
International Journal of Hybrid Information Technology

Vol.8, No.3 (2015), pp.395-406

http://dx.doi.org/10.14257/ijhit.2015.8.3.36

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Recovering YAFFS2 Files for Forensic Analysis Based on

Timestamps and Tnode Trees

Na Huang
1
, Jingsha He

1,2
, Bin Zhao

1
,

Xuejiao Wan

1
, Gongzheng Liu

1
 and

Mingming Duan
2

1
School of Software Engineering

Beijing University of Technology, Beijing 100124, China
2
Information Technology Department

Beijing Development Area Co., Ltd., Beijing 100176, China

E-mail:15264712494@163.com

Abstract

As Android-based intelligent devices get more popular, digital technologies for forensic

investigation have received increasingly more attention. Among the main technical issues

in digital forensics, however, data recovery requires a significant amount of effort. In this

paper, we first analyze the characteristics of the NAND flash storage as well as the

mechanisms in the YAFFS2 file system. We then propose a file reconstruction method

based on timestamps using Tnode trees in the YAFFS2 file system. Based on the last

access timestamp information in the object header and the process of creating Tnode tree,

the proposed method can be used to locate valid data blocks so as to recover the original

files and would thus be able to reconstruct the file system. Experiments conducted under

the Linux operating system over image files show that the proposed method could recover

the final version of files effectively and would also perform more efficiently compared to

similar methods.

Keywords: Security, Digital Forensics, Data Recovery, YAFFS, Timestamp, Tnode

1. Introduction

With the rapid development of mobile communications technologies, information has

become an indispensable resource in our everyday life. However, such communication

technologies raise various security issues while providing a great deal of convenience to

users. One such great challenge is that more and more criminal cases and civil disputes

now involve electronic data. Consequently, there is the need to prove the existence of

some events in a way that can be admitted into the court through forensic approaches.

Since mobile devices, especially smart phones and intelligent terminals with multiple

functions and capabilities, are widely used, they have drawn a great deal of attention from

security engineers as well as from forensic investigators.

As an operating system designed specifically for mobile devices, Android has so far

taken about 80% of market share in the worldwide and, without much doubt, has become

a major platform for acquiring and analyzing digital evidence. During the process of

digital forensics, one clear observation is that deleted data on smart phones is possibly

related to user behavior and could be an important part of the digital evidence. As a result,

recovering data from static storage media in a forensically sound manner is necessary

during any investigation procedure. Data recovery from Android-based intelligent devices

has to involve NAND, the non-volatile flash memory which has been widely used in

Android smart phones, and YAFFS2 (Yet Another Flash File System 2) which is the file

system that has been designed specifically for the NAND flash memory that Google has

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

396 Copyright ⓒ 2015 SERSC

adopted as the official file system for Android smart phones and other types of intelligent

devices.

In this paper, we first explore the characteristics of NAND flash memory and YAFFS2

file system. To reduce the time it takes to reconstruct files, we take advantage of the

Tnode tree structure to build file system so that each data page only needs to be scanned

once in the recovery process. In addition, since different versions of files can be

distinguished by timestamps, we only reconstruct the latest version of the file system

based on the time of the last access to files. As the result, we propose a new method to

recover files from YAFFS2 based on timestamps using the Tnode tree. We will also

perform some experiments to show that the proposed method is effective and can

reconstruct files more efficiently.

The rest of this paper is organized as follows. In Section 2, we review some

related work. In Section 3, we describe some main characteristics of NAND and

YAFFS2 for data recovery. In Section 4, we describe our proposed method which

includes a flow diagram and a step-by-step description of the method. In Section 5,

we present some experiment results to show the performance advantages of the

proposed method. Finally, in Section 6, we conclude this paper in which we also

discuss our plan for future work.

2. Related Work

There has been some research effort on data recovery that relies on the metadata of the

underlying file system. Luck and Stokes proposed an approach to recover files from

handset memory dumps after studying the structure of the FAT file system [1], which

afterwards was also applied to the Ext3 and Ext4 file systems. Manning described a

reasonable amount of core mechanisms that make YAFFS work including coding

strategies, garbage collection and object management [2], which helps greatly in the

understanding of YAFFS. In [3], a data recovery program was proposed for Android-

based mobile phones that was claimed to be able to recover over 90% of modified files

without using a backup strategy, which shows that data that has not yet been erased by the

garbage collection could be recovered effectively. Although Android phones can serve as

a large data repository that would allow forensic engineers to acquire relevant data,

collect information about their owners as well as a variety of facts that are under

investigation, however, specific features of each smartphone platform generally have to

be considered prior to data acquisition. Paper [4] proposed a method to perform data

acquisition from Android smartphones regardless of versions and manufacturers. Yang, et

al., performed some experiment with the Linux operating system to demonstrate that

using reversed-scanning and YAFFS2 metadata, deleted files could be correctly recovered

