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Abstract 

The block compressed sensing has brought forth the problem that the reconstructed 

image is of lower quality compared with that of the compressed sensing. A new method is 

proposed in this paper, named as Block Compressed Sensing of Self-adaptive 

Measurement and Combinatorial Optimization, which capably solves the problem. 

According to different sparsity of each image block, we firstly measure the blocks by 

using different projections; then, we choose measurement with the optimal reconstruction 

as the final measurement. Eventually, reconstruct the original image using the optimal 

measurement we got. The proposed method outperforms the compressed sensing in terms 

of real-time and better reconstruction quality is achieved than the block compressed 

sensing. Our experimental results verify the superiority of the proposed method.   
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1. Introduction 

In the normal methods of picture compression, pictures are firstly transformed into 

digital format at a high sample rate, and then they are coded by the JPEG or other coding 

methods. But, those methods have the limitation that they are not so applicable to some 

equipment such as sensors of low power and low quality. Recently, Candes and 

Donoho[1-4] had a break-through research and proposed a new method called as 

Compressed Sensing(CS) theory that is capable to avoid the limitation. The CS theory 

based on the sparsity of the signal can accurately reconstruct the signal by using a few 

measurements. 

In recent years, not only in the theory, but also in application, the CS has made great 

progress. Many institutions in a good number of countries including China, and many 

famous industries like Intel, google etc. have taken part in the research of CS. For its 

applications, CS can be utilized in Nuclear magnetic resonance (NMR) imaging [5] of 

biological medicine. In the processing of Radar images [6], a great deal of data should be 

sampled, transferred and stored. With the application of the CS, the data amount can be 

dramatically reduced. In addition, the CS theory can be used to extract the features [7] of 

human faces so as to improve the accuracy of the recognition. However, people found that 

the whole image should be dealt with at once in the process of sampling of the CS, which 

unfortunately reduces the real-time performance of the system [8]. LU Gan proposed the 

Block Compressed Sensing (BCS) [9] to overcome this problem. This method divides the 

image into many blocks, and then simply deals with each block. It improves the real-time 

performance and reduces the complexity of computation in projection and reconstruction 

of the CS. Because the blocks of the image can greatly reduce the dimension of the image, 

this method can also make store easily. But in accuracy point of view to reconstruction, 

the BCS is lower than the CS. 
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Based on the theory of the BCS, a brand new algorithm named BCS of Self-Adaptive 

Measurement Combinatorial Optimization (AMCO-BCS) is brought into being in this 

paper. On the basis of the Restricted Isometry Property, AMCO-BCS self-adaptively 

selects the dimension of projection by using different projection matrixes subjected to the 

conditions of different sparstity of the blocks. And then use different measurements of 

each block to reconstruct the block, choose the measurements that are most accurate as 

the final measurement of the block. By this way of combinatorial optimization, we 

achieve still better measurements. Finally we use the measurement to reconstruct the 

image. The first part of this paper is the introduction that focuses on the application of the 

CS and its advantages and disadvantages. The next part primarily describes the CS theory 

in the aspect of sparisty, uncorrelated projection and reconstruction at length. The 

following part is the AMCO-BCS which is the core content and its flow; whereas the 

forth part is the experiment and analysis which show the advantages and the final part is 

the conclusion and setting forth the following up work to be done. 

 

2. Compressed Sensing 

The CS mainly includes three parts: the sparsity of the signal, uncorrelated 

measurement and reconstruction using non-linear optimization. The sparsity of the 

signal is the precondition and the method of reconstruction is non-linear 

optimization. The uncorrelated measurement is the key to the CS. 

 

2.1. The Sparse Represent of Signal 

Suppose the signal
N
Rx  , and may be not sparse. But by using the orthogonal 

basis  
N

ii 1
 （

i
 is a column vector of N  dimensions）to transfer the signal, it can 

be sparse, as shown in the following: 

    




N

i

ii

1

x                                                        (1) 

In which xx
T

i
ii

  , .the matrix form is indicated as follows: 

x                                                            (2) 

Where the   NN

N
R


  ,...,

21
is orthogonal matrix, and the 

coefficient  

vector  
T

N
 ,...,

21
 is K （ NK  ）sparse. 

 

2.2. Non-linear Optimization Reconstruction 

Suppose   ：  NMNM   is the measurement matrix which is irrelevant to 

the  ,and the  satisfies the Restricted Isometry Property(RIP)[10-11]. So use   to 

project the signal x  : 

       xy                                                             (3) 

Where the   is multiplied by the signal to get the projection 

M
Ry   NM  . Those few linear projections contain enough information that 

can be used to reconstruct the x . 

