
International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015), pp. 259-266

http://dx.doi.org/10.14257/ijhit.2015.8.5.28

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Differential Evolution Algorithm for Constraint Joint

Replenishment Problem with Indirect Grouping Strategy

Li Chengyan, Gao Jun, Zhang Tianwei and Wang Xiaotian

School of Computer Science and Technology, Harbin University of

Science and Technology, Harbin 150080, China

E-mail:chengyan@hrbust.edu.cn

Abstract

The joint replenishment problem with deterministic resource restriction is considered.

We present a differential evolution (DE) algorithm that uses indirect grouping strategy to

solve constrained joint replenishment. The procedure and structure of the DE algorithm

is proposed. Extensive computational experiments are performed to compare the

performances of the DE algorithm with results of genetic algorithm (GA) and heuristic

algorithm CRAND. The experimental results indicate that the DE algorithm performs

relative to CRAND and superior to GA.

Keywords: Inventory control, Joint replenishment problem, Differential evolution,

Genetic algorithm

1. Introduction

For the past few decades, the joint replenishment problem has received much

attention since the early work of Shu [1]. Cost can be saved when replenishment of

several items are coordinated in a multi-item inventory system. The constraint joint

replenishment problem (which is abbreviated as CJRP for the rest of the paper) is

the multi-item inventory problem of coordinating the replenishment of a group of

items that may be jointly ordered from a single supplier under resource restrictions,

for example, budget, storage, transportation capacity, etc. Replenishment of a group

of item takes place after a fixed interval of time, called the basic cycle time. Time

between two consecutive orders of an item is assumed to be an integer multiple of

the basic cycle time. The objective of the JRP is to minimize the total costs incurred

per unit time.

The total cost is composed of two parts:

 The ordering cost. This is the cost of preparing and receiving the order

and the transportation cost.

 The holding cost. This is the cost of holding inventory which includes the

cost of capital tied up in inventory, taxes and insurance.

In this situation, the ordering cost has two components-- a major common ordering cost

S incurred whenever an order is placed and a minor ordering cost si incurred if item i is

included in the order. It is assumed in the JRP that for each item i, its demand rate Di is

fixed, and each unit incurs a holding cost hi per unit time. The approaches to the JRP can

be generally classified into two types of strategies: a direct grouping strategy (DGS); and

an indirect grouping strategy (IGS). Under DGS, items are partitioned into a

predetermined number of sets and the items within each set are jointly replenished. Under

IGS, a replenishment is made at regular time intervals (every T units of time) and each

item has a replenishment quantity sufficient to last for exactly an integer multiple

ki,i=1,2,…,n of T. the decision variables in the IGS are T and ki. The objective is to find a

proper combination (T,ki) so that total cost is as low as possible.

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

260 Copyright ⓒ 2015 SERSC

JRP has been proven to be non-deterministic polynomial hard (NP-hard) problem [2].

The literatures for JRP include the heuristics for the classic JRP under constant demand

and special approaches for the JRP including meta-heuristics. Goyal [3]

developed a

heuristic algorithm using the Lagrangian multiplier for the JRP with one resource

restriction. Van Eijs [4] has derived another algorithm that improves Goyal’s algorithm.

Kaspi and Rosenblatt [5] proposed RAND algorithm based on trying several values of

basic cycle time between a minimum and a maximum value. Olsen [6] solved the JRP

with direct grouping strategy using genetic algorithm (GA). Khouja et. al., [7] applied GA

approach to the JRP and compared the performance of GA algorithm to heuristic

algorithm. Moon and Cha [8] introduced heuristic algorithm CRAND and the GA

approach to the CJRP; they mentioned that a major advantage of the GA algorithm is its

ability to handle constrained problems.

The Differential Evolution (DE) algorithm is one of the latest evolutionary

optimization methods proposed by Storn and Price [9] for complex continuous non-linear

functions. DE is a stochastic population-based optimization method. DE uses mutation,

crossover, and selection operators at each generation to move its population toward the

global optimum. DE was initially developed for solving the Chebyshev polynomial fitting

problem because the problem was very difficult to solve by using other algorithms. Over

the past ten years, DE has been successfully applied to resolve optimization problems,

which exhibits remarkable performance in optimizing a wide variety of multi-dimensional

and multi-modal objective functions in terms of final accuracy, convergence speed and

robustness [10]. Many research indicated that the DE algorithm can solve the problem

more effectively [11]. Kazemipoor et al. [12] considered the multiskilled project portfolio

scheduling problem and presented an efficient metaheuristic algorithm based on DE, the

comparison between the results of DE and Tabu search confirms the effectiveness of the

DE algorithm. Wang et al. developed an approach based on DE to find a close to optimum

for the basic JRP [13]. Das and Suganthan [14] surveyed the state-of-the-art of the

differential evolution and its application. Lampinen [15] considered the constraint

approach of DE algorithm. The DE algorithm is suitable for solving the CJRP because of

its simple structure, easy implementation, robustness, and speediness [16].