[5]. The main metadata that was used in the experiment includes object ID, chunk ID and

sequence number of blocks. Spreitzenbarth, et al., provided an overview of the YAFFS2

file system from the point of view of digital forensics and demonstrated how garbage

collection and wear leveling techniques could affect the recoverability of deleted and

modified files [6]. Sack, et al., analyzed the structure of the Android system and created a

forensic guide with the conclusion that all data stored on Android smart phones could be

examined [7]. Sylve, et al., discussed some of the challenges in performing Android

memory acquisition and developed a new kernel module called dmd for memory dumping

[8]. In the work, the kernel structure was analyzed through using newly developed

volatility functionality and the results illustrated the great potential that deep memory

analysis could offer to digital forensic investigators. It was claimed that if spare area of

flash memory pages doesn’t exist or it is created from the unallocated area of the

undamaged file system, reconstruction of the file system would not be possible [9]. To

solve the problem of fragmentation, the work also proposed some new analysis techniques

for fragmented flash memory pages in smartphones. Dibb and Hammoudeh developed an

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 397

open-source toolkit that is aimed to automatically extract and handle all data from

Android-based devices [10]. Wu et al. presented a recovery approach for SQLite history

recorders from YAFFS2 that can correctly recover updated or deleted records in Android

smart phones [11] through acquiring Android image in logical method and then recording

the object ID, object type and chunk ID of each chunk sequentially to prepare for

reversed-scanning. During the scanning process, useful information is stored in an array

and the timeline of SQLite operating log is constructed. Based on previous studies [5, 11],

they further proposed a metadata-based method for recovering file traces that contain all

the versions of files from YAFFS2 [12].

The above effort shows that it is possible to recovery files from NAND flash

memory as long as the actual data still resides on the flash chip. But all of their

method are attempt to find all pages belong to the current file according to object ID

when meet an object header. It may results that scanning a data page two or more

times.

3. YAFFS and Tnode Tree

3.1 The NAND Flash

NAND is an electrically erasable and reprogrammable non-volatile flash memory with

such advantages as low-power, portable and low cost. NAND must be erased first before

it can be rewritten, which is very different from the magnetic storage medium. The

NAND flash memory is organized into a series of blocks with 32, 64 or 128 pages in each

block. The basic unit of writing operation for NAND flash is one page while data has to

be erased in blocks [6]. A page is further divided into usable and spare areas. The usable

area is used to store user data while the spare area is used to store file system metadata [5,

12]. There is a limit on the number of times that NAND flash blocks can be reliably

programmed and erased. A technique known as wear ensures that all physical blocks are

exercised uniformly. To maximize the life of NAND, it is critical to implement both wear

leveling and garbage collection. An effective strategy is out-of-place updates in which

new data cannot be overwritten at the same location occupied by old data [6]. This

strategy is forensic-friendly since deleted files still exist in NAND and can thus be

recovered during investigation [6].

To reflect the special requirements of NAND, the design of YAFFS2 implements

wear-leveling, bad block management, chip erase operation and address distribution

using Meta tag information. YAFFS2 creates its own data structures on the chip

where the file system is loaded and the data is loaded into memory of the host as

response.

3.2 The YAFFS2 File System

YAFFS (Yet Another Flash File System) is an open-source file system that is designed

to be fast, robust and suitable for embedded use with NAND and NOR Flash. YAFFS has

been widely used in Linux in consumer devices. YAFFS2 is the second version of

YAFFS evolved from YAFFS1 to accommodate newer chips that supports both 2K-byte

and 512-byte page flash while YAFFS1 only supports the original 512-byte page flash.

