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Abstract 

In this paper, we applied Sumudu decomposition method coupled with the Taylors 

series to solve linear and non-linear Advection problems. It is observed that the proposed 

method is highly suitable for such problems and overcomes some of the basic deficiencies 

of traditional decomposition method. Several examples are given to re-confirm the 

efficiency of the suggested algorithm. 
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1. Introduction 

The rapid development of nonlinear sciences witnesses a wide range of analytical and 

numerical techniques by various scientists. Most of the developed schemes have their 

limitations like limited convergence, divergent results, linearization, discretization, 

unrealistic assumptions and non-compatibility with the versatility of physical problems 

[1-21]. The basic motivation of present study is the extension of traditional Modified 

Decomposition Method coupled with the Taylor’s series [10, 11] to tackle linear and 

nonlinear advection problems which arise very frequently in applied and engineering 

sciences. It has been observed that the coupling of decomposition method with Taylor’s 

series enhances its efficiency and reduces the computational work to a tangible level. 

Moreover, this version is more user-friendly and it overcomes the complexities of 

selection of initial value. Several examples are given which reveal the efficiency and 

reliability of the proposed algorithm. 

 

2. Definitions and Properties of the S–Transform 

In early 90’s, Watugala [21] introduced a new integral transform, named the 

Sumudu transform and applied it to the solution of ordinary differential equation in 

control engineering problems. Sumudu transform is defined over the set of the 

following functions 
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Some special properties of the Sumudu transform are as follows: 
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5. Other properties of the Sumudu transform can be found in [22]. 

 

3. Method of Analysis 

We consider the general inhomogeneous nonlinear equation with initial 

conditions given below: 

  ),,( txhNURULU         (4)  

Where L  is the highest order derivative which is assumed to be easily invertib le, R  

is a linear differential operator of order less than L , NU  represents the nonlinear 

terms and ),( txh  is the source term. First we explain the main idea of SDM: the 

method consists of applying Sumudu transform 
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Using the differential property of Sumudu transform and initial conditions we get
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By arrangement we have 
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The second step in Sumudu decomposition method is that we represent solution as 

an infinite series: 
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and the nonlinear term can be decomposed as 
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Where iH  are He’s Polynomials of 0U , 1U ,... nU and it can be calculated by 

formula 
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Thus, we have                                             
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On comparing both sides and by using standard SDM we have: 
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Then it follows that 
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In more general, we have 
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On applying the inverse Sumudu transform 
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Where ),( txK represents the term that is arising from source term and prescribed 

initial conditions in the form of Taylor series. 

 

4. Numerical Applications 
 

Example 4.1 Consider the following partial differential equation 
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with initial conditions, 
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Taking the Sumudu transform of Equation (16) with respect to t, we get     
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Taking the inverse Sumudu transform of Eq. (18) on both sides 
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Eq. (19) we can write in the following form  
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Applying the Taylor series, we get 
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According to the proposed technique, we have the following recurrence relation 
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Consequently, following approximation obtained, 
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The series solution is 
2
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and the closed form is given by 
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Figure 1. Graphical Representation of u(x,t) at Different Values of x 
and t 

Example 4.2: Consider a nonlinear partial differential equation  
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with initial conditions 
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Taking Sumudu transform to Eq. (26) and (27), we obtain 
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By applying the inverse Sumudu transform, we get 
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Which assumes a series solution of the function ),( txu and is given by 
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iH  And iB  are He’s polynomials that represent nonlinear terms. Apply the Taylor 

series, we get 
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Thus by comparing the coefficients of p  , we get 
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Therefore we have series solution, 
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Therefore the exact solution when 1p  is 
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Figure 2. Graphical Representation of the u(x,t) 

Example 4.3: Consider partial differential equation 

2 2 21
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with initial conditions, 

( ,0) 0,u x                                                                                                             
(38) 

Taking the Sumudu transform of Equation (37) with respect to “t”, we get 
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where iH  are He’s polynomials that represent nonlinear terms 
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Applying the Taylor series, we get 
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Thus by comparing the coefficients of p  , we get 
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Therefore the exact solution when 1p  is 
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Figure 3. Graphical Representation of Solution u(x,t ) for Different Values of 
x and t 

 

Example 4.4 Consider the following partial differential equation with initial 

condition  
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Taking the Sumudu transform of Equation (48), we get 
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Which assumes a series solution of the function ),( txu and is given by 
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where iH  are He’s polynomials that represent nonlinear terms. Apply the Taylor 

series, we have 
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Thus by comparing the coefficients of p  , we get 
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Therefore we have series solution, 
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Therefore the exact solution when 1p  is 
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.                     

Figure 4. Graphical Representation of Solution u(x,t) for Different Values of 
x and t 

5. Conclusion 

Sumudu Decomposition method coupled with Taylor’s series is applied successfully to 

solve linear and nonlinear Advection problems. Moreover, suggested method makes the 

selection of initial values extremely simple and hence enhances its efficiency. 
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