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Abstract 

In this paper, a differential evolution (DE) algorithm combined with Lévy flight is 

proposed to solve the reliability redundancy allocation problems. The Lévy flight is 

incorporated to enhance the ability of global search of differential evolution algorithm. 

DE is used for local search mainly. The method considers the trade-off of the 

diversification and the intensification simultaneously. Experimental results for three 

benchmark problems demonstrate that the proposed algorithm is more effective for 

solving the reliability redundancy allocation problems. 
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1.  Introduction 

The reliability redundancy allocation problems are very important in industry and 

engineering fields. Usually two main ways have been used to enhance system reliability. 

They are by increasing the reliability of components and by using redundant components 

in the subsystems. The reliability redundancy allocation problems (RRAP) of maximizing 

the system reliability obey multiple nonlinear constraints [1].They belong to mixed 

integer programming problems. It can be formulated as following model uniformly: 

Max Rs = f(r, n)s.t.gj(r, n)≤bj, j = 1.. m; nj∈positive integer, 0≤rj≤1                           (1) 

Herein ri is the reliability of ith subsystem, ni is the count of components of ith 

subsystem. The f (.) is the objective function; the gj (.) is the jth constraint function; bj is 

the jth upper limitation; m is the number of subsystems. The goal of RRAP is to get the 

number of redundant components and the components’ reliability in each subsystem in 

order to maximize the overall system reliability.   

RRAP has been proven to be NP-hard problem. It has been studied for decades. A lot 

of different optimization technologies have been utilized to resolve it. Some methods 

called heuristics and meta-heuristics have been presented and applied [2-6].Recently some 

hybrid meta-heuristic methods have been proposed to solve the reliability redundant 

allocation problems [7-8], [12]. 

In this paper, a DE combined with Lévy flight algorithm is proposed. This method 

considers the trade-off of the diversification and the intensification simultaneously. It is 

used to solve three problems on reliability redundancy allocation problems. The 

experimental results demonstrate that the proposed algorithm has higher precision more 

effectiveness for reliability redundancy allocations problems. 
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2. The Algorithm Based on DE and Lévy Flight 
 

2.1. Lévy Flight 

In random search strategy, Lévy flight is a kind of random walk model used widely. Its 

walking step follows a heavy-tailed (heavy tailed) distribution (named Lévy distribution). 

It is named for by French famous mathematician Pierre Lévy who suggests it. 

In the nature, birds and insects find the food in a random way. In general, the search 

path of these animals is an effectively random flight because the next walk step is based 

on both the current position and the transition probability to the next position. The studies 

show that the flight action of many birds and insects proves the representative 

characteristic of Lévy flight. The flight distance from origin of these animals tends to a 

stable distribution after a lot of steps. Xin-she Yang simplifies the Lévy distribution and 

does Fourier transform, then gets the probability density function of Lévy distribution [13] 

as follows: 

Lévy~u = t
-λ

, (1<λ≤3)                                                                                                      (2) 

It has an infinite variance. When λ=3 it corresponds to Brownian motion, while λ=1 it 

has random tunneling function which can be more efficient to jump out local optima. 

For simplifying to be easy to program, a formulas for simulating Lévy flight proposed 

by Mantegna [15] is adopted. That is 

 

                                                                                                                   (3) 

 

Where s is random step, it obeys Lévy distribution. The μ and ν follow the normal 

distribution respectively as follows: 

                                                                                  (4) 

 

                                                                        (5) 

 

Γ is the Gamma function. β=λ-1, usually, β∈  (0, 2]. 

 

2.2. Differential Evolution Algorithm (DE) 

Differential evolution algorithm is an excellent evolutionary algorithm using real 

number code. Compared with the former genetic algorithm, differential evolution 

algorithm produces new population by mutation and crossover operations, and then uses 

the competition strategy of one to one to update the population. Now some variant of the 

DE algorithms have been appeared. But the DE/rand/1/bin has been widely used. This 

procedure is described as follows: 

S1: Initialize parameters F, CR and M. Wherein F is scale factor, CR is crossover rate; 

M is the number of population. 

S2: Randomly generating initial population. 

S3: Evaluate the population. 

S4: Mutation. 

S5: Crossover. 

Step 6: Selection. 

Step 7: stopping criterion. 

If the stopping criterion is satisfied, the procedure is end. Otherwise, go back to S4. 

