
International Journal of Hybrid Information Technology

Vol.8, No.3 (2015), pp.195-212

http://dx.doi.org/10.14257/ijhit.2015.8.3.19

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Cloud-Brain: A Knowledge-Based Development System for End-

User in Cloud Computing

Rui Zhou, Guowei Wang, Jinghan Wang and Jing Li

School of Computer Science and Technology

 University of Science and Technology of China, Hefei, 230026, China

{rayzhou, weiking, heiswjh }@mail.ustc.edu.cn, lj@ustc.edu.cn

Abstract

With the development of the cloud computing, increasing application and service based

on cloud can be used by end-users. However, for these applications, the end-users can

only use them passively. Without the programming experience, the end-users hardly

involve their knowledge and awareness into the logic of applications. Cloud computing

can provide large storage and computing resources for end-users on demand, and the

Web of Things and sensor network can provide various kinds of information which is

beyond the users’ own sense. In our opinion, the end-users in cloud computing

environment have the ability to develop and design the function of applications by

themselves through their knowledge and awareness. Therefore, we proposed the Cloud-

Brain, a knowledge-based developing approach for end-user in cloud computing. In our

approach, the presentation of fact and knowledge in cloud is considered. The rule engine

and service-oriented architecture are involved in processing the knowledge in the cloud.

End-users can upload their knowledge and awareness in the form of rule into cloud. At

the same time, the system collects facts and data from Web of Things or sensor network.

The actions in these rules, which have matching facts, call the web service or other

function for users. A prototype was implemented to verify the feasibility of this method.

Here, we also present a case study to demonstrate the functionality, performance, and

potential of the approach.

Keywords: Cloud computing, rule-based, end-user development

1. Introduction

In recent years, cloud computing has become a hot issue in both industry and scientific

community. More and more researchers take part in exploring software architecture and

developing model in cloud computing. At the meantime, more and more applications

based on cloud computing emerge in the Internet [1, 2]. These applications can be used in

a lot of aspects in life of users. However the most of them only provide some pre-

designated functions and only can be used passively. There are few products that can

include the user’s knowledge and provide the user-designed functions. Therefore, we

proposed the Cloud-Brain, a knowledge-based development approach for end-user in

cloud computing. It can think with user’s knowledge and provide services to end-users.

Cloud computing is a new computing mode based on the Internet. Through the cloud,

shared resource of software and hardware can be provided to users and customers on their

demands. Typical cloud service provider provides network business application in

general. It can be accessed with browser, client or other web service. The program and

data are stored and running in the server of cloud service provider. For the users, they can

request the resources of computing and storage on demand from the cloud service, and

pay the cost for the resources without buying any equipment and maintenance. So far,

numerous projects from industry and academia have been proposed. For example, the

Google App Engine provides Platform-as-a-Service (PaaS), which is a platform allowing

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

196 Copyright ⓒ 2015 SERSC

users to run and host their web applications on Google’s infrastructure [20]. In addition,

the Amazon Elastic Compute Cloud provides Infrastructure-as-a-Service (IaaS) that

provides resizable compute capacity in the cloud [21].

Thus, we believe that the end-users can obtain limitless resource and capability of

computing and storage from cloud. Together with the development of the artificial

intelligence research for the dozens of years, we also expect the cloud to help users store

part of their knowledge and process some thinking instead of human brain. The result of

the thinking can provide some actions or services for users. Users can get these results

according to their own knowledge. This procedure also can be regarded as a method for

end-user development.

In the other aspect, with the development of Web of things and sensor network, various

kinds of data are produced from sensors in industry and personal life. More and more

sensors are expected to appear in people’s life in many scenes, for example to detect

location, temperature, air pressure, and communication log in mobile devices. In houses,

there are some smart household appliances with sensors which can collect status about

these appliances. Some of these sensors and devices have processing capability. They can

transform raw data into status information. The information represents some facts about

users and the environment around them in a certain level. They also can be called contexts

[3-5]. These contexts extend the ability of people’s perception. In our view, these contexts

can be organized as the basis of effective reasoning in cloud computing.

Therefore, a knowledge-based development approach is proposed in this paper. The

system is also called Cloud-Brain. This approach is based cloud computing for end-users.

With the approach, end-users can upload part of their knowledge to cloud environment in

the form of rule. These rules become the basis of reasoning in cloud rule engine. Facts,

collected by sensors, are inspected whether they match some facts by rule engine. When

some facts are matched, the “THEN” term, which is a service invocation normally, will be

executed by the system. End-users can get information or action from the executed

service.

There are some advantages in the approach for end-users. Firstly, user’s knowledge is

stored in the cloud, and is accessible everywhere. Then, facts and context from sensors

network and web of things are organized in the cloud. The process of reasoning with facts

and knowledge is running in the cloud and produce some actions for user. Moreover, it

also provides a method to composed web services for end-users, which have existed in the

Internet. Finally, it can be regarded as an approach to develop application for non-

programmer.

To achieve this target, a few of fields in computer science are involved into our work.

Our approach is based on cloud computing environments. The processing and storing

nodes in the system are based on virtual machine. Therefore, the approach can respond to

multi-user concurrently. In order to represent knowledge and facts, some methods from

artificial intelligent are applied. For the application development with knowledge,

functions are implemented through service composition.

