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Abstract 

The joint replenishment problem with deterministic resource restriction is considered. 

We present a differential evolution (DE) algorithm that uses indirect grouping strategy to 

solve constrained joint replenishment. The procedure and structure of the DE algorithm 

is proposed. Extensive computational experiments are performed to compare the 

performances of the DE algorithm with results of genetic algorithm (GA) and heuristic 

algorithm CRAND. The experimental results indicate that the DE algorithm performs 

relative to CRAND and superior to GA. 
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1. Introduction 

For the past few decades, the joint replenishment problem has received much 

attention since the early work of Shu [1]. Cost can be saved when replenishment of 

several items are coordinated in a multi-item inventory system. The constraint joint 

replenishment problem (which is abbreviated as CJRP for the rest of the paper) is 

the multi-item inventory problem of coordinating the replenishment of a group of 

items that may be jointly ordered from a single supplier under resource restrictions, 

for example, budget, storage, transportation capacity, etc. Replenishment of a group 

of item takes place after a fixed interval of time, called the basic cycle time. Time 

between two consecutive orders of an item is assumed to be an integer multiple of 

the basic cycle time. The objective of the JRP is to minimize the total costs incurred 

per unit time. 

The total cost is composed of two parts: 

 The ordering cost. This is the cost of preparing and receiving the order 

and the transportation cost. 

 The holding cost. This is the cost of holding inventory which includes the 

cost of capital tied up in inventory, taxes and insurance. 

In this situation, the ordering cost has two components-- a major common ordering cost 

S incurred whenever an order is placed and a minor ordering cost si incurred if item i is 

included in the order. It is assumed in the JRP that for each item i, its demand rate Di is 

fixed, and each unit incurs a holding cost hi per unit time. The approaches to the JRP can 

be generally classified into two types of strategies: a direct grouping strategy (DGS); and 

an indirect grouping strategy (IGS). Under DGS, items are partitioned into a 

predetermined number of sets and the items within each set are jointly replenished. Under 

IGS, a replenishment is made at regular time intervals (every T units of time) and each 

item has a replenishment quantity sufficient to last for exactly an integer multiple 

ki,i=1,2,…,n of T. the decision variables in the IGS are T and ki. The objective is to find a 

proper combination (T,ki) so that total cost is as low as possible. 
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JRP has been proven to be non-deterministic polynomial hard (NP-hard) problem [2]. 

The literatures for JRP include the heuristics for the classic JRP under constant demand 

and special approaches for the JRP including meta-heuristics. Goyal [3]
 
developed a 

heuristic algorithm using the Lagrangian multiplier for the JRP with one resource 

restriction. Van Eijs [4] has derived another algorithm that improves Goyal’s algorithm. 

Kaspi and Rosenblatt [5] proposed RAND algorithm based on trying several values of 

basic cycle time between a minimum and a maximum value. Olsen [6] solved the JRP 

with direct grouping strategy using genetic algorithm (GA). Khouja et. al., [7] applied GA 

approach to the JRP and compared the performance of GA algorithm to heuristic 

algorithm. Moon and Cha [8] introduced heuristic algorithm CRAND and the GA 

approach to the CJRP; they mentioned that a major advantage of the GA algorithm is its 

ability to handle constrained problems.  

The Differential Evolution (DE) algorithm is one of the latest evolutionary 

optimization methods proposed by Storn and Price [9] for complex continuous non-linear 

functions. DE is a stochastic population-based optimization method. DE uses mutation, 

crossover, and selection operators at each generation to move its population toward the 

global optimum. DE was initially developed for solving the Chebyshev polynomial fitting 

problem because the problem was very difficult to solve by using other algorithms. Over 

the past ten years, DE has been successfully applied to resolve optimization problems, 

which exhibits remarkable performance in optimizing a wide variety of multi-dimensional 

and multi-modal objective functions in terms of final accuracy, convergence speed and 

robustness [10]. Many research indicated that the DE algorithm can solve the problem 

more effectively [11]. Kazemipoor et al. [12] considered the multiskilled project portfolio 

scheduling problem and presented an efficient metaheuristic algorithm based on DE, the 

comparison between the results of DE and Tabu search confirms the effectiveness of the 

DE algorithm. Wang et al. developed an approach based on DE to find a close to optimum 

for the basic JRP [13]. Das and Suganthan [14] surveyed the state-of-the-art of the 

differential evolution and its application. Lampinen [15] considered the constraint 

approach of DE algorithm. The DE algorithm is suitable for solving the CJRP because of 

its simple structure, easy implementation, robustness, and speediness [16].  