 

3.  The DE Algorithm Combined with Lévy Flight 

The proposed algorithm used a random walk method called Lévy flight for 

enhanced global random search. Then differential evolution algorithm was adopted 
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to realize the local quick search. When generating new kth solutions, the Lévy flight 

is used to change position location of the global optimal solution. It is advantage to 

avoiding the local optima. The formula [14] is as follows: 

vbesti
k
 =  xbesti

k-1
 + α ○+ Lévy(λ)                                                                                     (6) 

Here Lévy(λ) = s, so the formula can also be described as follows: 

vbesti
k
 =  xbesti

k-1
 + α ○+ s                                                                                                (7) 

Where α is step size, it should be set according to the scale of the optimization 

problem. 

In DE algorithm, the local evolutionary strategy is adopted to generate the new 

candidate solution. This can increase the speed of getting the global optimal solution. 

These consider the diversification and the intensification of algorithms simultaneously. 

The local evolutionary strategy is shown as: 

Vi
k
 = xbesti

k-1
 + F× (xi1

k-1 
– xi2

k-1
)                                                                                    (8) 

vi 
k 
is the trial vector. The xi1

k
, xi2

k
 are two different individuals randomly selected from 

(k-1)th generation population, i1,i2 is random number ranged from 1 to M, and mutation 

factor F is a scale factor. 

The main procedure of the algorithm is shown as follows: 

Begin 

Objective function f(x), x = (x1, x2,…,xd)
T
 

Generating initial population 

Get the current optimal solution xbest 

While (t<MaxGeneration) or (stop criterion) 

vbesti
k
 =  xbesti

k-1
 + α○+s 

Calculating the fitness value of vbesti
k
 

If (fitness (vbesti
k
) is better than fitness (xbesti

k-1
)) 

               Xbestik-1
 
= vbestik 

End If 

For i = 1 to M 

                      Randomly generate three integers i1, i2 in [1, M], and i1≠ i2 ≠ i.  

                      vi
k
= xbesti

k-1
+ F× (xi1

k-1
− xi2

k-1
) 

                      Randomly generate an integer rd in the range [1, N] 

                      For j = 1 to N 

                          If rand < CR or j = rd 

                              ui,j
k
 = vi,j 

k
 

                          Elseif 

                              ui,j
k
 = xi,j

k-1
 

                          End If 

                     EndFor 

                     If f(ui
k
) < f(xi

k-1
)  

                           xi
k
= ui

k
  

                     Elseif 

                           xi
k
= xi

k-1
 

                     End If 

                  EndFor  

                  Get the current optimal solution xbest
k
 from this generation population 

If (a better solution is found) 

Update the current optimal solution 

End If 

t = t + 1 

End While 
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Post press the result and visualization 

End 

 

4. Case Studies and Comparisons 

In this part, the simulations based on three benchmark problems to test the 

performances of the proposed method for reliability redundancy allocation problems 

are implemented. And we compared with some other typical algorithms from the 

former literatures.  

To resolve the problem of violation of constraints, a penalty function approach is used 

to handle constrains. That is  
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Where F (x) represents penalty function, f (x) represents objective function. gj(x), (j = 

1, 2, p) represents the jth constraint, and λ is a large positive constant which imposes 

penalty on unfeasible solutions, and it is named as penalty coefficient. This penalty 

function is used to convert the constrained optimization to unconstrained optimization. 

 

4.1. Case Study 1: Series-Parallel System 

This case study [9] is shown as Figure 1: 

 
 

 

 

 

 

 

 

Figure 1. Series-Parallel System 

It is formulated as follows: 
          

 

 

 

                                                                                                                                                                                                                                         



 

                                           

 

Wherein m is the number of subsystems, ni is the number of components of ith 

subsystem, Ri ( ni ) is the reliability of ith subsystem , f (.) is the reliability of the system; 

wi is the weight of each component in ith subsystem, vi is the volume of each component 

in ith subsystem; ri  is the reliability of each component in ith subsystem; The item αi(-

1000/lnri)
βi
 is the cost of each component in ith subsystem , the parameters αi and βi is the 

constant value(usually assume that have been given),1000 is the task time of the 

components(it is commonly expressed in Tm); V is the upper limit of total volume of the 

system, C is the upper limit of total cost of the system, W is the upper limit of total weight 

of the system. The values of parameters are set in Table 1: 
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Table 1. The Parameters of Series-Parallel System 

 
 

4.2. Case Study 2: Complex (bridge) System 

This Case study [10] is shown as Figure 2: 

 

 

 

 

 

 
 

Figure 2. Complex (bridge) System 

It is formulated as follows: 
                                       

(11) 

 

The constraints are the same as case study 1. The values of parameters are listed in 