3.2.1 Main Characteristics of YAFFS2：The YAFFS2 file system takes the advantage

of NAND by making a page as the minimum unit for write operation. In YAFFS2, files

are stored as either a file object header or as a data type in fixed-size chunks in the NAND

flash memory. There are thus two types of chunks: data chunks and object header chunks

[10]. Data chunks contain the actual file content while object header chunks contain

file/directory metadata and descriptor information, such as file size, object name and

creation time [12]. Each chunk has Tags in the spare area that holds additional

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

398 Copyright ⓒ 2015 SERSC

information such as the chunk ID, serial number, number of bytes and object ID. Files

stored on the NAND chips have unique identities, i.e., the object IDs, since they are

regarded as objects by the file system. When a file is modified, the file system will store

the new data in empty pages and add a new object header [12]. When a file is deleted,

YAFFS2 will write a new object header at the end of the file to indicate that the file has

been deleted. In order to read only the actual object headers, YAFFS2 marks every newly

written block with a sequence number that is monotonically increasing and all pages in

the same block share this sequence number. The sequence of the chunks can be inferred

from the block sequence number and the chunk offset within the block. Therefore, when

YAFFS2 scans the flash and detects multiple chunks that have an identical object ID and

chunk ID, it can choose which to use by taking the largest sequence number [6]. As far as

YAFFS2 is concerned, only one block is considered the allocating block at a time. The

file system will look for another empty block as the next allocating block as soon as the

current block is fully allocated. Because it allows the creation of a chronologically

ordered list, the first occurrence of any object ID and chunk ID is the most active

occurrence.

3.2.2 Garbage Collection in YAFFS2：As we can see so far, when a block is made up

of only deleted chunks, that block can be erased and reused [5]. However, YAFFS2 will

invoke the garbage collection process only when most of the flash chip is used and there

is data waiting to be written [2]. It will select blocks where whole or most chunks are out

of data, copy the new data to a clean area, delete the original data and make those blocks

as being erased. Then, those erased blocks can be reused like new blocks. When garbage

collection starts, YAFFS2 will no longer allocate pages in the physical order, thus the

block sequence numbers will play an important role in determining the allocation order of

blocks so as to tell which chunks are the latest [2]. Therefore, YAFFS2 will never rewrite

the original chunks until there are no sufficient blocks for allocation. This forensically

friendly strategy is called “out-place-write”. As a result of the “out-place-write” strategy

and wear-leveling principle, a file on the NAND flash is going to be divided into several

sections when either add or modify operations occur. However, division occurs only in

the boundary of NAND pages. After garbage collection, there will have file

fragmentations in the NAND flash due to the impact of division as well as garbage

collection strategy. Some part of a file may get erased while some other parts may still be

stored in different blocks or different pages within the same block.

3.2.3 Involved YAFFS2 Metadata：Some useful information for recovery that is stored

in the object header chunks are displayed in Table 1 according to YAFFS2 documentation

and our own research [5] among which Yst_ctime indicates when the file is created,

Yst_mtime indicates the time when this file is last modified and Yst_atime indicates the

time of the last access to this file which will changes as the read operation done.

Table 1. Object Header Information Used in This Paper

Content Size(Bytes) Comment

Yaffs_ objectType 4 File/directory/links
Parent_ Objectid 4 Parent directory
Name[yaffs_max_name_lengt
h+1]

256 File name

Yst_mod 4 Permissions
Yst_uid 4 User_ID
Group_id 4 Group_ID
Yst_atime 4 Access time

Yst_mtime 4 Modified time

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 399

Yst_ctime 4 Create time
Filesize 4 Length of the file
isShrink 4 Whether the file is resized

Table 2. Information in the Tags

Content Size(Bits) Comment

Chunk ID 20 Sequence in the file

Object ID 18 Unique identifies of file

Serial Number 2 Identify chunks with the same chunk
ID

There are also some important tags information stored in data chunks [2]: object ID

indicates which object file the chunk belongs to, so if its value is 0 then this is not part of

any object; chunk ID tells the logical sequence of this chunk in the file to which it

belongs, so if its value is 0 then this is a header chunk, else it is a data chunk. In YAFFS2,

each chunk is marked with a 2-bit serial number that is incremented every time a chunk

with the same object ID and chunk ID is replaced. This number is used to identify

whether a chunk is valid. When a chunk is updated, the serial number will incremented.

Information in the tags is listed in Table 2.

3.3 Tnode Tree

For YAFFS2, the content of each and every file is stored in chunks and these chunks

are organized into a Tnode tree for the purpose of easy access. A Tnode tree provides a

mapping to physical chunk address from file address [2]. Every object holds a Tnode tree.

YAFFS2 Tnode tree is built with different pointers. Tnodes at the lowest level, i.e.,

Tnodes at level 0, has 16 physical chunk indexes that point to the chunk’s logical location

in memory [2]. Every Tnode has 8 pointers to point to the other nodes at the next level.

We can use YAFFS_FindLevel0Tnode() to find the position of a physical chunk [2].