The aim of this paper is to develop a practical DE algorithm for CJRP based on the 

literature and make comparison to other heuristic algorithm. The rest of this paper is 

organized as follows. Section 2 introduces the mathematical model of CJRP. Sections 3 

develops the DE algorithm and shows that how the DE algorithm can be used to handle 

the CJRP. Section 4 illustrates the procedure of proposed algorithm with a numerical 

example. Section 5 gives the details computational experiments to compare the 

performance of DE, GA and CRAND algorithms. Section 6 summarize the conclusions of 

the present work and provide directions for future research.  

 

2. Mathematical Model of Constraint Joint Replenishment Problem 

Some common assumptions usually made for the constrained joint replenishment 

problem: 

 The demand rate of each item is deterministic and constant. 

 The unit holding cost of each item is known and constant. 

 The major ordering cost incurred for an order is known and constant. 

 The minor ordering cost incurred for a specific ordered item is known 

and constant. 

 No quantity discount. 

 No shortage is allowed. 

 Stock replenishment is complete when it occurs. 

 The budget constraint on the amount of an order is known and constant. 

The following notation is defined: 
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I index of item, i=1,2,...,n 

Di demand rate of item i 

S major ordering cost 

si minor ordering cost of item i 

hi inventory holding cost of item i, per unit per unit time 

bi unit cost of item i 

B limit on capital that can be invested 

T basic cycle time (decision variable) 

ki integer number that decides the replenishment schedule of item i (decision 

variable) 

Qi ordering quantity of each replenishment cycle of item i 

TC total annual holding and ordering cost for all items 

Using the IGS approach, the cycle time for every product is an integer multiple ki of a 

basic cycle T. Thus the cycle time for item i is: 

i i
T k T

                                                                   
(1) 

and the order quantity for product i is: 

i i i i
Q T D T k D 

                                                      
(2) 

Thus, the total holding cost of n items is: 

1

1
( )

2

n

h i i ii
C k T D h


        (3) 

And the total ordering cost of n items is: 
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( / )

n

i ii

o

S s k
C

T







  (4) 

The mathematical model for the JRP resource constraint as follows: 

m in ( , ' )
i
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, , 1, 2 , ...
i

k Z T R i n
 

                                        (8) 

The objective function, i.e., Eq. (6) contains the ordering costs (major ordering 

cost and minor ordering cost) and inventory holding cost. The inequalities in Eq. (7) 

require that the total value of items in a basic replenishment cycle must be less than 

the capital that can be invested. Thus, Eq. (7) is the capacity constraints for a 

feasible solution. Eq. (8) indicates that ki's are positive integer number and T is 

positive real number. 

 

3. Differential Evolution Algorithm 

In this section, we present a differential evolution algorithm approach for the 

CJRP model. Introduced by many researches, DE algorithm is demonstrated to be an 

effective and robust method by applying in the optimization of some well -known 

non-linear, non-differentiable and non convex functions and it has been widely used 

in various areas for more than ten years. DE algorithm, differing from conventional 

evolutionary optimization methods, such as genetic algorithm (GA), relies on the 

mutation operations as the main operator. The DE algorithm introduces a novel 

mutation operation which is simple and effective. The mutation operation is based 

on the differences of randomly sampled pairs of solution in the population. 
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Furthermore, the fitness of an offspring is one-to-one competed with that of the 

corresponding parent in DE algorithm. 

 

3.1. Representation and Initialization 

In the CJRP model, the basic cycle T and n integer ki’s have to be decided for 

solving the problem. It is very important to represent a solution properly . Moon and 

Cha [8] have proven that the optimal basic cycle T is determined for a given 

(k1,k2,…,kn) and the total relevant cost TC is computed for a given (T,k1,k2,…,kn). So, 

in our study, we use n random number representation for n integer (ki’s), because it 

is very easy to decode our chromosome to a feasible solution. 

The initial population is created by assigning random values of the decision 

variable. Each individual is generated by Eq. (9). 

(0 ,1), 1, 2 , ..., , 1, 2 , ...,
i j

x ra n d i P O P S IZ E j D                  (9) 

Where POPSIZE is the number of individuals; D is the dimension of each 

individuals; rand(0,1) is a function which generates a uniform distribution rand 

number in range [0,1]. 

Our decoding process for each gene of our chromosome is as follows. 

in t[( 1) ] , 1, 2 , ...,
U B L B L B

i i i i i
k k k x k i D    

               (10)  

Where int[b] is the function which finds the integer number less than x; ki
LB

 and 

ki
UB

 is the lower and upper bound of ki, respectively, and can be defined from the 

following equations.  