Table 2: 

Table 2. The Parameters of Complex (bridge) System 
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tem i 

1
05αi 

β

i 
w

ivi
2 

w

i 
V C W 

1 2

.33 

1

.5 

1 7 1

10 

1

75 

2

00 

2 1

.450 

1

.5 

2 8    

3 0
.541 

1
.5 

3 8    

4 8

.050 

1

.5 

4 6    

5 1
.950 

1
.5 

2 9    

 

4.3. Case study 3: Over Speed Protection System 

The Case study 3 is used to over speed protection of a gas turbine. Once the over 

speed occurs, the system will be stop. This problem [11] is shown as Figure 3: 

 

 

Figure 3. The Over Speed Protection System of a Gas Turbine  
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This system can be viewed as an N-stage (N=4) mixed series-parallel systems. It is 

formulated as follows: 
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Wherein 
i

iii
rTrC


 )ln/()(  , T is the mission time of the components, αi and βi are 

the same as series-parallel systems. 

The values of parameters for this problem are set in Table 3: 

Table 3. The Parameters of Over Speed Protection System 

 
To analyze the performance of the proposed algorithm, it is developed for three bench 

mark problems for reliability redundancy allocations problems. For this algorithm, the 

maximum number of iterations is set to 800, set F=0.7, CR=0.8, population size M=40. 

The parameters of α and β in Lévy flight are 0.01 and 2 respectively. The algorithm runs 

50 times independently for every problem. The best results are listed in Table 4, Table 5, 

and Table 6. 

MPI (maximum possible improvement) index is used to measure the relative 

improvement. And it is described as:  

MPI (%) = (f − fother)/ (1 − fother)                                                                                    (13) 

Where f represents the best value obtained by the proposed method, and fother represents 

the best value obtained by one of the other approach in literatures. It should be 

emphasized that even very small improvements in reliability are very important in high 

reliability application systems. 

Table 4.  Best Results Comparison on Series Parallel System 

 
Note: (1) the bold values denote the best values of those obtained by all the algorithms. 

(2)Slack is the unused resources. 
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Table 5. Best Results Comparison on Complex (bridge) System 

 
Note: (1) the bold values denote the best values of those obtained by all the algorithms. 

(2) Slack is the unused resources. 

Table 6. Best Results Comparison on Over Speed Protection System 

 
Note: (1) the bold values denote the best values of those obtained by all the algorithms. 

(2)Slack is the unused resources. 

 

Table 4 Table 5 and Table 6 compare the best results of three reliability optimization 

problems with those reported in the literatures. It is clear that the proposed algorithm can 

attain a better result than any other approach proposed in literatures.  

Table 4 shows that the best results reported by Hikita et al.[9], Hsieh, et al.[2] and 

Chen[3] were 0.99996875, 0.99997418 and 0.99997658 for the series–parallel system 

respectively. The result obtained by TSDE is better than the above three best solution, and 

the corresponding improvements made by the presented method are 25.28%, 9.57% and 

0.30% respectively.  

Table 5 shows that the best results reported by Hikita et al.[9], Hsieh et al.[2], Chen[3] 

and Coelho[16] were 0.9997894, 0.99987916, 0.99988921 and 0.99988957 for the 

complex (bridge) system respectively. The result obtained by TSDE is better than the 

above four best solution, and the corresponding improvements made by the presented 

method are 47.597%, 8.673%, 0.388% and 0.063% respectively. 

Table 6 shows that the best results reported by Yokota et al.[10], Dhingra[11], Chen 

[3] and Coelho[16] were 0.999468, 0.99961, 0.999942 and0.999953 for the overspeed 

protection system respectively. The result is better than the above four best solution, and 

the corresponding improvements made by the presented method are 91.48%, 88.38%, 

21.84% and 3.55% respectively. 

In short, the proposed DE algorithm combined with Lévy flight is an effective 

algorithm, and it has got better solution than the other methods for reliability redundancy 

allocation problems. 
 

5. Conclusion 

In this paper, we proposed a DE algorithm combined with Lévy flight to solve the 

reliability redundancy allocation problems. The Lévy flight is used to enhance the 

ability of global search of differential evolution algorithm. DE is used for local 

search mainly. The proposed algorithm considers the trade-off of the diversification 

and the intensification simultaneously. Experiments results based on three 
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benchmark problems are obtained and be compared with some methods in the 

literatures. It is showed that the presented algorithm was effective and outperformed 

the other methods in the literatures. In the future work, it will be used to solve other 

more complex optimization problems. 
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