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Abstract 

Mixing matrix estimation (MME) algorithm was proposed for the mixing matrix 

estimation problem of underdetermined blind source separation. The algorithm is based 

on a combination of processing of isolated time–frequency points from local directional 

density detection and Hough transform (HT). Firstly, signal sparsity was strengthened 

through the processing of single-source time–frequency points in the transform domain. 

Next, HT was applied to the directional straight lines in the scatter plot and realized the 

spatial transformation. The number of source signals and mixing matrix were estimated 

by determining the local maxima of cumulative array. To deal with the peak values 

clustering issue that commonly arises with HT, the local directional density detection 

method was used to identify and eliminate isolated time–frequency points. HT was then 

used to improve the accuracy of MME. The experimental results indicate that the 

proposed method is able to achieve MME under the condition when the number of source 

signals is unknown. Further, the accuracy of estimation is better than other commonly-

used methods such as K-means. 

 

Keywords: underdetermined blind source separation, mixing matrix estimation, Hough 
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1. Introduction 

Blind source separation is used when the source signals and transmission channel 

parameters are unknown. During the process, the observed signals alone are used to 

restore the input source signals, based on the latter’s statistical characteristics. It has 

become a popular research topic in recent years due to its wide applications in various 

fields, including digital communication, speech recognition, and array signal processing. 

A problem faced during underdetermined blind source separation (UBSS) is the 

number of observed signals being less than that of the source signals. Most of the existing 

research to solve this problem focuses on the sparse component analysis (SCA) method, 

which uses the sparsity characteristics of signals. A two-step method is commonly 

involved: (a) mixing matrix estimation (MME), and (b) source signals restoration. The 

former is an important step to achieve UBSS. The accuracy of the estimation in turn 

directly affects the quality of signal separation. 

Using signal sparsity, Literature [1] proposed an underdetermined MME algorithm 

based on potential functions. However, this method does not provide any theoretical 

guidance for the selection of the potential function parameters. Literature [2] combines K-

means clustering with Hough transform (HT) to estimate the mixing matrix. Since the K-

means algorithm relies on both the selection of the initial cluster center and prior 

knowledge of the number of source signals, it cannot be applied when the number of 



International Journal of Hybrid Information Technology 

Vol.8, No.3 (2015) 

 

 

308   Copyright ⓒ 2015 SERSC 

source signals is unknown. Literature [3, 4] proposed the probabilistic statistics method to 

estimate the number of source signals, but its application cannot be extended to high-

dimension domains. It also imposes greater requirements on signal sparsity [5-8]. Some 

scholars had recommended the use of the single-source time–frequency point method [9-

11] to make the signal sparsity requirement less stringent and strengthen signal sparsity. 

The issues with this method include the multiplicity of definition and difficulty in meeting 

the eligible conditions. 

In this study, a MME algorithm based on isolated time–frequency points 

detection and HT was proposed. It addresses several inadequacies of traditional 

clustering methods, including weak signal sparsity, dependence on the selection of 

the initial cluster center, and requirement to determine the number of source signal s 

in advance. First, a method to process the single-source time–frequency points in 

the transform domain was used to strengthen signal sparsity. Next, HT converted the 

directional detection of straight lines to the detection of local maxima in the 

transform domain, thereby achieving the aim of MME. The further elimination of 

isolated time–frequency points was proposed to address peak values clustering in 

the HT results. 

 

2. Signal Sparsity Strengthen based on Single-source Time–frequency 

Points Processing 

When the impact of noise is not considered, the formula for the UBSS 

instantaneous mixing model is as follows: 

( ) ( ),   =1,2,  ,  t t t Tx As                                           (1) 

where 
T

1 2( )=[ ( ), ( ),  , ( )]mt x t x t x tx , m is the number of observed signals; 

