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Abstract 

This paper proposes an algorithm to assess the spatial distribution uniformity in 

2-dimensional discrete space. Spatial distribution uniformity refers to how uniform some 

objects distribute in a space. The algorithm takes a matrix of logical values that 

represents the distribution pattern as the input and outputs a number that represents the 

degree of the uniformity. A pseudo energy attenuation model and the uniformity 

coefficients in the irrigation field are leveraged in this algorithm. Experiment results 

show that this algorithm is effective in assessing spatial distribution uniformity in 

2-dimensional discrete space. 
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1. Introduction 

Distribution uniformity refers to how uniform some objects or quantities distribute in 

some space. Originally, it was proposed in irrigation field. The distribution uniformity of 

watering quantities of samples is formulated by uniformity coefficients. Although 

uniformity coefficients have good performance of the assessment of quantitative 

distribution uniformity, they show no spatial distribution features of the samples. In the 

texture analysis field, the distribution uniformity of gray level of a digital image is 

formulated by the angular second moment (energy) of gray level co-occurrence matrix 

(GLCM for short) [1], which represents not only the quantitative distribution uniformity 

of gray levels, but also spatial relationships between pixels. However, the performance of 

the assessment of spatial distribution uniformity by GLCM is poor. Based on this fact, an 

algorithm is proposed in this paper to assess the spatial distribution uniformity in 

2-dimensional discrete space effectively by combining a pseudo energy attenuation model 

with the uniformity coefficients. Moreover, how the algorithm evolves from an initial 

plan to a maturing solution is also presented with the experiment results following. 

 

2. Related Work 
 
2.1. Energy of GLCM 

The gray level co-occurrence matrix (or gray tone spatial-dependence matrix) is a 

matrix that is defined over an image to be distribution co-occurring values at a given 

offset. Mathematically, a gray level co-occurrence matrix  is defined over an  

image , parameterized by an offset , as: 

  (1) 

where  and  are the gray level values of the image,  and  are the spatial 

position in the image  and the offset  defines how the pixels are paired up. 

The angular second moment (ASM for short), also refers to the energy, of the GLCM is 

a measure of homogeneity of the image, which is formulated as: 
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  (2) 

where  represents the maximum of the gray level value [2]. 

The ASM of GLCM is a good measure of the thickness and sharpness of the texture. 

Sometimes thin texture may indicate good distribution uniformity of gray level while 

thick texture may indicate bad distribution uniformity of gray level. However, it is not an 

efficient assessment of distribution uniformity since the thickness and sharpness of texture 

is not fully equivalent to the distribution uniformity of gray level and the value of ASM is 

parameterized by the offset. 

 

2.2. Uniformity Coefficients 

In irrigation field, various uniformity coefficients have been developed to measure the 

distribution uniformity of the watering quantity of a number of samples. 

The most popular and simplest uniformity coefficient is the low quarter coefficient [3] 

that is calculated with the equation: 

  (3) 

where  represents the average of the lowest quarter of samples and  

represents the average of all samples. 

However, Christianse’ uniformity coefficient [4] was first used to introduce a 

uniformity coefficient to the irrigation system [5] which is formulated as: 

  (4) 

where  is the sample value each and  is the mean of all samples. 

Wilcox and Swales used the same method used by Christianse, except that they used 

squares of the deviation from the mean instead of the deviation themselves [6]. They 

proposed their equation as: 

  (5) 

where  and  are the standard deviation and mean of the samples respectively. 

Benami and Hore proposed their uniformity coefficient [7] that is calculated from the 

formula: 

  (6) 

where: 
 — number of elements greater than the overall mean 

 — number of elements smaller than the overall mean 

 — mean of the elements greater than the overall mean 

 — mean of the elements smaller than the overall mean 

 — sum of the elements greater than  

 — sum of the elements smaller than  

 — difference between the numbers of elements smaller and greater than  

 — difference between the numbers of elements smaller and greater than  

The low quarter coefficient is for stressing the minimum of sample values which makes 

it only applicable to sprinkler system [8]. It does not work well as a general solution to 

assessment of uniformity. 