2

m a x

2
( 1) ( 1)
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s
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   

                         (11) 
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Tmax and Tmin were defined by Eqs. (13) and (14). 

m a x 1 1
2 ( ) /

n n

i i ii i
T S s D h

 
                            (13) 

m in
m in 2 /  fo r  

i i i
T s D h i

                                  (14) 

3.2. Mutation 

For each target individual Xi={xi1,xi2,…,xiD}, i=1,2,…,POPSIZE, a mutant new 

individual Vi is generated according to  

1 2 3 1 2 3
( ),

i r r r
V X F X X r r r i                                        (15) 

With randomly chosen integer indexes; [0 , 2 ]F   is a real number called 

mutation factor used to control the amplification of the differential variation.  

 

3.3. Crossover 

To complement the differential mutation search strategy, DE employs uniform 

crossover, which also known as binomial method, to enhance the potential diversity 

of the population. The crossover operator implements a discrete recombination of 

the trial individual Vi and the parent individual Xi to produce the offspring Xi
new

.  

The trial vector will be found using the following rules:  

 i f  ( 0 ,1)  o r  ( )

 o th e rw is e  1, 2 , . . . ,

i j jn e w

ij

i j

v r a n d C R j r n b i

x
x j D

 
 



                              (16) 
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Where D is the dimension of Xi; xij refers to the jth element of the individual; vij 

is similarly defined; randj(0,1) is the jth evaluation of a uniform random number 

generator between [0,1]; rnb(i) is a randomly chosen integer in the set {1,2,…,D} 

which ensures the trail vector gets at least one parameter from the mutated vector; 

[ 0 ,1]C R   is a crossover constant. 

 

3.4. Selection 

The selection operator is to determine whether the target (parent) or the new 

vector (offspring) survives to the next generation. If a new vector, 

Xi
new

,i=1,2,…,POPSIZE, has a smaller evaluation function value (total cost) than its 

garget vector, Xi , it is copied to the next generation; otherwise, it is the target 

vector that passes to the next generation. The selection process can be expressed as:   

 

 i f  ( ) ( )

    o th e rw is e

n e w n e w

i i i

i

i

X fi tn e s s X fi tn e s s X
X

X
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 


                              (17) 

Thus the next generation of population either gets better in terms of the fitness 

function or remains constants. 

 

3.5. Elitist Procedure 

The elitist procedure is to keep the best individual or replace the worst individual 

in population. In generation G of iteration, find the best individual, Xbest,G, and worst 

individual, Xworst,G in terms of the fitness function respectively. In the next 

generation, G+1, the elitist procedure is processed as follows: 

, 1 , b e s t , , 1

, 1 ,

 i f  ( ) ( )

 o th e rw is e .

b e s t G b e s t G G b e s t G

w o rs t G b e s t G

X X fitn e s s X fi tn e s s X

X X

 



 


         (18) 

3.6. Stop Criterion 

The termination condition is to stop if no improvement of fitness function is 

made in 50 generations. 

 

4. Numerical Example 

A numerical example will be employed to compare the proposed DE algorithm 

and GA algorithm; we use the numerical example of Moon and Cha [8]. The data for 

this example are given in table 1. We also assume S=200 and B=25000.  

Table 1. Data for the Example 

Item i 1 2 3 4 5 6 

Di 

si 

hi 

bi 

10000 

45 

1 

6.25 

5000 

46 

1 

6.25 

3000 

47 

1 

6.25 

1000 

44 

1 

6.25 

600 

45 

1 

6.25 

200 

47 

1 

6.25 

For this example, the population size of 10 is used and the CR=0.5 and F=0.5, 

respectively. Both representation and decoding solution of our best DE individual 

are shown in Table 2. The compared GA results made by Moon and Cha [8] are also 

shown. 
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Table 2. Representation and Decoding Solution of the Best GA 
Chromosome and DE Individual 

Algorit

hm 

Item 1 2 3 4 5 6 

 

 

 

GA 

Best GA 

chromosome 

ki
LB

 

ki
UB

 

Decoding 

solution(ki) 

Optimal T 

TC 

0.44

6 

1 

1 

1 

0.18

18 

416

8.4 

0.46

3 

1 

2 

1 

0.09

2 

1 

2 

1 

0.42

6 

1 

3 

2 

0.25

2 

2 

4 

2 

0.38

1 

3 

7 

4 

 

 

 

DE 

Best DE individual 

ki
LB

 

ki
UB

 

Decoding 

solution(ki) 

Optimal T 

TC 

0.00

3 

1 

1 

1 

0.18

18 

416

8.4 

0.29

6 

1 

2 

1 

0.30

3 

1 

2 

1 

0.39

6 

1 

3 

2 

0.15

9 

2 

4 

2 

0.35

5 

3 

7 

4 

 
It shows in Table 2 that both GA and DE obtain the same optimal solution for this 

numerical example.  

Figure 1 shows the structure of our differential evolution algorithm for the numerical 

example. 

