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Abstract 

In most previously reported studies on pseudonoise (PN) code acquisition, independent 

additive noises have been assumed in various noise environments. The use of an independent 

observation model may cause considerable performance degradation in modern high data-

rate communication systems. In these studies, only additive noise model is considered. In this 

paper, a new detector for PN code acquisition in multiplicative and weakly dependent non-

Gaussian noises is proposed. Modeling the acquisition problem as a hypothesis testing 

problem, the test statistical is derived for multiplicative and weakly dependent non-Gaussian 

noises, based on the locally optimum detection technique. Numerical results show that the 

proposed detector can offer substantial performance improvement over the conventional 

schemes in multiplicative and weakly dependent non-Gaussian noises. 

 

Keywords: direct sequence spread spectrum; locally optimum detection; 
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1. Introduction 

Rapid establishment of code acquisition is an important technical issue in direct-sequence 

spread-spectrum (DS-SS) systems. The basic unit in an acquisition system is a decision-

making device or a detector. Most schemes proposed for rapid code acquisition employ the 

squared-sum (SS) detector with a noncoherent in-phase/quadrature-phase (I-Q) correlator [1]. 

This is because the SS detector is optimized for Gaussian noise channels, and the statistics 

due to fading in acquisition systems can usually be modeled as Gaussian processes by virtue 

of the central limit theorem. Some schemes are proposed for code acquisition systems in 

applications with non-Gaussian noises [2-3], such as atmospheric and man-made noise arising 

in indoor/outdoor mobile communication systems. These acquisition schemes are also 

proposed for the additive noise model, in which noise is added to a signal to generate 

observations. In some different types of situations, such as the multipath or reverberation 

phenomena and the actions of automatic gain control circuits or of nonlinearities acting on 

additive signal and noise components, the multiplicative noise models have to be considered 

[4-5]. 

In a number of the studies [4-8], the signal detection in multiplicative noise has been 

explored. But those researches are limited only in one-dimensional signal detection. And in 

these studies, independent noises have been assumed in various noise environments, however, 

is frequently violated, especially in modern discrete-time signal-detection applications, where 

the noise components contained in the sampled data tent to have dependence due to a very 

high sampling rate. As a consequence, a detector optimized for independent noise is often not 

guaranteed to be optimum in practical signal detection systems, which becomes more critical 

as the sampling rate increases. 

In this paper, we focus on the code acquisition in multiplicative and weakly dependent 

non-Gaussian noise environments. In particular, we consider the locally optimum detection of 

DS/SS signal based on the generalized version of the Neyman-Pearson fundamental lemma 
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[9-11] of statistical hypothesis testing. Locally optimum (LO) detectors are optimum in 

detecting weak signals, since an LO detector has the maximum slope of its power function 

when the signal-to-noise ratio (SNR) approaches zero [12-13]. Although much effort has been 

devoted to the code acquisition using LO detectors in non-Gaussian or Gaussian noise 

environments [12-14], only the independent and additive noise model has been considered. In 

the rest of this paper, we will employ locally optimum (LO) detectors for code acquisition 

systems in multiplicative and weakly dependent non-Gaussian noises. 

The remainder of this paper is organized as follows. In section 2 the observation model of 

the received signal and the hypothesis testing model in multiplicative and weakly dependent 

non-Gaussian noises are given. Then the LO detector test statistic is derived in section 3. In 

section 4, based on the new acquisition scheme, the numerical results of detection probability 

are given. 

 

2. Observation Model 

Considering the multiplicative and weakly dependent non-Gaussian noises model for a DS-

SS system, the received signal can be expressed as  

)()()()()( twtntststr                                                     (1) 

where )(ts is the primary direct-path signal; )(tn is the additional multiplicative noise which 

may be characterizing the fading amplitude characteristics of secondary propagation paths; 

)(tw  is the weakly dependent non-Gaussian noise, )(tn is a random variables independent of 

)(ts  but generally correlated with )(tw . And )(ts  can be expressed as [1] 

( ) 2 ( ) ( )cos( )
c c c

s t Ed t T c t T t                                      (2) 

In equation (2), E is the energy per chip; d(t)  is the data sequence waveform, and in this 

paper it is assumed that there is a preamble for acquisition so that no data modulation is 

present during acquisition (i.e., 1)( td ); cT is the chip duration;   is the time delay 

normalized by cT ; 



 )()( cTi iTtpctc

c
 where }1,1{ ic  is the thi chip of a 

pseudonoise (PN) code sequence of period L  and )(tp
cT  is the PN code waveform defined 

as a unit rectangular pulse over ],0[ cT ;  c  is the carrier angular frequency;   is the phase 

distributed uniformly over )2,0[  . 