In this paper, we will describe the architecture, key points of Cloud-brain, and the

prototype implementation we built. The paper is organized as follows: the section 2 will

introduce the background and motivation. In section 3 and section 4, we explain the

Cloud-Brain architecture and some primary component. In section 5, we demonstrate the

Cloud-Brain prototype in action. In section 6, we show some experiments and demos in

the Cloud-Brain. Finally, the future work will be proposed.

2. Related Work

Our research is based on the software engineering, cloud computing, artificial

intelligence. This chapter will introduce the relevant background and the motivation of the

research.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 197

Since the time when computer software was born, the software development method

has made tremendous change. It developed from procedure-oriented programming to

object-oriented programming, from modularization programming to service-oriented

development. It became easier with the development of computing science. However, the

most of existing software development methods are still provided for professional

development programmers rather than end-users. The end-users, who do not understand

the principle of software, can hardly develop any application using programming

languages. Some researches for end-user programming are introduced by Lieberman, et

al., [6]. They expected that the goal of interactive systems and services would evolve

from just making systems easy to use to making systems easy to develop by end users. In

this aspect, the most methods require the users’ understanding the demand of software.

Recently, with the generation of cloud computing, end users have gained computing

resource more easily. Therefore, we consider making use of cloud computing to provide a

new development method to end users. For this target, some methods and researches for

service composition have been investigated and surveyed in [7]. In [8, 9], automated web

service composition methods were discussed. Some of methods used artificial intelligent

to generate service composition plan in semiautomatic or automatic way. Then, some

services were composed with the plan to achieve users’ demands [12]. Inspired by these

methods, service-oriented development was involved into our approach. In these existing

service composition methods, the driving force was users’ demands. We believe that these

demand driven composition methods have certain hysteresis.

Research on using rules in service composition has been done in the software

engineering domain in several systems. Some of them have related architecture with our

approach. The most similar approach in the past research is “Ontology-based User-

defined Rules and Context-aware Service Composition System” in 2011 [17]. It discussed

a platform for context-aware service composition based on user-defined rules. But they

only considered some simple context facts as conditions of rules. Its target was service

composition rather than thinking with user’s knowledge.

Another example to use rules for end user is Mayhem [22]. Mayhem was an open

source application that provides a collection of triggers and reactions, like simple rules,

allowing non-programmers to use their computers to do things automatically. Mayhem

could easily tie disparate things together such as home automation devices, social

networking sites, media devices, messaging, office productivity tools, webcams, musical

instruments, etc. Its basic ideal was similar with our approach, but the rules and facts in

our system were more complex to express complicated logic.

In [18], a knowledge-based approach to resource synthesis and service composition has

been proposed. The approach they used exploits domain knowledge to guide the service

composition process and provided advices on service selection and instantiation. In

another system, SWORD [19], services were represented by rules by given certain inputs,

and services were capable to produce particular outputs. A rule-based expert system was

then used to automatically determine whether a desired composite service could be

realized with existing services.

In recent years, some researches have been done for service composition in cloud

environments. In [10], user-centric personal clouds based service cloud was proposed. A

fast cloud-based web service composition was introduced in [11]. Its QoS was discussed

in detail.

Compared with these researches on rule and service, our approach is different in a few

points:

1. The targets are different. Our approach aims to provide a series of actions for end

user rather than a generated service.

2. The processes are different. The process in service composition with rule was

usually divided into planning with rule and execution with working flow. But in our

system, the rules execute action and call service directly in runtime.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

198 Copyright ⓒ 2015 SERSC

3. The roles of rules are different. In the previous research, rules always guided the

composition and planning. But rules in our approach describe the way to use the facts and

services.

3. Model and Architecture

3.1. Knowledge-based Development Model

In this study, we considered a method driven by user’s knowledge, i.e., the

development progress for user is the progress of inputting his knowledge into system

actually. Most of time, user may not know when the knowledge will be used, while the

knowledge is input. In the real world, the usage of some knowledge depends on

appropriate environment. Every piece of knowledge has its background and condition. For

example, knowledge like common sense and tactics in the basketball may not be suitable

for other sports. In other words, only in the environment of basketball, that knowledge is

useful. Accordingly, in our approach, the knowledge of users includes the conditions in

which this knowledge will be used. In order to structure these conditions, the information

in web of things and users’ context were introduced in our approach as conditions. With

the development of mobile and web of things, increasing number of sensors can collect a

mass of data and information for our system. In our opinion, these data and information in

the system represent the world around users, and extend users’ senses. As mentioned

before, the cloud computing also extends the user’s ability in thinking and memory.

Above all, a knowledge-based development approach for end-user in cloud computing

was explored in our study.

Under these circumstances, some factors were considered in our approach. Firstly,

user’s knowledge is stored in the cloud, and can be accessed everywhere. Then,

facts and context from sensors network and web of things are organized in the cloud.

The process of reasoning with facts and knowledge is running in the cloud and

produce some actions for user. Moreover, it can be regarded as an approach to

develop application for non-programming experiment users.