The aim of this paper is to develop a practical DE algorithm for CJRP based on the

literature and make comparison to other heuristic algorithm. The rest of this paper is

organized as follows. Section 2 introduces the mathematical model of CJRP. Sections 3

develops the DE algorithm and shows that how the DE algorithm can be used to handle

the CJRP. Section 4 illustrates the procedure of proposed algorithm with a numerical

example. Section 5 gives the details computational experiments to compare the

performance of DE, GA and CRAND algorithms. Section 6 summarize the conclusions of

the present work and provide directions for future research.

2. Mathematical Model of Constraint Joint Replenishment Problem

Some common assumptions usually made for the constrained joint replenishment

problem:

 The demand rate of each item is deterministic and constant.

 The unit holding cost of each item is known and constant.

 The major ordering cost incurred for an order is known and constant.

 The minor ordering cost incurred for a specific ordered item is known

and constant.

 No quantity discount.

 No shortage is allowed.

 Stock replenishment is complete when it occurs.

 The budget constraint on the amount of an order is known and constant.

The following notation is defined:

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

Copyright ⓒ 2015 SERSC 261

I index of item, i=1,2,...,n

Di demand rate of item i

S major ordering cost

si minor ordering cost of item i

hi inventory holding cost of item i, per unit per unit time

bi unit cost of item i

B limit on capital that can be invested

T basic cycle time (decision variable)

ki integer number that decides the replenishment schedule of item i (decision

variable)

Qi ordering quantity of each replenishment cycle of item i

TC total annual holding and ordering cost for all items

Using the IGS approach, the cycle time for every product is an integer multiple ki of a

basic cycle T. Thus the cycle time for item i is:

i i
T k T

(1)

and the order quantity for product i is:

i i i i
Q T D T k D 

(2)

Thus, the total holding cost of n items is:

1

1
()

2

n

h i i ii
C k T D h


  (3)

And the total ordering cost of n items is:

 1
(/)

n

i ii

o

S s k
C

T







 (4)

The mathematical model for the JRP resource constraint as follows:

m in (, ')
i

T C T k s

(5)

s.t.

1

1

(/) 1
(, ') ()

2

n

ni ii

i o h i i ii

S s k
T C T k s C C k T D h

T






   




(6)

1

n

i i ii
D k T b B




(7)

, , 1, 2 , ...
i

k Z T R i n
 

   (8)

The objective function, i.e., Eq. (6) contains the ordering costs (major ordering

cost and minor ordering cost) and inventory holding cost. The inequalities in Eq. (7)

require that the total value of items in a basic replenishment cycle must be less than

the capital that can be invested. Thus, Eq. (7) is the capacity constraints for a

feasible solution. Eq. (8) indicates that ki's are positive integer number and T is

positive real number.

3. Differential Evolution Algorithm

In this section, we present a differential evolution algorithm approach for the

CJRP model. Introduced by many researches, DE algorithm is demonstrated to be an

effective and robust method by applying in the optimization of some well -known

non-linear, non-differentiable and non convex functions and it has been widely used

in various areas for more than ten years. DE algorithm, differing from conventional

evolutionary optimization methods, such as genetic algorithm (GA), relies on the

mutation operations as the main operator. The DE algorithm introduces a novel

mutation operation which is simple and effective. The mutation operation is based

on the differences of randomly sampled pairs of solution in the population.

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

262 Copyright ⓒ 2015 SERSC

Furthermore, the fitness of an offspring is one-to-one competed with that of the

corresponding parent in DE algorithm.

3.1. Representation and Initialization

In the CJRP model, the basic cycle T and n integer ki’s have to be decided for

solving the problem. It is very important to represent a solution properly . Moon and

Cha [8] have proven that the optimal basic cycle T is determined for a given

(k1,k2,…,kn) and the total relevant cost TC is computed for a given (T,k1,k2,…,kn). So,

in our study, we use n random number representation for n integer (ki’s), because it

is very easy to decode our chromosome to a feasible solution.

The initial population is created by assigning random values of the decision

variable. Each individual is generated by Eq. (9).