1 2[ , , , ]na a aA  is the mixing matrix, 
m n

R


A . For 
T

1 2( ) [ ( ), ( ), , ( ), ]nt s t s t s ts , n is 

the number of unknown source signals; m n  represents a UBSS problem. A sparse 

signal refers to sample point value approaches or reaches zero at the majority of the 

sampled points and with values that are not zero for only a few sampled points. In other 

words, when the source signal becomes sparse, there is usually only one source signal 

with a larger value at time Kt , namely 

1 2

1 2

( )( ) ( ) m KK K

i i mi

x tx t x t

a a a
                                           (2) 

It can be seen from Formula (2) that the observed signals are distributed along a 

straight line that passes through the origin. The direction of the straight line is determined 

by column vector ia  of the mixing matrix. Hence, sparse signals are characterized by 

linear clustering, while the degree of linear clustering directly affects the estimation 

accuracy of the mixing matrix. 

Most signals in the transform domain have the characteristic of sparsity. This study 

focuses on the processing of sparsity in the transform domain. By applying short-time 

Fourier transform (STFT) to Formula (1), it can obtain: 

1

( , ) ( , )
n

i i
i

t k S t k


 X a                                                        (3) 

where ( , )t kX  represents the STFT coefficient of the observed signals and ( , )iS t k  

represents the STFT coefficient of the i
th
 source signal. 

After signals with weak sparsity are transformed to the time–frequency domain, the 

direction of the observed signals still remains unclear. This indicates the presence of some 

interference time-frequency points. For any time-frequency points in time-frequency 

domain, when only one source signal exists as the valid time-frequency point, it is defined 
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as a single-source point. In this study, the detection of such single-source points is used to 

strengthen signal sparsity. 

Assuming that in the time–frequency domain, only one signal 
1s  exists at the time–

frequency point 
1 1( , )t k , then Formula (3) can be expressed as: 

1 1 1 1( , ) ( , )t k S t kX a                                                         (4) 

{}R   and {}I   are used to represent the real and imaginary parts of Formula (4), 

respectively. From the linear clustering characteristic of sparse signals, the component 

weight ratio of both 
1 1{ ( , )}R t kX  and 

1 1{ ( , )}I t kX  is 
1a . If there are multiple source 

signals 
1s  and 

2s  at the time–frequency point 
2 2( , )t k , then the respective observed 

vectors of the real and imaginary portions are: 

2 2 1 1 2 2 2 2 2 2{ ( , )} { ( , )} { ( , )}R t k R S t k R S t k X a a                             (5) 

2 2 1 1 2 2 2 2 2 2{ ( , )} { ( , )} { ( , )}I t k I S t k I S t k X a a                              (6) 

If the component weight ratios of the real and imaginary portions of the observed 

vector are similar, then: 

1 2 2 2 2 2

1 2 2 2 2 2

{ ( , )} { ( , )}

{ ( , )} { ( , )}

R S t k R S t k

I S t k I S t k
                                                   (7) 

This means that { } { } { } { }=i i j jR X I X R X I X  must be satisfied, where 

, [1 ]i j m i j ， 且 . The probability that Formula (7) can be established is extremely low. 

Considering the actual error and setting the range of threshold value   as 0.01–0.1 [11], 

the following is obtained: 

{ } / { } { } / { }
 

{ } / { }+ { } / { }

i i j j

i i j j

R X I X R X I X

R X I X R X I X



                                          (8) 

Formula (8) is for the detection of single-source points. To improve the impact of low-

energy time-frequency points, these are processed by Formula (9): 

( , ) max ( , )t k X t k X                                                     (9) 

In the formula,  0,1  . After these treatments, signal sparsity would increase 

significantly. This provides the foundation for the estimation of the mixing matrix.  

 

3. Mixing Matrix Estimation based on Isolated Points Detection and 

HT 
 

3.1 Directional Straight Line Transformation based on HT 

When estimating a mixing matrix, traditional K-means clustering algorithm has the 

deficiencies, specifically it needs to select the initial cluster center and has prior 

knowledge of the number of source signals. Combined with the spatial transformation 

characteristics of HT, an MME algorithm based on the number of sources and HT was 

proposed. 

HT is a mapping method that transforms data in the graphical domain to the parameter 

domain by making the objects in the former undergoes a particular form of coordinate 

transformation. Subsequently, all the points on the specified curves in the original 

graphical domain are clustered at particular locations in the transform domain, forming a 

series of local cumulative maxima. 

