
International Journal of Hybrid Information Technology

Vol.8, No.3 (2015), pp.133-144

http://dx.doi.org/10.14257/ijhit.2015.8.3.13

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Similarity Analysis in Social Networks Based on Collaborative

Filtering

1,3

Yingchun Hou,
2
Hui Xie and

1
Jianfeng Ma

1
School of Computer Science and Technology, Xidian University, Xi’an 710071,

P. R.China
2
School of Mathematics & Computer Science, Jiangxi Science & Technology

Normal University, Nanchang 330038, P. R. China
3
Department of Computer Technology, Shangqiu Polytechnic, Shangqiu 476000,

P. R.China

houyingchun11@163.com

Abstract

Collaborative Filtering is of particular interest because its recommendations are based

on the preferences of similar users. This allows us to overcome several key limitations.

This paper explains the need for collaborative filtering, its benefits and related

challenges. We have investigated several variations and their performance under a

variety of circumstances. We also explored the implications of these results when

weighing K Nearest Neighbor algorithm for implementation. Based on the relationship of

individuals, putting forward a new incremental learning collaborative filtering

recommendation system, discovery it is a better way to acquire optimum results.

Keywords: social networks, collaborative filtering, k nearest neighbor algorithm

1. Introduction

Nowadays, we are witnessing in the expansion of the information on the Internet. All

the information we need about a specific topic is available in the network, but in many

cases the problem is the difficulty to find the information useful for us, among big amounts

of useless one. Choosing among millions of products is challenging for consumers, and

recommending products to customers is difficult for these sites. Recommender systems

have emerged in response to this problem. A recommender system recommends products

that are likely to fit they need. Recommender systems benefit customers by enabling them

to find products they like. Conversely, they help the business by generating more sales.

Today, recommender systems are deployed on hundreds of different sites, such as

Amazon, T mall and eBay.

The representative techniques of Memory-based collaborative filtering (CF) include

Neighbor-based CFs [1] and Item-based/user-based top-N recommendations [2]. Model-

based CF algorithms, such as Bayesian models [3], clustering models [4], and dependency

networks [5, 6], have been investigated to solve the shortcomings of memory-based CF

algorithms. The design and development of models (such as machine learning, data mining

algorithms) can allow the system to learn to recognize complex patterns based on the

training data, and then make intelligent predictions for the collaborative filtering tasks for

test data or real-world data, based on the learned models. Figure 1 gives a two layer mode

of collaborative filtering recommendation.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

134 Copyright ⓒ 2015 SERSC

Figure 1. Two Layer Mode of Collaborative Filtering Recommendation

Hybrid CF systems combine CF with other recommendation techniques (typically with

content-based system) to make predictions or recommendations. Taking content-based

recommender system mentioned in [7] as an example, it makes recommendations by

analyzing the content of textual information, gives a higher weight for active user as well

as the item that more users rated. By doing so, Hybrid CF improves prediction

performance and overcomes CF problems, such as data sparsity and gray sheep. The

system has to be independent from the content it is recommending. This means that it is

not necessary that the system knows which kind of items it is recommending. The

same system should be able to recommend music, films or books if it has past ratings of

these kinds of items.

There is a common functionality for the recommender systems. The basic tasks

that these systems have to offer to users are [8]:

 First of all the system has to recommend a list of items, that the system

considers the most useful for the specific user.

 In other cases when a user asks for an item, the system has to calculate the

predicted rating of the item for this specific user.

There are many possibilities to classify the collaborative filtering algorithms. It

distinguishes three types [9]:

 Memory-based algorithms, that use all the ratings stored in the database to

make the predictions.

 Model-based algorithms, that create a model used to calculate the predictions.

 Hybrid recommenders, those mix collaborative filtering with content based

methods.

Here is a table of the main characteristics of each one, which is showed in Table 1.

2. Collaborative Filtering

The entire process of CF-based recommendation system is divided into three sub-tasks

namely, representation, neighborhood formation, and recommendation generation as

shown in Figure 2.

2.1 Representation

Table1. Types of Collaborative Filtering: Techniques, Advantages &

U4

U1

U3

U2

U5

User Layer

Project Layer

Network

R1
R 2

R3 R 4

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 135

Disadvantages

CF
Categories

Representative
Techniques

Advantages

Disadvantages

Memory-
based

Model-
based

Hybrid
methods

 Neighbour-based CF (item-
based/user-based CF with
Pearson/vector cosine
relation)

 Item-based/user-based top-
N recommendations

 Easy implementation

 New data can be
added easily and
incrementally

 Need not consider
the content of the
items being
recommended

 Scale well with co-
rated items

 Are dependent on
human ratings

 Performance
decreases when data
are sparse

 Cannot recommend
for new users and
items

 Have limited
scalability for large
datasets Better address the sparsity, Expensive model-

building

 Bayesian belief nets CF
scalability and other Have trade-off

between

Latent Semantics Models CF Improve prediction prediction
performation

 Latent Semantics Models CF
Improve prediction and scalability

Association Rule mining

Give an intuitive rationale Lose useful

information
 for recommendation for dimensionality

 Content-based CF
recommender

 Content-booted CF

 Hybrid CF combining
memory-based and model-
based CF

 Overcome limitations of
CF and content-based or
other
recommenders

 Improve
prediction
performance

 Overcome CF problems
such as sparsity & gray
shape

 Have increased
complexity and expense
for implementation

 Need external
information that usually
is not available

In a typical CF-based recommender system, the input data is a collection of historical

purchasing transaction of n customers on m products. It is usually represented as an mn

customer-product matrix, R (m,n), which consists of a set of ratings ri,j, such that ri,j is

corresponding to the rating for the customer i has on the product j.