(0 ,1), 1, 2 , ..., , 1, 2 , ...,
i j

x ra n d i P O P S IZ E j D   (9)

Where POPSIZE is the number of individuals; D is the dimension of each

individuals; rand(0,1) is a function which generates a uniform distribution rand

number in range [0,1].

Our decoding process for each gene of our chromosome is as follows.

in t[(1)] , 1, 2 , ...,
U B L B L B

i i i i i
k k k x k i D    

 (10)

Where int[b] is the function which finds the integer number less than x; ki
LB

 and

ki
UB

 is the lower and upper bound of ki, respectively, and can be defined from the

following equations.

2

m a x

2
(1) (1)

L B L B L B L Bi

i i i i

i i

s
k k k k

D h T
   

 (11)

2

m a x

2
(1) (1)

U B U B U B U Bi

i i i i

i i

s
k k k k

D h T
   

. (12)

Tmax and Tmin were defined by Eqs. (13) and (14).

m a x 1 1
2 () /

n n

i i ii i
T S s D h

 
    (13)

m in
m in 2 / fo r

i i i
T s D h i

 (14)

3.2. Mutation

For each target individual Xi={xi1,xi2,…,xiD}, i=1,2,…,POPSIZE, a mutant new

individual Vi is generated according to

1 2 3 1 2 3
(),

i r r r
V X F X X r r r i      (15)

With randomly chosen integer indexes; [0 , 2]F  is a real number called

mutation factor used to control the amplification of the differential variation.

3.3. Crossover

To complement the differential mutation search strategy, DE employs uniform

crossover, which also known as binomial method, to enhance the potential diversity

of the population. The crossover operator implements a discrete recombination of

the trial individual Vi and the parent individual Xi to produce the offspring Xi
new

.

The trial vector will be found using the following rules:

 i f (0 ,1) o r ()

 o th e rw is e 1, 2 , . . . ,

i j jn e w

ij

i j

v r a n d C R j r n b i

x
x j D

 
 



 (16)

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

Copyright ⓒ 2015 SERSC 263

Where D is the dimension of Xi; xij refers to the jth element of the individual; vij

is similarly defined; randj(0,1) is the jth evaluation of a uniform random number

generator between [0,1]; rnb(i) is a randomly chosen integer in the set {1,2,…,D}

which ensures the trail vector gets at least one parameter from the mutated vector;

[0 ,1]C R  is a crossover constant.

3.4. Selection

The selection operator is to determine whether the target (parent) or the new

vector (offspring) survives to the next generation. If a new vector,

Xi
new

,i=1,2,…,POPSIZE, has a smaller evaluation function value (total cost) than its

garget vector, Xi , it is copied to the next generation; otherwise, it is the target

vector that passes to the next generation. The selection process can be expressed as:

 i f () ()

 o th e rw is e

n e w n e w

i i i

i

i

X fi tn e s s X fi tn e s s X
X

X

 
 


 (17)

Thus the next generation of population either gets better in terms of the fitness

function or remains constants.

3.5. Elitist Procedure

The elitist procedure is to keep the best individual or replace the worst individual

in population. In generation G of iteration, find the best individual, Xbest,G, and worst

individual, Xworst,G in terms of the fitness function respectively. In the next

generation, G+1, the elitist procedure is processed as follows:

, 1 , b e s t , , 1

, 1 ,

 i f () ()

 o th e rw is e .

b e s t G b e s t G G b e s t G

w o rs t G b e s t G

X X fitn e s s X fi tn e s s X

X X

 



 


 (18)

3.6. Stop Criterion

The termination condition is to stop if no improvement of fitness function is

made in 50 generations.

4. Numerical Example

A numerical example will be employed to compare the proposed DE algorithm

and GA algorithm; we use the numerical example of Moon and Cha [8]. The data for

this example are given in table 1. We also assume S=200 and B=25000.

Table 1. Data for the Example

Item i 1 2 3 4 5 6

Di

si

hi

bi

10000

45

1

6.25

5000

46

1

6.25

3000

47

1

6.25

1000

44

1

6.25

600

45

1

6.25

200

47

1

6.25

For this example, the population size of 10 is used and the CR=0.5 and F=0.5,

respectively. Both representation and decoding solution of our best DE individual

are shown in Table 2. The compared GA results made by Moon and Cha [8] are also

shown.