It assumes that a particular straight line passing through the point 1 2( , )x x  in the 

original graphical domain is 2 1x ax b  . Through coordinate transformation, it is 
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mapped onto the transform domain -  , and transformed into the corresponding polar 

coordinates: 

1 2sin cosx x                                                       (10) 

Formula (10) is the HT of the point 
1 2( , )x x , where   is the angle between the 

straight line and the 
1x  axis, and 

2 1tan( ) x x  . 

Considering the application of HT to MME, coordinate transform is used to convert 

those original domain points with collinear lines to intersecting curves in the parameter 

domain. Since sparse signals have the characteristic of linear clustering, the intersections 

of the curves are added up to cumulatively form local maxima. The number of source 

signals can then be determined by counting the number of local maxima. The column 

vector of the mixing matrix can be realized by detecting the maxima locations. 

Since sparse signals have the characteristic of linear clustering, the observed data in 

UBSS are mainly concentrated along n number of straight lines. Hence, the linear vector 

l  can be expressed as: 

1 2 3 1

1 2 3 1

2 3 1

2 1

1

sin sin sin sin

cos sin sin sin

cos sin sin

      

   cos sin  

cos

m

m

m
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
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
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


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 
 
 
 
 
 
  

l

                                                  (11) 

where 1l  and 
1

1 2 1( , , ) [0, )
m

m   


  . After the straight lines are converted to 

transform domain -  ,   can be expressed as: 

T
  l x                                                                      (12) 

The problem of peak values clustering often occur during the HT algorithm calculates 

the local maxima in the transform domain. The single-source time-frequency points are 

symmetrically applied onto the upper half surface and followed by HT, the scatter plot of 

single source points and local maximum distribution are shown in Figure 1: 

          
(a) Scatter plot of single source TF points       (b) Local maximum distribution 

Figure 1. Peak values Cluster of HT Result 

Figure 1 illustrates that the existence of isolated points caused the aggregation of the 

time-frequency points in the normalized scatter plot to be unclear. Therefore, the use of 

HT to add up the local maxima resulted in the problem of local peak values clustering. 

This makes accurate estimation of the number of source signals difficult. 

 

3.2. Mixing Matrix Estimation based on Isolated Points Detection  

The primary causes of local peak values clustering are the relative lack of time-

frequency points and lack of clarity in the linear clustering characteristics, as well as 

deviations from the main direction of the column vectors of the mixing matrix. These 
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invalid time-frequency points are defined as isolated time-frequency points. To eliminate 

the peak values clustering, these isolated points are removed through the local directional 

time-frequency density detection. Consequently, the accuracy of both the number of 

source signals and MME are increased. 

Single-source point detection in Formula (9) removes the low-energy points, giving N 

number of time-frequency points aggregated to form  1 2, , , Nx x xX . 
ij  represents 

the angle between the random time-frequency points 
ix  and 

jx  of the observed signals, 

where ,i j N . The vector direction of time-frequency point 
ix  is designated as the 

central direction. The fan-shaped region, which has a central angle of  , contains the set 

of time-frequency points  ( ) ,,i ij i j NC     , where   is a pre-set angle with a 

small value and should be smaller than the smallest angle in the column vectors of the 

mixing matrix. 

Since the actual observed signal points are concentrated along the corresponding 

straight lines in the column vectors of the mixing matrix, the directional straight lines of 

the column vectors will have a certain width. To be precise, the value of   should be 

smaller than the width of the straight lines. ( ( ))iN C   represents the number of time-

frequency points within the set ( )iC  . The function for local directional time-frequency 

density is: 

( ( ))
( ) i

i

N C
D

N


                                                             (13) 

Formula (13) indicates that ( )iD   is positively correlated to the density of the local 

directional time-frequency points. This shows that ix  reflects the clustering level of time–

frequency points in the vector direction. Setting the threshold as  , when ( )iD  is lower 

than  , the time-frequency points in local direction are deemed to be isolated and 

eliminated. The remaining time-frequency points are valid points and marked as set X . 