Zoldoske proposed that Christianse’s coefficient does not emphasize the influence of 

the sample that is significantly different from the mean on the coefficient since the 

nonuniformity has a linear relationship with the deviation [9]. Wilcox’s coefficient is 

better than Christianse’s coefficient in this aspect. 

Although Benami’s coefficient was claimed to make the differences between 

distribution patterns more pronounced, it may produce result that above 100% in some 

cases [10]. 
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Korven has evaluated these three uniformity coefficients based on correlation and 

linear regression analysis and proposed that there is little difference between them [11]. 

However, Korven suggested that Wilcox’s uniformity coefficient is the most practical 

coefficient to use because it is sounder statistically than the other two and it is easier to 

calculate than Benami’s coefficient. 

 

3. Assessment Algorithm 

3.1. Preliminary 

The algorithm takes a 2-dimensional matrix of logical values as the input, which 

illustrates the distribution pattern. The objects of interest are considered as particles that 

have no size or shape. The value of each element of the matrix represents whether there 

exists an object. The position of an element is defined as the row-column index pair in the 

matrix. The distance between two elements is the Euclidean distance between the 

positions of them. An element with value True is called a full element that indicates that 

there exists an object and that with value False is called an empty element that indicates 

no object. Each full element is considered as a point energy source. The energy from a 

full element attenuates as the distance from the source increases and absorbed by all 

elements. The weight of an element is the sum of energy it absorbs from all sources. A 

statistic calculated on the weights is the output, which is the degree of the spatial 

uniformity of the distribution pattern. 

For a distribution pattern of good spatial distribution uniformity, the full elements are 

all over the distribution pattern matrix which makes the weight of each element is similar 

to each other. Therefore, the distribution of the weights has good quantitative uniformity. 

However, for a distribution pattern of bad spatial distribution uniformity, the full elements 

gather into one or several clusters, which make the significant differences among the 

weights. Therefore, the distribution of the weights has bad quantitative uniformity. This 

algorithm makes the statistic that assesses the quantitative distribution uniformity of the 

weights represent the spatial distribution uniformity of the full elements, i.e., the objects 

of interest. 

The following subsections illustrate the key issues of this algorithm, along with some 

samples of the experiment results. Figure 1 illustrates some samples of the inputs of the 

experiments, which are some typical distribution patterns. The distribution patterns are 

illustrated by monochrome images in the size of 200×150 that the white pixels represent 

full elements and the black pixels represent empty elements. It is expected that 

distribution pattern 1 and distribution pattern 2 have the same result of best uniformity 

and the ranks of the results of the rest distribution patterns are 

DP4>DP5>DP9>DP7>DP8>DP6>DP3 (DP is the abbreviation of distribution pattern). 
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Figure 1. Distribution Patterns 

3.2. Energy Attenuation Function 

The energy attenuation function should be always positive and monotonically 

decreasing in . It should approach to zero at . The differential of the weights 

of 2 neighboring elements should be consistent with the distribution pattern, which satisfy 

a criterion that is described as: 

Criterion 1 For a full element A and an empty element B that are neighboring, 

the weight of A is greater than the weight of B. 

Therefore, the second derivation of the energy attenuation function should be positive 

in . 

Many energy attenuation models use Beer-Lambert law [12] that is formulated as: 
  (7) 

where  is the measured energy intensity,  is the incident energy intensity,  is the 

transmission distance and  is the attenuation coefficient that is always positive. 

However, a big attenuation coefficient makes little effect on far away positions. A small 

one gives too much weight to the neighbors of the source to manifest the distribution. 

Therefore, the coefficient  is parameterized by the dimension of the distribution 

pattern, which complicates the definition of the attenuation function. 

The energy attenuation function in this algorithm does not have to fully subject to 

physical facts. Therefore, the reciprocal function  is chosen to be the energy 

attenuation function. However, the reciprocal function value of 0 is infinity. To meet the 

criteria previously described, the energy attenuation function value of 0 is defined as 3. 