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

264 Copyright ⓒ 2015 SERSC

Table 2. Representation and Decoding Solution of the Best GA
Chromosome and DE Individual

Algorit

hm

Item 1 2 3 4 5 6

GA

Best GA

chromosome

ki
LB

ki
UB

Decoding

solution(ki)

Optimal T

TC

0.44

6

1

1

1

0.18

18

416

8.4

0.46

3

1

2

1

0.09

2

1

2

1

0.42

6

1

3

2

0.25

2

2

4

2

0.38

1

3

7

4

DE

Best DE individual

ki
LB

ki
UB

Decoding

solution(ki)

Optimal T

TC

0.00

3

1

1

1

0.18

18

416

8.4

0.29

6

1

2

1

0.30

3

1

2

1

0.39

6

1

3

2

0.15

9

2

4

2

0.35

5

3

7

4

It shows in Table 2 that both GA and DE obtain the same optimal solution for this

numerical example.

Figure 1 shows the structure of our differential evolution algorithm for the numerical

example.

start

End

ki
LB

ki
UB

New

population

0.041 0.705 0.391 0.447 0.703 0.547

0.467 0.145 0.604 0.726 0.811 0.644

0.344 0.281 0.902 0.771 0.322 0.662

0.500 0.827 0.153 0.538 0.333 0.757

0.169 0.961 0.292 0.869 0.673 0.037

0.724 0.491 0.382 0.912 0.664 0.859

Individuals

Mutation

1 1 2 3 4 6 T*=0.1449 TC=4265.00

1 2 1 3 4 5

Decoding and Evaluation

…

1 1 1 1 2 3

1 2 2 3 4 7

Stop ?

Selection

Elitist

procedure

Best individual

Y

N

0.478 0.995 0.421 0.667 0.141 0.723

0.358 0.942 0.716 0.299 0.711 0.741

0.962 0.827 0.718 0.035 0.253 0.529

0.464 0.436 0.895 0.894 0.868 0.778

0.041 0.705 0.391 0.447 0.703 0.547

0.574 0.031 0.052 0.350 0.150 0.941

…

Crossover

0.041 0.705 0.391 0.447 0.703 0.547

0.480 0.041 0.052 0.635 0.131 0.589

…

Vi

Xi
new

T*=0.1552 TC=4539.32

1 1 2 3 4 6 TC=4265.00

Xbest

r1

r2

r3

Figure 1. The Structure of the Proposed Differential Evolution Algorithm

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

Copyright ⓒ 2015 SERSC 265

5. Computational Experiments

In this section, we compare the performance of three algorithms, CRAND, GA

and DE, for 1600 randomly generated CJRPs. The parameter values are all

generated from a uniform distribution, Di~U[100,100000], si~U[0.5,5.0] and

hi~U[0.2,3.0], respectively. Every bi is considered as 1, and B is randomly generated,

B~U[n×200, n×800]. Four different values of the number of items, n=10, 20, 30 and

50, and four different values of the major ordering cost, S=5, 10, 15 and 20 are

considered. This results in 16 combinations of n and S, and for each combination,

100 problems with random parameter values are generated and solved. In the DE,

the population size of 100 is used for solving the small size problems (n=10, 20 and

30). The population size of 200 is used for the large size problems (n=50). A

summary of computational results is shown in Table 3.

Table 3. Comparison of Three Algorithms (% improvement)

n S

Best solution

problems

CRAND better than

GA

CRAND better than DE

CRA

ND

G

A

D

E

Maximu

m

Avera

ge

Maximu

m

Average

1

0

5 100 9

9

98 0.0061 0.0001 0.0050 0.0001

 1

0

100 1

00

99 0.0000 0.0000 0.0001 0.0000

 1

5

100 9

9

10

0

0.0026 0.0000 0.0058 0.0000

 2

0

98 9

9

99 0.0176 -

0.0011

0.0011 0.0000

2

0

5 100 8

6

92 1.5142 0.0567 1.1420 0.0028

 1

0

99 9

0

97 0.3290 0.0098 0.0023 0.0087

 1

5

100 8

3

99 0.6872 0.0156 0.0004 0.0000

 2

0

100 9

5

98 0.0997 0.0014 0.0017 0.0000

3

0

5 100 5

7

99 2.3667 0.1449 0.0006 0.0000

 1

0

99 7

0

97 1.0502 0.0298 0.0012 0.0000

 1

5

100 7

3

98 0.3539 0.0148 0.0020 0.0000

 2

0

100 8

2

99 0.4455 0.0066 0.0002 0.0000

5

0

5 96 5

1

93 1.2439 0.0921 2.1237 0.0065

 1

0

100 6

7

96 0.9690 0.0542 0.0490 0.0000

 1

5

95 6

6

90 1.0124 0.0430 0.0050 0.0000

 2

0

98 8

1

88 0.0982 0.0026 0.2301 0.0036

Maximum 2.3667 2.1237

Avera

ge

99 8

1

96 0.0294 0.0014

International Journal of Hybrid Information Technology

Vol.8, No. 5 (2015)

266 Copyright ⓒ 2015 SERSC

As show in table 3, the DE performs very well relative to the CRAND. We can

confirm that the DE is superior to GA, especially for large value of n (n=30 and 50).