 ( ) ,i iX x D i N                                                                (14) 

After the transformation results of Figure 1 have undergone isolated points detection 

processing and HT, the results are as shown in Figure 2: 

 

Figure 2. Local Maxima Distribution after Removing Isolated Points 

Comparing Figures 1(b) and 2, it can be seen that the proposed processing method 

effectively prevented peak values clustering and accurately estimated the number of 

source signals to facilitate following MME.  

The steps of proposed method are as follow: 

(1): STFT is used to transform the observed signals to the time-frequency domain; 
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(2): Single-source time-frequency points and low-energy points processing is used to 

enhance signal sparsity. 

(3): Determine the density of local directional time-frequency points and remove 

isolated points. Then perform HT and determine the maxima of the accumulation arrays 

within the transform domain. 

(4): Determine the number of source signals based on the number of obtained 

local maxima. Compute the coordinate parameters of the local maxima and the 

straight line vectors. Finally achieve the estimation of mixing matrix A . 

 

4. Results and Analysis 

Simulations and analyses were conducted using two experiments (details to be 

provided later) to verify the validity of the proposed algorithm. Normalized mean square 

error and deviation angle were used to evaluate the MME performance. 

Normalized mean square error is defined as: 

 
2

1 1

10
2

1 1

ˆ

10 log

m n

ij ij
i j

m n

ij
i j

a a

NMSE

a

 

 

 



 

 
 
 
 
 

                                             (15) 

where m  and n  denote the number of rows and columns in mixing matrix A , 

respectively; and ˆ
ija  and 

ija  denote the element in the i
th
 row and j

th
 column of mixing 

matrix Â  and the original mixing matrix A , respectively. The smaller the value of 

NMSE, the more accurate is the estimation capabilities of Â . 

The deviation angle is expressed as follows: 

 
ˆ180

ˆ arccos
ˆ

ang
 


 

 
 
 

a,a
a,a

a a
                                            (16) 

where a  represents the column vectors in A  and â  represents the corresponding 

column vectors of a  in Â . The smaller the deviation angle, the better is the capability of 

Â . 

 

4.1. Results and Analysis of Experiment 1 

The source signals were three different voice clips, each with a data length of 40,000. 

Formula (1) was used to mix the clips into two observed signals, namely, 2, 3m n  . 

The randomly selected mixing matrix A  is: 

-0.7067 0.2594 0.9665

0.7073 0.9650 0.2595

 
  
 

A  

The observed signals obtained after the mixing are shown in Figure 3: 

 

Figure 3. Observed Signals Waveform in Time Domain  
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Figure 4 shows the scatter plots of observed signals in time domain and the time-

frequency domain after STFT transformation: 

       
(a)Scatter plot in time domain         (b)Scatter plot in time-frequency domain 

Figure 4. Scatter Plots of Observed Signals in Time Domain and Time-
Frequency Domain 

The Figure shows that the direction of the observed signals in the time-frequency 

domain is weak. Then the single-source time-frequency points processing method was 

used to enhance signal sparsity. During single-source points processing, it adopted 

=0.06  and the obtained scatter plot of single-source time-frequency points is shown in 

Figure 5(a). The range of   is usually 0.05–0.1 [3]. For this study, 0.1   was adopted. 

After the dataset was normalized and HT was performed,   was set. Through a large 

number of experiments and actual conditions 180   was adopted. The local maxima 

distribution of HT is shown in Figure 5(b): 

             
(a) Scatter plot of single source TF points           (b) Local maximum distribution 

Figure 5. Scatter Plots of Enhanced Observed Signals Sparsity 

After the single-source points detection and processing, a small number of time-

frequency points still deviated from the direction of the straight lines. This led to peak 

values clustering in the HT results and affected the estimation of the number of source 

signals. The proposed local directional time-frequency density detection method was then 

used to remove the isolated points, with =1  . The magnitude of   determines the 

number of data points removed. Usually, [min( ( )), mean( ( ))]i iD D   . The ratio 

between the number of   counted and the remaining time-frequency points are shown in 

Figure 6: 
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Figure 6. Curve of TF Points Changing with   

It can be seen from the figure that as   increases, the percentage of remaining time-

frequency points relative to the total number of single-source points decreases. Most of 

the isolated points are removed when the percentage stabilizes. When =0.025 , the 

percentage tends to decrease in a slow but steady manner. Hence, =0.025  was adopted. 