A typical structure of the noncoherent I-Q correlators receiver is shown in Fig.1. We 

consider the serial search scheme with single dwell [1]. The thi  sampled I-Q components 
I

iX  and 
Q

iX  can be obtained as, for Mi ,,2,1   

ˆ( ) ( ) 2 cos( )
i

i c

t

I

i c c

t T

X r t c t T t dt 


                                     (3) 

ˆ( ) ( ) 2 sin( )
i

i c

t

Q

i c c

t T

X r t c t T t dt 


                                     (4) 

respectively, where M  is the correlation length, ̂  is the time delay (normalized by the chip 

duration cT ) of the locally generated PN code, and ci iTtt  0 . Here, 0t is an initial time. A 

test statistic is evaluated with the vectors 
M

i

I

iX 1}{   and
M

i

Q

iX 1}{  , and then compared with a 

threshold. In the conventional systems, the test statistic is, for example, the SS 

statistic
2 2

1 1
( , ) ( ) ( )

M MI Q I Q

SS i ii i
T X X X X

 
   . 
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Figure 1. Structure of PN Code Acquisition System 

The PN code acquisition problem can be regarded as a hypothesis testing problem: given 
M

i

I

iX 1}{   and
M

i

Q

iX 1}{  , a decision is to be made between the null hypothesis 0H  and 

alternative hypothesis 1H , where 1ˆ:0 H  and 1ˆ:1 H . Under 1H , each 

sampled correlation value between the locally generated and received PN codes 

is )1( E , where   is the residual shift (normalized by cT ) between the two PN codes, 

with the value ranging in the interval )1,1(  . For simplicity, we assume that the system is 

chip synchronous (that is, 0 ) as in most other studies (an investigation of the effect of a 

nonzero   has been considered in [15]). Thus, each sampled correlation value is E . On the 

other hand, each sampled correlation value is +1 or -1 with equal probability, and the mean 

value of the sampled correlation is 0 under 0H . From these results and equation (3) and (4), 

0H  and 1H  can be alternatively expressed as 

0
: ( , ),      1,2,

I I Q Q

i i i i
H X W X W i M                                                 (5) 

1
: ( cos cos , cos cos ),       1,2, ,

I I I Q Q Q

i i i i i i
H X N W X N W i M              (6) 

Or simply described as 

 

0
: 0H                                                                      (7) 

1
: 0H                                                                      (8) 

 

In equations (5)-(8), E  is the signal strength parameter, 
M

i

b

iN 1}{   and 
M

i

b

iW 1}{   with 

},{ QIb   are the I-Q multiplicative noise and additive noise respectively. Let IN
f , QN

f , 

IW
f  and QW

f  be the common probability density function (PDF) of the I-Q multiplicative 

noise and additive noise, and IIWN
f  and QQWN

f  denote the common joint PDF of ),( II WN  

and ),( QQ WN  respectively, which are i.i.d. random variables. Finally, 
),( QQII WNWN

f  and 

Wf denote the joint PDF of observation noise of I-Q components under 1H , and 0H  

respectively.  

Assuming that the degree of dependence among noise components is weak, the dependent-

noise components 
M

i

I

iW 1}{  and
M

i

Q

iW 1}{   in this paper are modeled by the first-order moving 

average (FOMA) of i.i.d. random variables, which has been proved to be a simple and good 

approximation to the weakly dependent noise environment [16-17]. Specifically, let us 

assume that 

I

i

I

i

I

iW 1                                                     (9) 
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Q

i

Q

i

Q

iW 1                                                 (10) 

where   is called the dependence parameter determining the correlation coefficient of 

I

iW and 
Q

iW especially, and  M

i

I

i 1
  and  M

i

Q

i 1
  are i.i.d. random process with 

000  QI
. In this paper, We model 

I and 
Q with symmetric  -stable ( SS ) 

distributions, which have been proved to be very useful in modeling non-Gaussian noise [18]. 