To this end, the most basic way of human thinking was observed. In a person's learning

process during growth, the atomic knowledge can comes from "when something to do

something", for example, when raining then take umbrella; when red light then stop;

when feeling cold then wear clothes; and so on. This kind "the WHEN - THEN" type of

rules can be used to describe knowledge in computer field.

Figure 1. Framework of the Knowledge-Based Development Approach

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 199

A model was designed to resolve the problem. In cloud environment, a framework is

proposed in figure 1. It includes end-device, sensors, database of facts, rule-base, rule

engine, and web services. The end-device is an interface to an end-user where user can

input rules and get services. The sensors detect everything around user as they can. The

facts collected from sensors are stored in facts database. The rule-base stores knowledge

in the form of rule. Rule engine is the core module that executes knowledge rules in a

runtime Cloud environment. Web services provided by our system or other service

providers are the components that execute the actions in the fired rules. The following

parts will discuss these modules in detail.

3.2. Architecture in Cloud Environment

In the big data era, every user can produce a great quantity of rules and facts. Facts of

every user may be produced every minute. With every fact, the rule engine searches the

matching rules in user’s rule-base. In some peaks of the facts producing, powerful

processing ability is necessary in order to respond immediately. So it meets the demand of

multi-user and high level concurrence. Consequently, we built our system in cloud

environment. In this work, facts and rules for the same user are stored in the same virtual

machine, and the reasoning process runs in the virtual machine.

The architecture of AppScale, an open source extension to the Google AppEngine

(GAE) Platform-as-a-Service (PaaS) cloud technology, was referred to design our system

in cloud environment [13]. The architecture of the Cloud-Brain system in cloud

environment is shown in Figure 2. It consists of the load balance, one or more knowledge

servers, a fact database management system and a controller for inter-component

communication. The load balance distributes initial requests from user to knowledge

servers. The fact database management system includes a fact database master and one or

more fact database slaves. Knowledge servers are the execution engines for matching and

action the rules. They interact with a fact database master for fact storage and access.

Figure 2. Architecture in Cloud Environment

A Cloud-Brain deployment consists of one or more virtualized operating system

instances (guestVMs) as depicted in Figure 3. A node is an instance of a guestVM image.

It implements a Controller for cross component interoperation and communication as well

as at least one of the Cloud-Brain components: load balance, fact database master,

knowledge server, or fact database slave; there can be multiple knowledge servers and

fact database slaves in a deployment. A single node implements one or more components.

The guestVM executes over a Xen virtual machine monitor (VMM). The VMM can

execute one or more guestVMs using the same hardware resources.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

200 Copyright ⓒ 2015 SERSC

Figure 3. Cloud-Brain Image for Virtual Machine

4. Key Points of Cloud-Brain

4.1. Presentation of Facts

In our approach, facts include all kinds of information that can be got to describe

something concerned by user. They mainly include:

• The data from end device. For example, the GPS location, the log of

communication from mobile phone and some status of WIFI from laptop PC.

• The data from sensor network and web of things. Such as, temperature sensor in

house, some status from smart household appliances.

• General facts, data and some common sense facts. For example, time and system

status.

• Facts from services’ outputs. Like weather information from weather web service,

traffic information from navigation service.

• Other facts that uploaded manually by users. User can add facts to describe

anything, such as person’s current mood, perspective of something, and his demands.

These facts are in different forms and types. Moreover, while the system is running,

facts are produced constantly. Since more and more facts need to be stored in the system,

the ontology was involved to present these facts. With ontology, facts and relation

between them can be described in memory and storage, and the scale of facts can extend

easily.

In this approach, the relation between facts can be described at two levels. Firstly, facts

can be distinguished in category. For example, the facts of temperature include body

temperature, room temperature, water temperature, and so on. Secondly, for one kind of

facts, it produces different data at different time or by different sensor. For instance, the

temperature of bedroom should be recorded at different time, from morning to night.

Therefore, these facts are stored and represented in two different ways. Correspondingly,

the data describing facts are divided into two parts: metadata and data. In this approach,

metadata represents the fact’s definition and the semantic relation with other facts. It also

stores the value of the fact or the link to the fact in database. Ontology is used to organize

these metadata. Then, the common data, which record facts in different time and

identities, are stored and organized in database. The access paths of these facts in database

are indicated in the metadata.

A simple part in the metadata of our facts is show in Figure 4. The concept “FACT” is

the general designation of all the facts. The arrow in the figure means “Is-a” or “Be a part

of”. In our system, the facts mainly include general facts, university facts, house facts,

mobile facts, and any other classes of facts if necessary. The category can be redefined by

users. In this case, the facts included in general facts describe general status in real world,

like current time, and some common sense. The facts in other category like university,

house, and mobile facts include the facts that reflect the information in our live

environment. Every fact can contain a set of values to present the status of our world if

needed, like the value in “current time” indicates the current time. If the values in a kind

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 201

of facts are spread in time, like the bedroom temperature, the values can be considered as

a set of facts which are stored in a table in database. At the same time, some information

of the table in database should be described in the metadata.