Hence, the sources are well stressed and the energy attenuation function is not 

parameterized by the dimension of the distribution pattern. 
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3.3. Energy Outside of Space of Interest 

The energy of a full element spreads omnidirectional to infinity. However, only the 

part that is near the source in some extent is interested. For a distribution pattern in the 

size of , the energy transmission extent is considered as , 

which is adequate to make the source effect on all elements. However, there is always part 

of the energy transmission extent outside of the space of interest. Ignoring it makes the 

energy transmissions of full elements different from each other, which leads to irrational 

weight distribution. 

To make the whole energy transmission extent be applied, the distribution pattern is 

extended. For a distribution pattern in the size of , it is extended in the size of 

. The original distribution is placed in the center 

of the extended pattern and other elements are set as empty elements. The weight 

calculation and statistic calculation are based on the extended distribution pattern. Figure 

2 illustrates the mesh graphs of the weight distributions of the extended distribution 

patterns illustrated in Figure 1. Most distribution patterns can be obviously inferred from 

the corresponding mesh graphs of weight distributions. However, some distribution 

patterns have the mesh graphs of weight distributions that indicate the original 

distribution patterns obscurely. For example, although the mesh graph of weight 

distribution of distribution pattern 2 is expected to be a plane, it is actually a big hill. 

 

Figure 2. Mesh Graphs of Weight Distributions of Extended Distribution 
Patterns 

Another solution to this issue is to cyclize the distribution pattern. The opposite edges 

are rounded up when calculating the weights. For a full element at  in a 

distribution pattern in the size of , its energy at the transmission offset of  

effects on the weight at , which is defined as: 
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  (8) 

Figure 3 illustrates the mesh graphs of the weight distributions of the cyclized 

distribution patterns illustrated in Figure 1, which indicate the distribution patterns more 

pronouncedly. 

 

Figure 3. Mesh Graphs of Weight Distributions of Cyclized Distribution 
Patterns 

3.4. Quantification Statistic 

A statistic is used to assess the quantitative distribution uniformity of the weights of the 

distribution pattern, which is the output of this algorithm. The uniformity coefficients are 

the candidates for the statistic. However, the low quarter coefficient indicates little 

fluctuation of the weights such that it is not an appropriate candidate for the statistic. In 

the extreme case that all weights are zeros, there is no arithmetical meaning for 

Christianse’s coefficient and Wilcox’s coefficient since they make zero the denominator. 

Therefore, the value of Christianse’s coefficient and that of Wilcox’s coefficient in this 

case are defined as 1. Moreover, in the cases that the weights are all the same, Benami’s 

coefficient is zero, which indicates the best distribution uniformity instead of worst 

distribution uniformity. Figure 4 illustrates the uniformity coefficients of the weight 

distributions illustrated in Figure 2 and Figure 5 illustrates the uniformity coefficients of 

the weight distributions illustrated in Figure 3. 
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Figure 4. Uniformity Coefficients of Weight Distributions of Extended 
Distribution Patterns 

 

Figure 5. Uniformity Coefficients of Weight Distributions of Cyclized 
Distribution Patterns 
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4. Conclusion 

The results of extended distribution patterns do not fully match the rank expectation 

while that of cyclized distribution patterns match the rank expectation perfectly. 

Therefore, the distribution patterns should be cyclized in this algorithm. The three 

uniformity coefficients have the same ranks of results in cyclized distribution patterns. 

However, they have different ranks of results in extended distribution patterns. The 

performance of Christianse’s coefficient is low for the cases of extremely bad uniformity. 

The range of Benami’s coefficient is hard to define and its value does not increase exactly 

as uniformity becomes better since zero represents the best uniformity. Therefore, 

Wilcox’s coefficient is the most effective one to be used as the quantification statistic. 

Experiment results indicate that this algorithm is effective to assess spatial distribution 

uniformity in 2-D discrete space. The output of this algorithm can be used to represent the 

degree of the spatial uniformity of a distribution pattern. However, only the spatial 

distribution uniformities of distribution patterns that have the same size of spaces of 

interest are comparable by this algorithm. 
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