In addition, the DE can be easily expanded to the problems with several constraints

like GA.

6. Conclusion

This paper focuses on the development of the efficient algorithm for solving the

constrained joint replenishment problem. The DE algorithm is introduced to handle

the constraints in JRP. Despite the DE is superior to the GA, the DE is more suitable

for solving constrained JRP than CRAND for its extension ability. Future research

could be the incorporation of uncertainty issue in constrained JRP, for example

demand and budget.

Acknowledgements

This work was supported by grant No.12541142 from the Research Program of the

Education Department of Heilongjiang Province, China.

References

[1] F. T. Shu, “Economic ordering frequency for two items jointly replenished”, Manage Sci. vol. 6, no. 17,

(1971), pp. 406-410.

[2] E. Arkin, D. Joneja and R. Roundy, “Computational complexity of incapacitated multi-echelon

production planning problems”, Oper. Res Lett.vol. 2, no. 8, (1989), pp. 61-66.

[3] S. Goyal, “Analysis of joint replenishment inventory systems with resource restriction”, Oper Res Q, vol.

1, no. 26, (1975), pp. 197-203.

[4] M. V. Eijs, “A note on the joint replenishment problem under constant demand”, Oper Res Soc, 2, vol.

44, (1993), pp. 185-191.

[5] M. Kaspi and M. Rosenblatt, “On the economic ordering quantity for jointly replenished items”, Int.

Prod Res, vol. 1, no. 29, (1991). pp. 107-114.

[6] A. L. Olsen, “An evolutionary algorithm to solve the joint replenishment problem using direct grouping”,

Comput. Ind. Eng.vol. 2, no. 48, (2005), pp. 223-235.

[7] M. Khouja, Z. Michaliwicz and S. Satoskar, “A comparison between genetic algorithms and the RAND

method for solving the joint replenishment problem”, Prod Plan Control.vol. 6, no. 11, (2000), pp. 556-

564.

[8] I. K. Moon and B. C. Cha, “The joint replenishment problem with resource restriction”, Eur J Oper Re.

vol. 1, no. 173, (2006), pp. 190-198.

[9] R. Storn and K. Price, “Differential evolution- a simple and efficient heuristic for global optimization

over continuous spaces”, Glob Optim. vol. 4, no. 11, (1997), pp. 341-359.

[10] A. Jha, K. Somani, M. K. Tiwari, F. T. S. Chan, K. J. Fernandes, “Minimizing transportation cost of a

joint inventory location model using modified adaptive differential evolution algorithm”, Int. Adv Manuf

Technol., vol. 1, no. 60, (2012), pp. 329–341.

[11] A. Musrrat, P. Millie and A. Ajith, “A simplex differential evolution algorithm”, development and

applications, T I Meas Control. vol. 6, no. 34, (2012), pp. 691–704.

[12] H. Kazemipoor, R. T. Moghaddam, P. S. Shahrezaei and A. Azaron, “A differential evolution algorithm

to solve multi-skilled project portfolio scheduling problems”, Int J Adv Manuf Technol. vol. 5-8, no. 64,

(2013), pp. 1099-1111.

[13] L. Wang, J. He and Y. R. Zeng, “A differential evolution algorithm for joint replenishment problem

using direct grouping and its application”, Expert Syst. vol. 5, no. 29, (2012), pp.429-441.

[14] S. Das and P. N. Suganthan, “Differential evolution”, A survey of the state-of-the-art, IEEE T Evolut

Comput. vol. 15, (2011), pp. 4-31.

[15] J. Lampinen, “A constraint handling approach for the differential evolution algorithm”, Proceedings of

the 2002 Congress on Evolutionary Computation, (2002) May 12 -17, Honolulu, HI, pp.1468-1473.

[16] L. Wang, C. X. Dun, C. G. Lee, Q. L. Fu and Y. R. Zeng, “Model and algorithm for fuzzy joint

replenishment and delivery scheduling without explicit membership function”, Int J Adv Manuf Technol.,

vol. 9-12, no. 66, (2013), pp. 1907-1920.