Figure 4. Fact Metadata of the Cloud-Brain

In the database, data collected from sensors are stored in Tables which are divided into

classes of facts. The primary keys of the tables usually are the time or identities of the fact

records. A fact record consists of the recording time, sensor identity, and data values. For

example, a kind of facts in mobile facts is GPS location. This fact of GPS information

changes with the movement of device. In order to record the changes and history data, the

system collects data from the GPS sensor periodically and inserts the data into the GPS

fact Table in database. As mentioned above, a GPS fact metadata contains the access of

the Table. The columns in data table include time, identity, latitude, longitude, altitude,

speed, and other information. These data are stored in our system permanently unless

deleted by users.

Different users may concern different facts. Therefore, the structure and content of

facts is usually specific for different user. Our system maintains a standalone set of facts

for every user. The data for these facts are collected from the devices around end users

and the sensors with users involved.

In rule engine, facts are used to match rules only when they exist in working memory.

The working memory is where all facts are contained. It is often referred to the fact space.

Facts can be asserted, modified and retracted from the working memory by using the

methods in rule engine’s API. The system periodically detects the update of fact into

database. The new facts and modified facts are added to a buffer list. Rule engine then

updates its working memory with the buffer list regularly. In order to maintain these facts

in working memory, the classes of facts should be defined in forms like JavaBean. The

facts in working memory exist in the form of objects.

4.2. Lifetime of Facts

The lifetime is the remaining time of the data in the system. In this model, the lifetime

of the data is the period when the input and output data stay in the working memory of

rule engine. If some data still exist in the system after the correlative rules triggered, in

some situation, they will make some incorrect operations by fire new rules. On the

contrary, if some data are retracted from memory before invocated completely, the

functions and the data will be damaged. For the input and output facts, the impacts of

their lifetime are different. If the input event facts persist in the system after their function

completed, they will match some rules again incorrectly when new relevant facts or rules

are inserted into the system. It may be cause reduplicate response to user’s one operation.

In other hand, if the input facts are removed earlier, it can cause some required services

have no response. Because in this model, one operation event can match and trigger

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

202 Copyright ⓒ 2015 SERSC

several rules and services, the removing fact in the former rules can causes the mismatch

in the posterior rules. For the output data and facts, the output notices to users can be

repeated, if these facts remain in system after being sent to users. For these output facts

invoked by another service, if they disappear after output, the subsequent services are no

longer able catch these data. Consequently, the lifetime of individual fact is significant for

the correct reasoning.

In order to solve the problem of fact lifetime, two methods, extinction by system

automatically and delete in rules, have been purposed to control the lifetime in these

model. The first method, fact extinction by system, is automatic, according to the

definition of fact. As mentioned before, the facts are defined and managed with ontology

semantic description. In the description, user or service provider can define the lifetime of

these facts. The system will control the extinction of facts according to the definition. In

the other method, users can add the fact retract operation to rules. These rules will dispose

facts when they are triggered. The retract operation can either be added into the RHS of

rules or be involved in a separate rule with special conditions. When there are few of rules

triggered by a set of facts simultaneously, different action sequences will influence the

result of interaction. It makes mistake or function deficiency, when the retract fact

operations exist in rules especially. In this situation, users can define the priority for rules

to control the lifetime of facts and avoid the retract operation affecting other operations.

When some rules have same priority or non-priority, their retract operation in them also

does not affect other actions in the meantime.

These facts in the database will be stored permanently until the users want to delete

them. But facts in rule engine are updated at any time. The older facts will be retracted in

an interval with the retraction interval defined in facts ontology attribute.

4.3. Presentation of User’s Knowledge

In order to integrate user’s knowledge into the Cloud-brain model, we draw inspiration

from expert system. We believe that the judgment to common things in human’ brain is in

the form of rule. For example, in our thoughts, if we arrive at a new place where we have

never been before, we should check it in the map. Therefore, in our approach, user input

knowledge with writing rules. Every rule includes two parts. One is Left Hand Side

(LHS), which describes the conditions of the rule. It means the “IF” statement. The other

part is Right Hand Side (RHS), which describes the actions. It is the “THEN” statement.

If the condition in LHS matches with some facts, the rule will be fired, and the action in

the RHS will be executed. In this model, the condition in LHS can be anything like facts.

There are two kinds of actions in RHS:

1. Some operations to the facts like “insert”, “retract”, and “update”. These

operations will directly make the change in facts database. The operation object can be the

fact which matches the condition in LHR. For example, a fact for user’s mood can be

altered by “$mood. Set (lucky); update ($mood)”. This “$mood” means the mood fact

matched the rule.

2. Service invocation and function call. In this kind of actions, functions from our

system and web services are invoked. The facts matched the rule can be used in this

functions as parameters. For example, the statement “getWeather($location.getCity)”

means calling the weather service to obtain weather information of the location in facts

database.

With more rules stored in the system, the knowledge accumulates in the Cloud-Brain.

We model the rule-base as a set R, which presents the user’s knowledge. In the knowledge

set, r∈R, where r=<Cr, Ar> is a rule. The Cr=LogicExp(cr1, cr2, cr3,) presents the

condition of the rule, and the Ar = Seq(ar1, ar2, ar3,) presents a sequence of actions.