However, from equation (3), it seems impossible to reconstruct x  from y , 

because the equation is an underdetermined equation sets whose number is less than 

that of unknown numbers, which lead to infinite solutions. But, let formula (2) into 

(3), and suppose 
CS
A ，we shall get： 

app:ds:non-linear
app:ds:optimization
app:ds:non-linear
app:ds:optimization
app:ds:non-linear
app:ds:optimization
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
CS
Ay                                            (4) 

Although reconstruction   from y  is also an underdetermined equation, the 

number of unknown numbers become much less because   is sparse, which make 

the reconstruction possible. Based on this, some scholars proposed the 
0

 minimum 

algorithm [2], but the algorithm is proved to be a NP-hard question. So some other 

scholars proposed the 
1

  minimum algorithm [12] which is equivalent to 

the
0

 minimum algorithm. According to the two algorithms, the convex 

optimization and the greedy algorithm are the main algorithms which include Basis 

Pursuit (BP), Gradient Projection for Sparse Reconstruction (GPSR), Iteration 

Threshold (IT)[13]and Regularize Adaptive Matching Pursuit (RAMP), Compressed 

Sampling Matching Pursuit(CoSaMP) [14]and so on. Utilizing the measurements to 

reconstruct the original signal as much as possible is the target of the reconstruction. 

So the measurement of the signal is the key to the CS, which determines the 

compress degree and the quality of the reconstruction.  

 

2.3. The Irrelevant Measurement 

This paper mainly makes an improvement for the irrelevant measurement. In the 

light of the CS theory, the measurement matrix must satisfy some conditions to 

make sure that the original signal 
N

Rx   can be reconstructed 

from
M
Ry   NM  . But, the equation is underdetermined that leads to the 

solution impossible. If x is sparse and the position of the non-zero coefficient α  is 

known, we shall get the solutions of the equations. Suppose KM  and for any 

vector ν  and the constant 0 , these are necessary and sufficient conditions that 

make the equation be solved is as follows:  

 

                                                                                                            (5) 

 

 

In other words, the matrix  must reserve the length of those special 

vectors which is K  sparse. Of course, the position of the non-zero coefficients in α  

is not known in normal conditions. However, for the signal which is K sparse, one 

of the conditions which can solve the problem is that the matrix   satisfies the 

inequality(5) for any sparse vector which is 3K order[3]. This condition is from the 

Restricted Isometry Property (RIP) proposed by Candes: 

For the matrix
NM

R


 , if for all the index set  NI ...,2,1  that 

satisfy MmI  and any vector 
I

Rv   ,if there is a constant 10    

that make the following formula enable. 

222
)1()1(

llIl
vvv  

                                                 (6) 

We are in the position to determine the matrix satisfying the RIP condition. 

Where I
 represents the sub-matrix that consisted of the column vectors in the 

matrix 


 pointed by the index set  NI ...,2,1 . 

The commonly used measurements include Gaussian random measurement matrix 

[15], Benoit random matrix [16], Toeplitz matrices [17], Some hadamard matrix 

[18], Sparse Random matrix [19] etc.. 

 


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2

2

ν

ν

app:ds:consist%20of


International Journal of Hybrid Information Technology 

Vol.8, No. 5 (2015) 

 

 

230   Copyright ⓒ 2015 SERSC 

Nowadays, the random measurement matrixes are widely used, such as Gaussian 

random measurement matrix. But the random measurement matrixes belong to non-

adaptive measurement, which leads to the high complexity of computation and 

difficult application to large-scale questions. 

J M Duarte-Carvajalino[20]proposed a method that use the adaptive measurement 

matrix in CS: Based on the correlation theory, the non-correlated condition of spares 

transformation matrix and measurements can be equal to the unit matrix 

approximation question of the Gramma matrix, where the Gramma matrix is  

  CS
T

CS
AAGram :                                                       (7) 

The unit matrix approximation question can be represented as follows： 

 
2

2

min IAA
CS

T
CS




 

s.t. 
CS
A                                                              (8) 

The basic meaning is that utilizing the base of sparse transformation matrix to 

transform the random measurement to an optimal measurement matrix lower 

coherent to the sparse transformation matrix by training. We would get the confirm 

measurement by adopting the K-VSD proposed by M Aharon[21][22]. The accuracy 

of reconstruction would be improved or the number of measurements be reduced 

under the same accuracy of reconstruction. 