The joint probability density function of 
I

i and 
Q

i can be most conveniently defined by 

the inverse Fourier transform (IFT) of their characteristic function [18] 

1 1 2 2

1 2

( )2 2 2
, , , 1 2 1 1 2 2 1 2 1 22

1
( , ) exp[ ( ) ( ) ]e

(2 )

i x xf x x i d d
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            


 

 

 

                   (11)   

where the parameter  and  are termed the characteristic exponent and dispersion, 

respectively, and 1 and 2  are location parameters. The characteristic exponent ranges in 

the interval 20  with a smaller  indication heavier tails (more impulsive behavior). 

The dispersion  is a positive constant relation to the spread of the PDF. The location 

parameters 1 and 2  are the symmetry axes of the marginal SS distributions: we 

assume 021   , without loss of generality. Unfortunately, no closed-form expression 

exists for (11), except for the special cases of 1 and 2  

3

2 2 2 2

1 2
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           for 1 
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exp( )          for 2 

4 4

x x
f x x

x x
 




 


 



 



 






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                           (12) 

Because of such a lack of closed-form expressions, we concentrate on the case 1 . 

Nonetheless, we shall see in Section 4 that the system obtained for 1  is not only robust to 

the variation of , but also outperforms the conventional system for most values of . 

Assuming that the samples },{ Q

i

I

i XX  of the bivariate noise process form a sequence of 

independent random vectors for a given , these joint PDF of M2  sampled in-phase and 

quadrature observations },{ Q

i

I

i XX , Mi ,,2,1   is  
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Where E denotes the expectation over , and 
I

iy  and 
Q

iy  can be expressed as 

 coscos)( I

i

I

i

I

i nxy                                (14) 

 coscos)( Q

i

Q

i

Q

i nxy                                (15) 

Substituting equations (9) and (10) into equation (13), the joint PDF of M2  sampled in-

phase and quadrature observations },{ Q

i

I

i XX  can be rewritten as follow 
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i XY  for },{ QIb  . Then the 

null hypothesis 0H  and alternative hypothesis 1H  can be transformed as for Mi ,2,1  

0
: ( , )

I I Q Q

i i i i
H Y Y                                                                                    (17) 

1
: ( cos cos , sin sin )

I I I Q Q Q
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And the joint PDF of M2  sampled in-phase and quadrature observations
M

i

Q

i

I
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Where  

( ) cos cos
I I I

i i i i
V Y C U                                                (20) 

( ) sin
Q Q Q

i i i i
V Y C U Sin                                                (21) 

 

3. LO Detector Test Statistic 

The test statistic of an LO detector is obtained as [6, 12] 

,

0

0,
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where v is the order of the first nonzero derivative of ),(
,

QI

YY
YYf QI  at 0 . As shown in 

the appendix, the test statistic of the LO detector is 
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for },{ QIb  .  

Compared with the test statistic of the LO detector in the additive and independent noise 

environments [13], it is noteworthy that the multiplicative noise introduces the extra terms 

},|){( 2 Q

i

I

i

b

i YYUCE   and }),|){( Q

i

I

i

b

i YYUCE   for each )( b

iYh  and )( b

iYg  

in the test statistic, and the dependent noises introduces the new variables 
b

iY ,
b

iU and iC . If 

there is no multiplicative noise ( 0N ) and the noise is independent, the proposed LO 

detector has the same test statistic with the LO detector work in non-Gaussian channels which 

researched in [13]. Since the FOMA noise model is a simple and good approximation to the 

weakly dependent noise environment, we can ignore the high-order terms of 

 ( }3,2{ Mii  ) to get the simpler-LO detector. And then the test statistic of 

simpler-LO detector can be obtained 

)2(1,1

),(),(
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
iuCXXY

QI

LO

QI

SLO
i

b
i

b
i

b
i

YYTXXT


)2,1( Mi      (26) 

In equation (26) 00 
bX and },{ QIb  , and )(iu is the unit step sequence, i.e., 

0)( iu when 0i and 1)( iu  when 0i . 

 

4. Simulation Results 

In this section, the performance of the proposed simpler-LO (PS-LO) detector and 

conventional SS detector and the Non-Gaussian Additive and Independent LO (NAI-LO) 

detector [13] is simulated with a PN code of 1023L chips, generated form an m sequence 

with the primitive polynomial
1031 zz  when 50M . Because it is difficult to get explicit 

closed-form formulations for finite sample-size performance, we resorted to Monte Carlo 

simulations to show the results.  