The condition is a logical expression that consists of some conditional elements cri, so

called sub-conditions, and logical operations. The logic between sub-conditions may be

AND, OR, NOT and so on. The sub-conditions in our approach are patterns for facts.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 203

They potentially match on each fact that is inserted in the working memory. A pattern

matches to a fact of the given type or class. All the action happens inside of the pattern

parenthesis: it defines the constraints for that pattern. The constraints take effect to the

property in fact objects. A constraint is an expression that returns true or false. The fact

property can be used in the expression. If a fact makes the expression true, it matches the

condition element successfully. The actions in the rule are some operations of working

memory and some program codes to call services which run in the internet or local host.

4.4. Reasoning Process

In our approach, we expect to simulate the reasoning in human’s brain with computing

power in Cloud. The basis of the reasoning is user’s knowledge. Therefore, we adopt the

rule-engine like expert system in our reasoning process. In the reasoning process, several

data sets are involved, in which, F is the fact set that is stored by working memory; R is

the rule set that presents user’s knowledge; and A is the action list where the fired actions

will be inserted.

A complete reasoning process is as follows:

1. Process starts with changes in facts database or rule-base, when the sensors collect

new data in facts database or rule-base is changed by user.

2. Matching check between facts and rules in rule engine. When existing F’ is included

in F, existing r belongs to R, and F’ matches Cr, the corresponding Ar will be inserted into

list A.

3. Ar from action list A is executed by agent in rule engine, and then will be extracted

from the list.

4. If the result of step 3 has modified facts or rule-base, the process will repeat from

step 2.

5. When the list A is empty and all the rules and facts are checked, this routine of

reasoning is complete. The system returns to ready mode.

4.5. Interaction Mode

In our approach, many interactions should be considered between entities, such as the

interactions between web services, and interactions between users and services.

According to the feature of the approach, an interaction rule was designed to specially

cope with interaction between services. With these rules, every entity can interact each

other via a unified method.

Interaction rule can be divided into LHS and RHS as normal rules, and it represents

user’s logic and knowledge as well. This method takes full advantage of the Cloud-brain

model. These interaction rules add condition, which matches the output fact of pre-

service, in LHS. In the RHS, the statement contains the invocation of service that involves

the output as a parameter. Of course, other components in normal rules can appear in

interaction rule too. These services can connect each other with the method. In detail, an

interaction rule is established as “IF output ($p:p==condition) THEN service S ($p)”. In

this rule, “output” is the condition’s type, which indicates that the matched fact must be

an output fact. The “$p” is a variable which is assigned with the symbol “:”. The

“p==condition” confines the condition of the fact in value. In the RHS, the service “S” is

invocated with the parameter $p. With the system running, while an output “p”

conforming to the condition is produced by one of the services, this rule will be fired. The

system will call the service “S” with the parameter “p” to complete further process. This

method can transfer parameter and invoke service effectively.

Although the interaction rule is designed as above, it is not perfect for our approach.

For some situations following, it lacks the control in invocation of service.

1. When more than one service input on equal terms, i.e., there are many rules

which have the same LHS condition. At this time, when there is an output fact of service

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

204 Copyright ⓒ 2015 SERSC

in accordance with the condition of the rules, all the rules will trigger and execute RHS

services. However, in many cases, we do not want to fire all the rules, but call the targeted

service.

2. Some services do not need to input any parameter. For those who do not have

input parameter service, if these services don’t depend on other facts, then the present

interaction rules will be difficult to describe the service conditions of the call.

Therefore, the “serviceReq”, a fact type for service request, is proposed to solve the

problem. This fact is similar to a request, and at the same time it is the general fact that

appears in LHS of rule and the fact database. In the necessary, we add a call service

request fact in LHS of the rules. For example, if we want to call the service B after the

invocation of service A, we can add a statement “insert(serviceReq (B))” to produce a

service request fact for service B after service A is called in RHS of rule. Moreover, the

new sub-condition “serviceReq(B)” should be added in LHS of the rules which invocated

service B. At this situation, the service B will be called, only when the request fact for

service B is produced.

5. Prototype and System Implementation

5.1. Prototype in Single Server

In order to validate our approach, we implemented a proof-of-concept prototype

system. It can be divided into mobile client side and server side. For the beginning, the

system in server side is mainly deployed in a blade server with 2 Quad-Core AMD

Opteron processors, 32 GB of RAM and a single 160GB SATA disk. It contains fact base,

knowledge base, rules engine, service agent, and some web service.

Fact database Rule engine

Display service

Knowledge base

Weather service

Buffer

New output fact

Working

Memory

Schedule service

Map service

template

display
Web Server

weather

schedule

map

Figure 5. Architecture of the Prototype

The mobile client in our system is an android app, which mainly collects facts from

mobile device and uploads to the server. These facts can be classified into sensors’ data

and behavior of user. The sensors’ data includes GPS location, speed, atmospheric

pressure, and other data that can be obtained from mobile phone. The behavior of user

includes the user’s contacts, recent call log, and other information input by user.

Moreover, the mobile client also can display contents which are pushed from display

service. In order to distinguish different users, the system requires users to log in.

On our server side of the system, the open source tool Jena [23] was involved to

describe the category of facts in ontology [14]. In the prototype system, the category

include the data from sensor, facts from user’s information, schedules of facilities in our

university, the output facts from services, the input facts from users, and other additional

facts.