Based on the J M Duarte-Carvajalino’s method, this paper proposes an improved 

method. We first generate two different random measurement matrixes, then, 

according to the sparsity of each image block, we can self -adaptively get the 

determinate measurement matrix of each block. And each block corresponds to two 

different measurement matrixes, and then we can get the optimal measurements by 

the way of combinatorial optimization. This is to be detailed in the following par t. 

 

3. AMCO-BCS 

The main process of the AMCO-BCS algorithm is that: 

Firstly, divide image A into BB   blocks: ),...,2,1( BBiA
i

  

Secondly, generate two different random measurement matrixes. According to 

different sparsity of the blocks, use the method proposed in 2.3 to generate two 

different self-adpative measurement matrixes
i1

 ,
i2

 ),...,2,1( BBi  . 

Thirdly, use the measurement matrixes of each block to project each block:  

              
ijiji
Ay   

Where BBi  ,...,2,1  , 2,1j  

Fourthly, the projections of each block are got. 

                                                            and 

Then we reconstruct each block with the two measurements and compare  the 

reconstruction accuracy of two measurements of each block. Choose the higher one 

as the optimal measurement. 

Finally, Use the optimal measurement to reconstruct the original image. The 

method of reconstruction is mainly based on the algorithm proposed by GanF, i.e. 

Linear prediction [23] based on the Minimum Mean Square Error (MMSE):  
2

2

min ii
xx



                                                                 (9) 
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iBi yxts



 ..                                                             (10) 

Where in the above formula 1
)(





T

BxxB

T

BxxB
RR  , 

xx
R represents the self-

correlation function of original signal. In natural images, 
xx
R  adopts AR (1) model 

[24] [25], where the self-correlation coefficient 95.0 . Lu GanF has made an 

improvement for this reconstruction method. The main point of the improved 

method is that using hard threshold and projection method in the convex sets [9]. 

And in addition, we only handle with each block in the process of reconstruction, 

with which saved the complexity of computation compared with the traditional CS 

which deal with full size of the image. The diagram of the algorithm is shown in 

Figure 1. 

 

 

Figure 1. Diagram of AMCO-BCS Algorithm 

Set X as original image and divide it into BB  blocks: 

),...,2,1( BBix
i

 . Set  as wavelet transform matrix of 

X and ),...,2,1( BBi
i

  is the wavelet transform matrix 

of ),...,2,1( BBix
i

 ; Set
i

1


, ),...,2,1(
2

BBi
i

 as the different 

random projection matrixes of ),...,2,1( BBix
i

 . Set 

i1
 ,

i2
 ),...,2,1( BBi  as the adaptive projection matrixes of i

x  generated 

from 
i

1
 and

i

2


. Set
i

y
1

,
i

y
2

as the projection of block i
x  using the projection 

matrixes 
i1

 and
i2

 ; Set y as the finally projection vector. Set i
PSNR

1 , i
PSNR

2 as the 

Peak Signal to Noise Ratio of the reconstruction of 
i
x  using the projection matrixes 

i1
 and

i2
  respectively.  

 

Begin {  

1. Wavelet transformation for X ： X  

   If   is sparse, go on; else, end the program; 

2. Divide image X  into blocks:  X                                                ; 

3. For i=0 to BB   {  

       1) Generate ),...,2,1( BBi
i

 . 

       2) Generate 
i1

 { 

),...,2,1( BBix
i


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Initialize
i

1
 ; 

Find the eigen-decomposition of 
i

1
  :

TT
VV ; 

Initialize V
i

1
 ; 

Iteration and Update: 
2

2

min 
T

; 

Compute the optimal: 
T

i
V

1
 ; 

} 

3) i2


Can be got using the same way as 
i1

 . 

          4) Compute the projection: iii
xy

11


 

                                      
iii
xy

22
  

          5) Reconstruct the block i
x : 

ii
yx
1

  

ii
yx
2

   

           6) Compute the PSNR1 and PSNR2; 

           7) If
ii

PSNRPSNR
21

 ,
ii

yy
2

 ; else, 
ii

yy
1

 .Save
i
y . 

       } 

        4. Get the optimal ]...,,...,[
21 BBi

yyyyy


 . 

        5. Reconstruct X : yX  . 

       } 

 

4. Experiments 
 

4.1. Experimental Environment and Index 

The natural images of Lena, Cameraman and etc. are adopted in the experiment as 

the experimental data. Use Matlab as the simulation software to simulate the 

experiment. The PSNR (Peak Signal to Noise Ratio) is adopted for the experiment 

as the index. 