The normalized scatter plot after removal of the isolated points and the results after HT 

are shown in Figure 7: 

   
(a) Scatter plot of normalization    (b) Local maximum distribution 

Figure 7. Local Maximum Distributions after Removing Isolated Points 

Figure 7 shows that data clustering becomes clearer after removal of the isolated 

points. Next, HT was used to resolve the issue of peak values clustering. The 

determination of local maxima facilitated the accurate estimation of the number of source 

signals, after which the corresponding coordinate parameters of the local maxima were 

identified. Substituting that into Formula (11) gives the corresponding column vectors of 

the straight lines, thereby obtaining the mixing matrix 
1Â  of A : 

1

-0.7071 0.2588 0.9659ˆ
0.7071 0.9659 0.2588

 
  
 

A  

To illustrate the validity of the proposed algorithm, the mixing matrices obtained 

through K-means and K-Hough [3] were compared. After the removal of isolated points, 

the data underwent K-means clustering. This is named the K-means2 algorithm, which 

gives the mixing matrix 
2Â : 

2

-0.7071 0.2622 0.9658ˆ
0.7070 0.9650 0.2591

 
  
 

A  

The traditional clustering method was unable to eliminate the isolated points. That is 

named the K-means1 algorithm, which gives the mixing matrix 
3Â : 

3

-0.7025 0.2736 0.9419ˆ
0.7053 0.9580 0.3074

 
  
 

A  

4Â , the mixing matrix obtained through the K-Hough algorithm, is: 
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4

-0.6947 0.2588 0.9659ˆ
0.7193 0.9659 0.2588

 
  
 

A  

To accurately compare the estimation accuracy of the various algorithms, the results 

were substituted into Formulas (15) and (16) to calculate and compare the NMSE and 

deviation angles between the estimated and original mixing matrices. The results are 

stated in Table 1: 

Table 1. Comparison with Estimated Â and Original A   

Comparison 

methods 

Angle between mixing matrix corresponding column vectors (  ) NMSE 

(dB) 
 1 1ˆang a ,a   2 2ˆang a a   3 3ˆang a a  

K-Hough 0.9724 0.0466 0.0298 -40.1465 

K-means1 0.0977 0.8991 3.0566 -29.7252 

K-means2 0.0203 0.1609 0.0007 -55.3761 
Proposed method 0.0162 0.0406 0.0188 -63.3725 

It is obvious from the table that the removal of isolated points significantly increased 

the accuracy of the MME and resolved the issue of peak values clustering. This validated 

the necessity of using isolated points detection and eliminating isolated points. Further, on 

the basis of accurately estimating the number of source signals, the HT algorithm was 

able to further enhance the accuracy of the MME. The results of the experiment indicate 

that the proposed algorithm has a higher degree of accuracy during estimation. 

 

4.2. Results and Analysis of Experiment 2  

The source signals for Experiment 2 were the FourVoices voice signals from Literature 

[1], which have relatively weak sparsity. Four segments of signals, each with a data length 

of 63,856, were mixed into three-channel observed signals using Formula (1), that is, 

3, 4m n  . The randomly selected mixing matrix A  is: 

0.7110   0.2881   -0.6722   0.4539

0.1770   0.9421    0.6490   0.3952

0.6818   0.1739    0.3578   0.7991

 
 


 
  

A  

The observed signals obtained after the mixing are shown in Figure 8: 

 

Figure 8. Observed Signals Waveform in Time Domain 

After the observed signals have been transformed to the time-frequency domain, the 

single-source points were detected and normalized before directly undergoing HT. The 

results are shown in Figure 9: 
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(a) Scatter plot of normalization      (b) Local maximum distribution 