MySql was deployed as facts database that stored all the facts. In our approach, each

user's knowledge is only for the facts around him, i.e., each user has its private domain of

facts and knowledge. Therefore, in the database, the data from different users’ accounts

are individual. It also ensures the safety of users’ data.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 205

The open source rule engine, Drools [15], was chosen as the core of the system. Drools

are a Rule Engine that uses the rule-based approach to implement an Expert System and is

more correctly classified as a Production Rule System [Drools Expert User Guide]. It

includes working memory, knowledge base and rule executing agent. As mentioned

before, working memory is the fact space. All the facts will be inserted into working

memory before matching with rules. Frequently inserting of facts reduces the rule

engine's performance. In order to synchronize the fact database and working memory, and

stabilize the rule engine, a buffer list was used to cache the update facts. The facts in

buffer are transferred to working memory at regular intervals.

In our prototype system, knowledge is input with a rule file by users. The file is in

“.drl” format which is the description language of rules in Drools. These rules will be

transferred into a RETE net that is the basis of RETE algorithm for rule matching [16].

For the rules matching facts, the agent executes their RHS. As described earlier, there

are some operations of facts and some service invocations in RHS.

These services are mainly web services from internet. In order to call these web

services easily, the encapsulations of the services were introduced to soap interface.

5.2. Cloud-Brain System in Cloud Platform

With the experiments in Section 6, a poor performance can be seen when the single-

node rule engine system is in the large-scale data. Therefore, a distributed and elastic

system is required. The Cloud architecture is employed to cope with big data and multi-

user. A prototype system based Cloud has been developed to verify this architecture. The

Cloud-Brain has been implemented on the USTC Cloud platform, which is an IaaS cloud

environment based on Openstack cloud platform. As shown in Figure 6, there are three

types of virtual machines in Cloud-Brain. Virtual machine in the role of master distributes

the rules and facts to other virtual machines. The other virtual machines are in roles of

fact database and rule engine slave. These three roles of virtual machines do not conflict

with each other. In Cloud-Brain system, there is only one master node, but can be several

fact database nodes and rule engine slave nodes. The number of the two kinds of nodes

depends on the load and throughput.

Figure 6. Cloud-Brain system in Cloud

In master node, Fact transporter collects facts from different sources and distributes

them to fact database nodes for different users. The load balance of rule engine manages

all the rule engine slave nodes in system. In fact database, the fact management maintains

relevant facts based ontology and manages the facts data in database. The number of fact

database can be expanded and contracted depending on the user throughput and the scale

of facts. In the rule engine slave, a controller is designed to control the rule engine. When

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

206 Copyright ⓒ 2015 SERSC

the rule engine is not accessed for offline with user, the rule-base in the engine will be

serialized to cloud storage. If the user returns to this system again, controller can retrieve

the rule engine from the slave node. This mechanism can solve the problem that these

suspended rule engines consume gigantic memory. In the cloud storage, which is based on

Swift of Openstack, the serialized rule-base can be backed up and recovered quickly. For

the delivery of fact between fact database and rule engine, a message queue server based

on RabbitMQ has been deployed.

6. Experiment and Demos

6.1. Experiment for the Performance of Rule Engine

In order to realize the performance of the prototype cloud-based system in virtual

machines, a series of tests on the system response time for the changing quantities of rules

and facts were conducted.

In these tests, the rules and facts are produced randomly by a program. In every rule,

there are 4 conditions and 3 restrictions for properties. In addition, the facts may have the

potential types and values matching rules.

Firstly, a group of tests were completed to measure the establish time of knowledge

base for different quantities of rules. Some “.drl” files with different rules were produced

randomly as rule sets. In order to make the results more accurate, we tested different rule

sets in the same quantity, and calculated the mean value. The results of knowledge base

establish time for different rule quantities are illustrated in Figure 7. The rule quantities in

the test were from 10 to 100000. The results are shown in logarithmic coordinates. It can

be seen that the establish time is almost in linear relationship with the rule quantity. The

establish time is tolerable if user don’t update rules largely and frequently.

Figure 7. Knowlage Base Establish Time

Then, another group of tests aim to test the time of fact insert and match. The fact and

rule quantities were both from 10 to 10000. The time of fact insert and match in every

rule and fact scale was measured several times. The results of the average time in

different groups of rule and fact scale are shown in Figure 8. They are compared in

logarithmic coordinates. It can be seen that the effect of fact quantity is more than the

effect of knowledge base scale.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 207

Figure 8. Matching Time in Different Scale of Rules and Facts

Based on the results of these tests, we also tested the response time of new fact in

running system with different scale of rules and facts. With the some scale as above

mentioned tests, a new fact was inserted into the working memory after all the fired rules

executed. In these tests, the results of response time were usually lower than 10ms.

Therefore, the response time for every fact is reasonable for end-users.