Figure 1 illustrates the structure of Tnode tree in YAFFS2 in which physical chunk

indexes indicate the chunk’s location on the NAND flash. The tree must get updated

whenever chunks get updated.

Yaffs_Object

Pages in

NAND flash

Level 0

Level 1

Level 2

Figure 1. The Structure of Tnode Tree

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

400 Copyright ⓒ 2015 SERSC

4. A New Method for File Recovery

4.1 File Versions

As we described in Section 2, all the chunks that belong to the same file share the same

object ID. If a file is modified, the Yst_mtime of this file will be change and the Yst_ctime

of the newer version of chunks must be later than that of the old ones since the new

chunks are always allocated after the old ones. The object header with the latest Yst_atime

must be the final version of a file.

4.2 The Proposed Method

When YAFFS2 sets up the structure of file system in memory, it needs to scan

partitions first. Let BlockN denote the block with sequence number N and PageM denote

the Mth page in the block. We begin with the block with the largest sequence number and

scan the whole block from the last chunk to the first one. The general steps of the

scanning algorithm are as follows:

(1) Scan BlockN;

(2) Scan PageM in BlockN. If PageM is the first one in the block, jump to (4);

(3) M=M-1, go to (2);

(4) If N=0, then end; else N=N-1, return to (1).

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 401

Start

Acquiring image
Initial i=1;n=1

chunkID= =0?

Scanning pages reversly;read tags

Read tags to find
ObjectID

Find physical adress
of Level 0 nodes

Yaffs_Object exit?

Build yaffs_Object
according to objectID

Y

N

Last page in chip?

Y

N

Compare Yst_atime
or Serial Number

Y

Insert the current
page to Tnde tree

last chunk in this file?

Scan next page

End

Y

N

N

Figure 2. The Procedure of File Recovery

During the scanning, we take different measures to deal with situations when

chunkID=0 and when chunkID>0. We can use yaffs_FindChunkInGroup() and

yaffs_FindLevel0Tnode() to find the physical address of the pages at Level 0. We then

restore all the chunks and reconstruct them. In our algorithm, we define a two-

dimensional array File[i][j] to store the physical address of pages in which index j is the

chunk ID and index i represents different files. Figure 2 illustrates the procedure of file

recovery while the steps of the recovery algorithm are presented below:

(1) Initialization n=1;

(2) Scan NAND flash using the scanning algorithm above; read the yaffs_tags from the

spare area of each page in the NAND flash;

(3) Build the relevant Tnode tree for every file in which there are two different

circumstances as follows:

chunkID=0:

 If the yaffs_Object has been built in the RAM already, we only need to compare

their Yst_atime and take the one with the latest Yst_atime;

 Else build a yaffs_Object according to its objectID;

chunkID>0:

 If there exists an object header that has the same objectID, insert the present

chunk into its yaffs_Object;

 Else if such an object header doesn’t exist yet, build a yaffs_Object according to

the objectID and insert the current chunk;

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

402 Copyright ⓒ 2015 SERSC

 Else if the chunk that shares the same chunkID has been added into the relevant

file’s Tnode tree already, determine which one is valid based on the Serial

Number and abandon the invalid one;

(4) Once the construction of the Tnode tree of one file is completed, call

yaffs_FindChunkInGroup() and yaffs_FindLevel0Tnode() to find the physical address

of Level 0 pages and store them in File[n][i] where i= chunkID;

(5) Copy pages into the new area according to the physical address stored in File[n][i];

(6) If the current page is the last one in this NAND flash, then end scanning; else n=n+1,

go to (2).

4.3 Analysis of Time Saving

The proposed method for recovering files and reconstructing the file system in

YAFFS2 intends to find all the pages that belong to the same file according to objectID in

an object header. The storage mechanism of YAFFS2 is designed to store new data in

empty pages and to add a new object header when a file is modified or deleted.

Fragmentation would then occur if files are modified as illustrated in Figure 3. The

scanning algorithm used would get to object header of FileX first and would then go on

scanning the pages in the forward direction. It will scan pages located between chunks of

this file, read their tags and abandon them instead of just skipping them. After the current

file is recovered completely, it will go back to the page where fragmentation has occurred.

In our proposed method, we only scan each page in the NAND flash once in the reverse

sequence. Let Tr denote the time that is needed to read tags in one page. Assuming that

there are n pages embedded in chunks that belong to FileX, to recovery FileX, the time

saving is thus n*Tr.

