

2
i

i

i
xbu  )(

5

1

3
i

i

i
xbu  … )(

5

1

99
i

i

i
xbu  

 

The model is solved by hybrid intelligent algorithm, the parameters in the algorithm 

are set as follows: 88.0 , 25.2 , 1 , 600  generations in GA, the population 

size 30 sizepop , the crossover probability 3.0
c

p , the mutation probability 

2.0
m

p . The run of the hybrid intelligent algorithm shows the best decision plan 

is )0100.0,8772.0,0002.0,1110.0,0016.0(
*
X , the maximal expect utility of return 

rates is 1769.1)]([ wuE . The genetic process of algorithm is shown as Figure 4. 

 

 

Figure 4. Genetic Process of Algorithm 

6. Conclusion 

This paper researches the portfolio selection model based on loss aversion under 

uncertain environment, describes investment return rate as uncertain variable. According 

to investors having the psychological characteristic of loss aversion, an optimal model of 
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portfolio selection based on loss aversion is established, for some special uncertain return 

rates, crisp model can be obtained, for commonly situation, a hybrid intelligent algorithm 

is designed to solve the model. And a numerical example is given to show that the 

designed algorithm is effective for solving the optimization problem. This method can 

provide some science instruction for investor’s investment decision. 
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