 

4.2. Experimental Procedure 

1. Transform the original image using wavelet transform. The transforming result 

of Lina image is shown in Figure2. 

 

 

 

 

 

Figure 2. The Lena Image Using Wavelet Transform 
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As the CS theory tells, the necessary condition of the CS is that the original 

image or the transformed image must be sparse. It can be seen from Figure2 that the 

most part of the transformed image is black which means that the image is sparse. 

Then it can be concluded that the CS for this image is applicable.  

2. Divide the image into 16 blocks, the size of each is 64*64. 

Generate two different random measurement matrixes 1 and 2, then we can get 

the two self-adaptive measurement matrixes i1


, i2
 )16,...,2,1( i

. 

3. Adopt the random measurements 1 and 2 to project and reconstruct the Lena 

image by using BCS ,and at the same time ,adopt the i1


, i2


 to project and 

reconstruct the Lena image by using the AMCO-BCS proposed in this paper.  

The compared experimental results are shown in Figure 3. 

In Figure3 the BCS1 represents that we adopt random measurement matrix 1 

using BCS method and BCS2 represents that we adopt the random measurement 

matrix 2 using BCS method. 

 

Figure 3. The Lena Image Reconstructed with Different Methods 

The PSNR of BCS1, BCS2 and AMCO-BCS is shown in Table 1. 

Table 1. PSNR Using BCS1, BCS2 and AMCO-BCS 

Measuring 

method 

BCS1 BCS2 AMCO-BCS 

Lena 30.9907 39.4338 31.1423 

Cameraman 30.8320 30.8653 30.9126 

 

From Figure3 and Table 1, it can be seen that the reconstruction accuracy of 

AMCO-BCS is better than the BCS. 

The image can be divided into different number of blocks and the comparison 

between the BCS and AMCO-BCS in different blocks is shown in Table 2. 

 

 

 

 

BCS1      BCS2 AMCO-BCS 
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Table 2. Comparison between the BCS and AMCO-BCS in Different Number 
of Blocks 

Number of blocks  4 16 64 

Lena BCS 32.49

61 

32.29

01 

31.89

26 

AMCO-

BCS 

32.590

7 

32.34

23 

31.98

32 

Cameraman BCS 32.39

32 

32.11

32 

31.77

17 

AMCO-

BCS 

32.40

12 

32.27

2 

31.81

16 

 

Table 2 also shows that the reconstruction accuracy of AMCO-BCS is better than 

the BCS. 

In addition, the PSNR of the image of reconstruction in different sampling rates is 

shown in Figure4. 

All these experimental results demonstrate that the AMCO-BCS proposed in this 

paper is better than the BCS in reconstruction accuracy, but poorer than the CS, and 

other experimental results that we got using other images also proved the result. As 

in the aspect of the real-time performance, the AMCO-BCS is superior than that of 

the CS, for the AMCO-BCS divides the image into blocks and deals with them 

which means that the image can be dealt with when it is not yet completely 

transmitted. But because of the AMCO-BCS is more complicated than the CS, hence 

its performance is inferior to the CS in terms of real-time. In other words, the 

AMCO-BCS is a compromised method between the CS and BCS. On the basis of 

better real-time performance, the quality of the reconstructed image is guaranteed.  

 

 

Figure 4. The PSNR in Different Sampling Rates 

5. Conclusions 

The Compressed Sensing theory has produced a profound impact in the fields of 

Signal Processing, Image Capturing and Treatment as well as Computer Vision etc. 

Therefore, it is of vital importance. This paper introduced the Compressed Sensing 

theory, the Block Compressed Sensing theory and their respective applications 
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firstly and then emphatically introduced the whole content frame of CS theory in 

three parts at length. On this basis, the paper continued in detail introduction  of the 

proposed AMCO-BCS algorithm, and further proved its superiority by experiments. 

The AMCO-BCS algorithm effectively avoids the defects that severely disqualify 

the reconstructed image when using BCS. And the greatest advantage of the AMCO-

BCS is the optimal combination of measurements that enable the utmost preserve of 

the gained information that is required for reconstructing the image. Moreover, the 

measurements of the image can be taken as the features of the original images, and 

then we can apply the CS into the Machine Learning, which can be used in human 

face detection, gait recognition and so on. The method proposed in this paper 

optimizes the features of the images, so it has important reference value in pattern 

recognition and machine learning. 
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