… ...DataData ...Data Data
FileX

header

Chunk ID=0 Chunk ID=1 Chunk ID=2 Chunk ID=3 Chunk ID=4
Pages belong to

other files

Figure 3. Fragmentation in File X

5. Experiments and Analysis

We have performed some experiments to evaluate the proposed file recovery method.

The first experiment that we performed is on the recovery of files from an image file on a

simulated NAND flash and the second one is on the recovery of files from eight image

files. While the first experiment aims to show the effectiveness of the proposed method,

the second one is used to demonstrate that the proposed method can achieve better

performance over existing methods.

5.1 Evaluation on Effectiveness

We conducted this experiment over a VirtualBox that was set up with the Ubuntu

operating system. Since the Ubuntu Linux kernel version 2.6.28-11-generic does not

include a YAFFS2 file system, we need to mount YAFFS2 using the NAND flash

simulator nandsim.

To setup up the simulation environment, the YAFFS2 source code package

yaffs2.tar.gz must be downloaded from http://www.alphl.co.uk/cgi-

bin/viewvc.cgi/yaffs2/tar/gz?view=tar [11] followed with decompressing the source code

http://www.alphl.co.uk/cgi-bin/viewvc.cgi/yaffs2/tar/gz?view=tar
http://www.alphl.co.uk/cgi-bin/viewvc.cgi/yaffs2/tar/gz?view=tar

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 403

package and compiling it. We simulated a MTD in the random access memory RAM to

mount YAFFS2 partitions and created a simulation NAND flash using nandsim. The

storage capacity of NAND flash that we have simulated is 64MB and the size of each

page is 2KB. We would then be able to correctly mount the YAFFS2 file system.

Afterwards, we write a file into the simulated NAND flash and then delete it after having

modified it twice. The main command sequence used is listed below:

curl http://www.alphl.co.uk/cgi-

bin/viewvc.cgi/yaffs2/tar/gz?view=tar>yaffs2.tar.gz

tar xzf yaffs2.tar.gz;make;

modprobe mtd;

modprobe mtdblock;

modprobe nandsim frist_id_byte=0x20 second_id_byte=0xa2;

third_id_byte=0x00 fourth_id_byte=0x15;

mount –t yaffs2 dev/mtdblock0 ~mnt/affs2/;

mount | grep yaffs2;

nano -w ~/mnt/yaffs2/test.txt

In this experiment, the proposed method is applied to an image file. The file was

downloaded from website “The Honeynet Project” and written into the simulated NAND

chip using the nandwrite command. Then we called Tyaffs_ScanBackwards() to perform

the scanning in which the proposed method was executed.

This experiment demonstrates the effectiveness of our proposed method. However, we

observed that not all the files were successfully recovered. We investigated the reason by

manually checking the image using the hex editor and found out that some data pages of

the unrecovered files were missing. One way of solving this problem would be to use

pages that belong to other versions of the file according to the missing chunk IDs.

5.2 Evaluation on Efficiency

This experiment aims to show that the proposed method would consume less time

compared to the reversed-scanning method [5] under the situation of fragmentation which

is very common in the YAFFS2 file system. In the experiment, we first successfully

acquired 8 image files from 8 Android smartphones that contain lots of user data using the

DC-4500 forensic system developed by Meiya Pico Company [13]. We then

reconstructed the 8 file systems by using our proposed method and the reversed-scanning

method, respectively. The time consumed on completing the scanning of each image file

using the respective method is shown in Figure 5 in which each blue bar represents the

time consumed using our proposed method while the red bar represents that of the

reversed-scanning method. Figure 6 shows the performance improvement of the proposed

data recovery method over the reversed-scanning method in terms of time savings in the

reconstruction of a file system. We could see from the figure that our proposed method

could reduce the amount of time that is consumed on the reconstruction of a file system

by about 20% on the average.

This experiment shows that the proposed method is more efficient in terms of the

amount of time consumed on completing the scanning process. Moreover, we observed

that the more fragmentation there is in an image file, the more efficient the proposed

method can achieve.

http://www.alphl.co.uk/cgi-bin/viewvc.cgi/yaffs2/tar/gz?view=tar
http://www.alphl.co.uk/cgi-bin/viewvc.cgi/yaffs2/tar/gz?view=tar