In these experiments, the consumption of memory was also monitored. In total, about

6Gbyte memory was consumed by 1000 rules and 10000 facts. The memory consumption

was mainly in knowledge base construction, facts insertion and matching, and rules

execution. When the rule quantity was increased to 10000, the memory for knowledge

base construction was about 7Gbyte, and the whole memory consumption was nearly

20Gbyte. As the demand of memory is increased rapidly with the accumulation of rules

and facts, distributing the rules in different virtual machines in cloud is necessary.

6.2. Demos of the End-user Development

The Cloud-Brain system has been put into use in our University. Common information,

like notification of library, curriculum schedule, status of public athletic fields, was

considered as facts in the system. The specific facts for users were also maintained in fact

database, such as users’ communication log, status of users’ dorm, library records of

users. Moreover, some services were provided to cater students’ demands. These services

cover many aspects of a student, for example, the curriculum schedule service, campus

bus service, weather service, and map service. Students in the campus can develop their

own knowledge in the Cloud-Brain. All the facts mentioned above can be matched as the

LHS in the rules, and all the services provided in this system can be invoked by the RHS

of the rules.

Figure 9. The “Weather fact Display” Rule

With the prototype system, a demo was completed to verify the effectiveness of our

approach. Some rules were written into a file. These rules describe some knowledge about

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

208 Copyright ⓒ 2015 SERSC

how to remind schedule, query weather, call the map, find the appropriate campus bus

line and interact with user. As an example, weather fact display interaction rule is shown

in Figure 9. This is an interaction rule. Its LHS is the condition matching a weather

fact. In the RHS, the system calls display service to display the weather information

with the template in “template.xml”. Then, the weather fact is retracted from

working memory.

These rules have the following functions: 1. to remind user the schedule item, and

display the schedule item to user with the customized template; 2. user can choose

relevant information on the schedule item, like weather in this example; 3. find the

appropriate campus bus line with the time and location of schedule item; 4. display these

results to users.

The execution of demo is as follow:

• When the current time corresponds to the condition in rule “Schedule notice”, the

rule is fired. The rule executing agent will then call the schedule query service. If there

are items like conference or memorandum in user’s schedule, the service will return them.

These items will be inserted into working memory as facts.

• When some schedule items are inserted into working memory, the rule “Schedule

fact display” matches to them. The rule’s RHS will then be executed. The display service

will be called to push notice to user. The notice will be displayed in client app with a

template, where potential interaction events can be described. In this example, the

template defines a query weather event. User can choose the interaction event when the

notice displays.

• If the user clicks the “query weather” button upon receiving the schedule notice, a

weather query event will be produced and inserted into working memory. Then the rule

“Interface event for weather” will match to the event. The agent will invoke weather

query service and insert the weather information into working memory as a fact.

• When the weather fact matches the rule “Weather fact display”, display service will

be called again to deliver the weather information to the user.

• In other rules about bus line, the campus bus service is invoked. Campus bus

timetable can be queried with the service. A series of reasoning judgment is carried to

find the appropriate campus bus line with rules about schedule item, current location and

campus bus.

• The campus bus line and location of schedule item can match some rules to invoke

map service. The map service returns a piece of web page code, which can be used to

display to users.

• The bus line and a map are displayed to users in Cloud-Brain client.

The figure 10 shows some of screenshots in this demo. In these screenshots, when a

schedule item is produced by web service, a notice will displayed in notice bar. After user

tap the notice, the reasoning result is displayed. A campus bus line is recommended by

Cloud-Brain according to the current time, the location of user, schedule in calendar, and

the campus bus service.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 209

Figure 10. Screenshots of Demo

With the system and demos above, a basis framework, which can help users to take full

advantage of the resource in Internet and Web of Things, was proposed. Users can

compile a series of rules as the knowledge in the system. This process also can be

regarded as development by users.

7. Conclusions and Future Work

In this paper, we described Cloud-Brain, a knowledge-based development approach for

end-user in cloud computing. Cloud-Brain provides a framework that allows user to store

their knowledge, collects facts around user, and infers with knowledge and facts to

execute actions for user. In our approach, the implementation of a framework and its

prototype was described in detail. In the framework, the demand of multi-user and high

concurrence, presentation of facts and knowledge, the reasoning, and the interaction were

considered to support the approach. A demo and some performance tests has been

discussed to show the function and insufficient.

To improve our prototype, future extensions of the system in cloud environment is

needed. The management of facts, knowledge base and rule engine in different node will

be considered. In addition, more facts and services will be involved to enhance and

perfect the Cloud-Brain.

Acknowledgement

We thank the Supercomputing Center at University of Science and Technology of

China (USTC) for their platform and technical support. This research was supported by

the National Key Technology R&D Program under Grant No. 2012BAH17B03, the

Continuing Learning and Education and Science Integration Project, and the Cloud

Computing Joint Laboratory of USTC and Lenovo.

This paper is a revised and expanded version of a paper entitled “A Knowledge-based

Development Approach with Fact and Service for End-user in Cloud Computing”,

presented at Proceedings of 2013 IEEE 37th Annual Computer Software and Applications

Conference Workshops, July 22, 2013 - July 26, 2013, in Kyoto, Japan.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

210 Copyright ⓒ 2015 SERSC

References

[1] M. A. Vouk, “Cloud computing Issues, research and implementations,” in Information Technology

Interfaces, 30th International Conference on, (2008), pp. 31–40.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin

and I. Stoica, “A view of cloud computing,” Communications of the ACM, vol. 53, no. 4, (2010) pp.