 

start

End

ki
LB

ki
UB

New 

population

0.041 0.705 0.391 0.447 0.703 0.547

0.467 0.145 0.604 0.726 0.811 0.644

0.344 0.281 0.902 0.771 0.322 0.662

0.500 0.827 0.153 0.538 0.333 0.757

0.169 0.961 0.292 0.869 0.673 0.037

0.724 0.491 0.382 0.912 0.664 0.859

Individuals

Mutation

1 1 2 3 4 6 T*=0.1449 TC=4265.00

1 2 1 3 4 5

Decoding and Evaluation

…

1 1 1 1 2 3

1 2 2 3 4 7

Stop ?

Selection

Elitist 

procedure

Best individual

Y

N

0.478 0.995 0.421 0.667 0.141 0.723

0.358 0.942 0.716 0.299 0.711 0.741

0.962 0.827 0.718 0.035 0.253 0.529

0.464 0.436 0.895 0.894 0.868 0.778

0.041 0.705 0.391 0.447 0.703 0.547

0.574 0.031 0.052 0.350 0.150 0.941

…

Crossover

0.041 0.705 0.391 0.447 0.703 0.547

0.480 0.041 0.052 0.635 0.131 0.589

…

Vi

Xi
new

T*=0.1552 TC=4539.32

1 1 2 3 4 6 TC=4265.00

Xbest

r1

r2

r3

 

Figure 1. The Structure of the Proposed Differential Evolution Algorithm 
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5. Computational Experiments 

In this section, we compare the performance of three algorithms, CRAND, GA 

and DE, for 1600 randomly generated CJRPs. The parameter values are all 

generated from a uniform distribution, Di~U[100,100000], si~U[0.5,5.0] and 

hi~U[0.2,3.0], respectively. Every bi is considered as 1, and B is randomly generated, 

B~U[n×200, n×800]. Four different values of the number of items, n=10, 20, 30 and 

50, and four different values of the major ordering cost, S=5, 10, 15 and 20 are 

considered. This results in 16 combinations of n and S, and for each combination, 

100 problems with random parameter values are generated and solved. In the DE, 

the population size of 100 is used for solving the small size problems (n=10, 20 and 

30). The population size of 200 is used for the large size problems (n=50). A 

summary of computational results is shown in Table 3. 

Table 3. Comparison of Three Algorithms (% improvement) 

n S 

Best solution 

problems 

CRAND better than 

GA 

CRAND better than DE 

CRA

ND 

G

A 

D

E 

Maximu

m 

Avera

ge 

Maximu

m 

Average 

1

0 

5 100 9

9 

98 0.0061 0.0001 0.0050 0.0001 

 1

0 

100 1

00 

99 0.0000 0.0000 0.0001 0.0000 

 1

5 

100 9

9 

10

0 

0.0026 0.0000 0.0058 0.0000 

 2

0 

98 9

9 

99 0.0176 -

0.0011 

0.0011 0.0000 

2

0 

5 100 8

6 

92 1.5142 0.0567 1.1420 0.0028 

 1

0 

99 9

0 

97 0.3290 0.0098 0.0023 0.0087 

 1

5 

100 8

3 

99 0.6872 0.0156 0.0004 0.0000 

 2

0 

100 9

5 

98 0.0997 0.0014 0.0017 0.0000 

3

0 

5 100 5

7 

99 2.3667 0.1449 0.0006 0.0000 

 1

0 

99 7

0 

97 1.0502 0.0298 0.0012 0.0000 

 1

5 

100 7

3 

98 0.3539 0.0148 0.0020 0.0000 

 2

0 

100 8

2 

99 0.4455 0.0066 0.0002 0.0000 

5

0 

5 96 5

1 

93 1.2439 0.0921 2.1237 0.0065 

 1

0 

100 6

7 

96 0.9690 0.0542 0.0490 0.0000 

 1

5 

95 6

6 

90 1.0124 0.0430 0.0050 0.0000 

 2

0 

98 8

1 

88 0.0982 0.0026 0.2301 0.0036 

         

Maximum   2.3667  2.1237  

Avera

ge 

99 8

1 

96  0.0294  0.0014 
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As show in table 3, the DE performs very well relative to the CRAND.  We can 

confirm that the DE is superior to GA, especially for large value of n (n=30 and 50). 

In addition, the DE can be easily expanded to the problems with several constraints  

like GA. 

 

6. Conclusion 

This paper focuses on the development of the efficient algorithm for solving the 

constrained joint replenishment problem. The DE algorithm is introduced to handle 

the constraints in JRP. Despite the DE is superior to the GA, the DE is more suitable 

for solving constrained JRP than CRAND for its extension ability. Future research 

could be the incorporation of uncertainty issue in constrained JRP, for example 

demand and budget. 
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