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

404 Copyright ⓒ 2015 SERSC

6. Conclusion

In this paper, we proposed a file recovery method based on timestamps and Tnode tree

in the YAFFS2 file system. According to object header and last access time stored in the

flash memory, this method can locate data chunks physically based on the created Tnode

tree. Experiments showed that our proposed method is both effective and efficient

compared to some comparable method. In the future, we plan to address the issue of

missing chunks and improve our method to further improve its effectiveness. We will also

develop similar methods to apply to other file systems such as Ext4 used in the Android

platform.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

450

500

Image

T
im

e
（

s
）

Figure 5. Comparison of the Scanning Time

Fig. 6 Percentage of Performance Improvement

Acknowledgements

The work in this paper has been supported by National Natural Science Foundation of China

(61272500), Beijing National Science Foundation (4142008), Shandong National Science

Foundation (ZR2013FQ024) and Pre-launch of Beijing City Government Major Tasks and District

Government Emergency Projects (Z131100005613030).

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 405

References

[1] J. Luck and M. Stokes, “An Integrated Approach to Recovering Deleted Files from NAND Flash Data”,

Small Scale Digital Device Forensics Journal, vol. 2, no. 1, (2008), pp. 1-13.

[2] C. Manning, “How YAFFS Works”, (2010), Available at: http://www.yaffs.net/documents/how-yaffs-

works.

[3] B. Huang, “Data Recovery on Android Phones”, “M. S. Thesis”, The George Washington University,

(2011).

[4] L. S. de, F. C. Sicoli, L. P. de Melo, F. E. de Deus and R. T. de Sousa Junior. “Acquisition of Digital

Evidence in Android Smartphones”, Proceedings of the 9th Australian Digital Forensics Conference,

Perth, (2011), pp. 116-124.

[5] X. Yang, M. Xu and H. Zhang, “File Recovering from YAFFS2 based on Object Headers and Metadata”,

Proceedings of 4th International Conference on Graphic and Image Processing, Singapore, (2013), pp.

876806 - 876806-8.

[6] C. Zimmermann, M. Spreitzenbarth, S. Schmitt and F. C. Freiling, “Forensic Analysis of YAFFS2”,

Lecture Notes in Informatics, vol. P-195, (2012), pp. 59-70.

[7] S. Sack, K. Kröger and R. Creutzburg, “Overview of Potential Forensic Analysis of an Android

Smartphone”, Electronic Imaging, (2012), pp. 8304M-8304M-11.

[8] J. Sylve, A. Case, L. Marziale and G. G. Richard, “Acquisition and Analysis of Volatile Memory from

Android Devices”, Digital Investigation, vol. 8, no. 3-4, (2012), pp. 175-184.

[9] J. Park, H. Chung and S. Lee, “Forensic Analysis Techniques for Fragmented Flash Memory Pages in

Smartphones”, Digital Investigation, vol. 9, no. 2, (2012), pp. 109-118.

[10] P. Dibb and M. Hammoudeh, “Forensic Data Recovery from Android OS Devices: An Open Source

Toolkit”, Proceedings of 2013 European Intelligence and Security Informatics Conference,

Uppsala/Sweden, (2013), pp. 226-226.

[11] B. Wu, M. Xu, H. Zhang, J. Xu, Y. Ren and N. Zheng, “A Recovery Approach for SQLite History

Recorders from YAFFS2”, Proceedings of Information & Communication Technology-EurAsia

Conference 2013, Yogyakarta, Indonesia, (2013), pp. 295-299.

[12] M. Xu, X. Yang, B. Wu, J. Yao, H. Zhang, J. Xu and N. Zheng, “A Metadata-based Method for

Recovering Files and File Traces from YAFFS2”, Digital Investigation, vol. 10, no. 1, (2013), pp. 62–

72.

[13] http://www.300188.cn/.

Authors

Na Huang, is currently a M.S. student in the School of Software

Engineering at Beijing University of Technology in China. Her

research focuses on digital forensic.

He Jingsha, received his B.S. degree from Xi'an Jiaotong

University in Xi’an, China and his M.S. and Ph.D. degrees from the

University of Maryland at College Park in USA. He is currently a

professor in the School of Software Engineering at Beijing

University of Technology in Beijing, China and an associate

director in the Low Carbon Research Center at Beijing

Development Area Co., Ltd. in Beijing, China. Professor He has

published over 200 research papers in scholarly journals and

international conferences and has received over 40 patents in the

United States and in China. His main research interests include

information security, network measurement, and wireless ad hoc,

mesh and sensor network security.

http://www.sciencedirect.com/science/article/pii/S1742287611000879
http://www.sciencedirect.com/science/article/pii/S1742287611000879

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

406 Copyright ⓒ 2015 SERSC