Figure 9. Local Maximum Distribution of Direct HT without Removal of 
Isolated Points 

Some remnant isolated points from the normalization process in Figure 9 led to the 

issue of peak values clustering in the HT results. These prevented the accurate estimation 

of the number of source signals and must be eliminated. The ratio between the number of 

  counted and the remaining time-frequency points was set at =0.02 . The normalized 

figure after the removal of isolated points and undergoing HT is shown in Figure 10: 

   
(a) Scatter plot of normalization      (b) Local maximum distribution 

Figure 10. HT Local Maximum Distribution after Removal of Isolated Points  

Comparing Figures 9 and 10, it is seen that the removal of isolated points before 

undergoing HT can eliminate peak values clustering and lead to an accurate estimation of 

the number of source signals. The mixing matrix 
1Â  obtained through the proposed 

algorithm is: 

1

0.7096   0.2879   -0.6716   0.4542

ˆ 0.1769   0.9418    0.6485   0.3948

0.6820   0.1736    0.3584   0.7986

 
 


 
  

A  

The mixing matrix 
2Â  obtained from the K-means 2 algorithm is: 

2

0.7092   0.2894   -0.6670   0.4515

ˆ 0.1781   0.9409    0.6520   0.3961

0.6820   0.1755    0.3604   0.7996

 
 


 
  

A  

The mixing matrix 
3Â  obtained from the K-means 1 algorithm is: 

3

0.7062   0.2885   -0.6562   0.4602

ˆ 0.1916   0.9414    0.6623   0.4029

0.6800   0.1744    0.3511   0.7870

 
 


 
  

A  

The mixing matrix 
4Â  obtained from the K-Hough algorithm is: 
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4

0.7096   0.2879   -0.6601   0.4542

ˆ 0.1769   0.9418    0.6601   0.3948

0.6820   0.1736    0.3584   0.7986

 
 


 
  

A  

Formula (15) was used to calculate the NMSE of the estimation results with different 

methods. Comparing the results is used to evaluate the capabilities of the various 

algorithms. Table 2 shows the results: 

Table 2. NMSE Comparison with Estimated Â  and Original A  (dB) 

Comparison methods K-Hough K-means1 K-means2 Proposed 

method 
NMSE -41.6683 -36.1867 -48.2583 -60.3433 

The comparative results of the deviation angles in Experiment 2 are shown in Table 3: 

Table 3. Deviation Angles Comparison with Estimated Â Original A  (  ) 

Comparison 

methods 

Angle between mixing matrix corresponding column vectors  

 1 1ˆang a ,a   2 2ˆang a a   3 3ˆang a a   4 4ˆang a a  

K-Hough 0.0639 0.0147 0.9406 0.0325 

K-means1 0.8797 0.0476 1.2300 0.8741 
K-means2 0.1086 0.1339 0.3732 0.1484 

Proposed method 0.0639 0.0147 0.0482 0.0325 

Summarizing the aforementioned, it can be concluded that after extending the observed 

signals into a three-dimensional domain and using the proposed algorithm, the accuracy 

of the resultant MME was substantially improved. A comparison of the different 

experimental results proved the validity of the need for isolated points detection, as well 

as the superiority of the HT algorithm. Overall, the effectiveness of the proposed 

combination of the local directional time–frequency density detection method and the HT 

algorithm has been proven. 

 

5. Conclusion 

In this study, we used the single-source point detection method to process the 

transformed results of STFT and enhance signal sparsity. HT was used to convert and 

process the straight lines in the domain into local accumulated values within the 

parameter domain, thereby resolving the issue of the unknown number of source signals. 

The local directional time–frequency density detection method was used to eliminate 

isolated time–frequency points and the effect of peak values clustering in the HT results. 

This improved the accuracy when estimating the number of source signals, as well as that 

of the resultant MME. The experimental results indicate that compared to the commonly-

used K-means clustering algorithm and K-Hough algorithm, the proposed algorithm 

greatly improves the accuracy of the MME. 
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