In our simulations, we will consider a specific example to illustrate the results, we assume 
bb rsWN   for },{ QIb  . r  is the correlation coefficient between 

bN  and 
bW , and 

QI NN ,  have same variance
222 sQI NN

 . Noise samples }{ I

i and }{ Q

i  are generated 

from [19]  

1 1

1
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B
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




                                (27) 

where A is uniform on )2,2(  and B is exponential with mean 1. Since SS noise 

with 2 has no finite variance, making the standard SNR measure inconsistent, a new scale 

parameter is used to indicate the strength of the SS noise. The new SNR, which provides a 

mathematically and conceptually valid characterization of the relative strength between the 

information-bearing signal and channel noise with infinite variance, is defined as 

2

2

0

1
( )

2 (1 )
g

E

C S
                                              (28) 

where 1

0
( )

g g
S C C


 with 1.78

g
C   the exponential of the Euler’s constant 

1
(lim ( (1 ) ln ))

n

n k
k n

 
 . The normalizing constant 2

2 (1 )
g

C  ensures that the definition of 

the SNR coincides with that of the standard SNR in the independent Gaussian case. Because 

 can be easily and exactly estimated using only the sample mean and variance of 
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observations 
IX or

QX [20], it may be regarded as a known value: in our simulations, we 

assume 1 . 

Each point in Figure 2, 3, 4and 5 was obtained from 100 000 runs to make the relative 

error less than %1  for a false-alarm probability 2
10

fa
P


 . Figure 2 shows the detection 

probabilities of conventional SS detector, the NAI-LO detector and the proposed Simpler-LO 

detector for some values of rs and dependent parameter  in multiplicative and weakly 

dependent non-Gaussian noises for 1 . Figure 3 shows the detection probabilities plotted 

as a function of   for some values of SNR/chip and rs  in multiplicative and weakly 

dependent non-Gaussian noises for 1 . Figure 4 shows the detection probabilities plotted 

as a function of rs  for some values of SNR/chip and   in multiplicative and weakly 

dependent non-Gaussian noises for 1 . From these plots, it is observed that the proposed 

detector significantly outperforms the conventional SS detector and the NAI-LO detector in 

multiplicative and weakly dependent non-Gaussian noises.  
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Figure 2. Detection Probabilities of the Conventional SS Detector, the NAI-LO 

Detector and the Proposed Schemes for Different rsand   when 2
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Figure 3. Detection Probabilities Plotted as a Function of   for some Values of 

SNR/chip and rs  when 2
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
  and 50M  in Multiplicative and Weakly 

Dependent Non-Gaussian Noises for 1  
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Figure 5 shows the detection probabilities of the detectors as a function of   for some 

values of   , rs and SNR/chip. We can clearly see that the proposed simpler-LO detector 

significantly outperforms the conventional SS detector for most values of , and performs 

better than the NAI-LO detector for all values of . Only when  is close to two, the 

conventional SS detector performs slightly better. Another important observation is that the 

performance of proposed simpler-LO detector are robust to the variation of the value of . In 

addition, the proposed detector performs better as the impulsiveness becomes higher. This can 

be explained as follows, Impulses which have large amplitudes are clipped in the proposed 

detector. Therefore, the effective noise variance at the output of the proposed detector is 

smaller than the total input noise variance. 

 

1

4.0

dBchipSNR 5/ 

dBchipSNR 10/ 

dBdBchipSNR 10,5/ 

 

Figure 4. Detection Probabilities Plotted as a Function of rs  for Some Values of 

SNR/chip and   when 2
10

fa
P


  and 50M  in Multiplicative and Weakly 

Dependent Non-Gaussian Noises for 1  



05.0rs
1.0

dBchipSNR 10/ 

 

Figure 5. Detection Probabilities of the Detectors as a Function of   for Some 

Values of   , rsand SNR/chip when 2
10

fa
P


  and 50M   



International Journal of Hybrid Information Technology 

Vol.8, No.4 (2015) 

 
 

Copyright ⓒ 2015 SERSC  23 

5. Conclusions 

In this paper, a new detector for DS-SS code acquisition in the environments with 

multiplicative and weakly dependent non-Gaussian noises has been proposed. Using the 

locally optimum test statistic, a decision rule of code acquisition has been derived and a new 

acquisition system has been proposed based on the decision rule. The performance of the 

proposed scheme has been compared with that of the conventional schemes. From the 

simulation results, it has been observed that the proposed scheme significantly outperforms 

the conventional SS detector and the NAI-LO detector in multiplicative and weakly 

dependent non-Gaussian noises. 
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Using (40) and (43) in (38), and then dividing the result by 
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