50–58.

[3] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan and D. Riboni, “A

survey of context modelling and reasoning techniques”. Pervasive and Mobile Computing, vol. 6, no. 2,

(2010). pp. 161-180.

[4] P. Makris, D. N. Skoutas and C. Skianis, “A Survey on Context-Aware Mobile and Wireless

Networking: On Networking and Computing Environments' Integration”, Communications Surveys &

Tutorials, IEEE, vol. 15, no. 1, (2013), pp. 362-386.

[5] L. Guan, X. Ke, M. Song and J. Song, “A survey of research on mobile cloud computing”, Proceedings

of the 2011 10th IEEE/ACIS International Conference on Computer and Information Science, (2011),

pp. 387-392

[6] H. Lieberman, F. Paternò, M. Klann and V. Wulf, “End-user development: An emerging paradigm,” in

End user development, Springer, (2006), pp. 1–8.

[7] G. Kapitsaki, D. A. Kateros, I. E. Foukarakis, G. N. Prezerakos, D. I. Kaklamani and I. S. Venieris,

“Service Composition: State of the art and future challenges,” 16th IST Mobile and Wireless

Communications Summit, (2007), pp. 1–5.

[8] J. Rao and X. Su, “A survey of automated web service composition methods,” in Semantic Web

Services and Web Process Composition, Springer, (2005), pp. 43–54.

[9] J. Cheng, C. Liu, M. Zhou, Q. Zeng and A. Yla-Jaaski, “Automatic Composition of Semantic Web

Services Based on Fuzzy Predicate Petri Nets”, (2013).

[10] L. Ardissono, A. Goy, G. Petrone and M. Segnan, “From Service Clouds to User-Centric Personal

Clouds,” 2009 IEEE International Conference on Cloud Computing, (2009), pp. 1–8.

[11] S. Wang, Q. Sun, H. Zou and F. Yang, “Particle swarm optimization with skyline operator for fast

cloud-based web service composition”, Mobile Networks and Applications, vol. 18, no. 1, (2013), pp.

116-121.

[12] O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anagnostopoulos and L. Vlahavas, “An

integrated approach to automated semantic web service composition through planning”, Services

Computing, IEEE Transactions on, vol. 5, no. 3, (2012), pp. 319-332.

[13] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman and R. Wolski, “Appscale: Scalable and

open appengine application development and deployment,” in Cloud Computing, Springer, (2010), pp.

57–70.

[14] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne and K. Wilkinson, “Jena: implementing

the semantic web recommendations,” in Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, (2004), pp. 74–83.

[15] M. Bali, “Drools J Boss Rules 5.0 Developer’s Guide”, Packt Publishing Ltd, (2009).

[16] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern match problem,”

Artificial intelligence, vol. 19, no. 1, (1982), pp. 17–37.

[17] V. Beltran, K. Arabshian and H. Schulzrinne, “Ontology-based user-defined rules and context-aware

service composition system”, In The Semantic Web: ESWC 2011 Workshops. Springer Berlin

Heidelberg, (2012), pp. 139-155.

[18] L. Chen, N. R. Shadbolt, C. Goble, F. Tao, S. J. Cox, C. Puleston and P. R. Smart, “Towards a

knowledge-based approach to semantic service composition,” in The Semantic Web-ISWC 2003,

Springer, (2003), pp. 319–334.

[19] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit for web service composition,” 11th World

Wide Web Conference (Web Engineering Track), (2002), pp. 7–11.

[20] Google App Engine, http://appengine.google.com.

[21] “Amazon Elastic Compute Cloud [URL]”, http://aws.amazon.com/ec2, access on Nov. 2007.

[22] “Microsoft Mayhem”, http://www.microsoft.com/appliedsciences/content/projects/mayhem.aspx.

[23] “Apache Jena project”, http://jena.apache.org/.

Authors

 Rui Zhou is a PhD student in Computer Science and

Technology at the University of Science and Technology of China.

He received his bachelor degree in Xidian University in 2009. His

research interests include Cloud computing, service-oriented

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 211

computing, mobile computing and context-aware. He is author of

some research papers published at conference proceedings.

Guowei Wang is a PhD student in Computer Science and

Technology at the University of Science and Technology of China.

He received his bachelor degree in the University of Science and

Technology of China in 2012. His research interests include Cloud

computing, rule-based computing, mobile computing and distribute

computing.

Jinghan Wang is a master student in Computer Science and

Technology at the University of Science and Technology of China.

He received his bachelor degree in Hefei University of Technology

in 2011. His research interests include Cloud computing, rule-based

computing, mobile computing and distribute computing.

Jing Li received his B.E. in Computer Science from University

of Science and Technology of China (USTC) in 1987, and Ph.D. in

Computer Science from USTC in 1993. Now he is a Professor in

the School of Computer Science and Technology at USTC. His

research interests include Distributed Systems, Cloud Computing

and Mobile Computing. He is author of a great deal of research

studies published at national and international journals, conference

proceedings as well as book chapters.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

212 Copyright ⓒ 2015 SERSC