(1) Neighborhood formation

The neighborhood formation process is in fact the model-building or learning process

for a recommender system algorithm. The most important step in CF-based recommender

systems is that of computing the similarity between customers as it is used to form a

proximity-based neighborhood between a target customer and a number of like-minded

customers.

The main goal of neighborhood formation is to find, for each customer c, an ordered

list of

k customers Nc={n1,n2,…,nk}, such that , cNc, and sim(c,nl)≥sim(c,n2)≥…≥sim(c,nk),

where

sim (c,ni)(1≤i≤k) indicates similarity between customer c and customer ni．
There are a number of different ways to compute the similarity between items, such as

cosine-based similarity, correlation-based similarity
[2]

.

(2) Correlation-based similarity

In this case, similarity between customer i and customer j is measured by computing

the Pearson-r correlation corri,j. To make the correlation computation accurate the co-

rated case Pij must be isolated (i.e., case where the customers rated both i and j). The

Pearson-r correlation corri, j is given by

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

136 Copyright ⓒ 2015 SERSC

Figure 2. The Collaborative Filtering Process [10]

where , and rip represent the rating of customer i on product item p. is the rating

of customer i on the whole product item and is the one of customer j .

(3) Cosine-base similarity

In this case, two items are thought of as two vectors in the m dimensional customer-

space. The similarity between them is measured by computing the cosine of the angle

between these two vectors, which is given by

where "." is the dot-product of the two vectors.

2.2 Generation of Recommendation

Once these systems determine the nearest- neighborhood, they produce

recommendations that can be of two types:

(1)Prediction

It is a numerical value, Ra,j, expressing the predicted opinion-score of product pj for the

target customer a. This predicted value is within the same scale as the opinion values

provided by a.

(2)Top-N recommendation

It is a list of N products, TPr ={Tp1, Tp2, . . . TpN}, that the target customer will like the

most. The recommended list usually consists of the products not already purchased by the

target customer. This output interface of CF algorithms is also known as Top-N

recommendation.

A widely popular statistical accuracy metric named Mean Absolute Error (MAE) is a

measure of the deviation of recommendations from their true customer-specified values.

p jjpp iip

P jjpiip

ijij

rrrr

rrrr
corrsim

22)()(

))((

ijPp
ir

jr

22 ||||*||||
cos

ba

ba
sim ijij

Product

Representation (rating

Table)

P1 P2 … Pj … Pn

C1

Ci

C2

…

Cm

Custome

r

…

Ri,j(Prediction on

product j for customer

i)

Top-N list of products

for customer i

Neighborhood formation Recommendation

MAE

Evaluation

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 137

For each ratings-prediction pair < pi, qi >, this metric treats the absolute error between

them i.e., |pi−qi| equally. The MAE is computed on first summing these absolute errors of

the N corresponding ratings-prediction pairs and then computing the average. Formally,

The lower the MAE, the more accurately the recommendation engine predicts

customer ratings.

3. K Nearest Neighbor Algorithm in CF

K Nearest Neighbor (KNN) is one of those algorithms that are very simple to

understand but works incredibly well in practice. In addition, it is surprisingly versatile

and its applications range from vision to proteins to computational geometry to graphs

and so on. Most people learn the algorithm and do not use it much that is a pity as a clever

use of KNN can make things very simple. It also might surprise many to know that KNN

is one of the top 10 data mining algorithms.

KNN is a non-parametric lazy learning algorithm. That is a concise statement. This is

useful, as in the real world, most of the practical data does not obey the typical theoretical

assumptions made (e.g., Gaussian mixtures, linearly separable etc.,). Non-parametric

algorithms like KNN come to the rescue here.

It is also a lazy algorithm. What this means is that it does not use the training data

points to do any generalization. In other words, there is no explicit training phase or it is

minimal. This means the training phase is fast. Lack of generalization means, that KNN

keeps all the training data. More exactly, all the training data is needed during the testing

phase. (Well this is an exaggeration, but not far from truth). Most of the lazy algorithms –

especially KNN – make decision based on the entire training data set (in the best case a

subset of them).

The dichotomy is obvious here – There is a nonexistent or minimal training phase but a

costly testing phase. The cost is in terms of both time and memory. More time might be

needed as in the worst case; all data points might take point in decision. More memory is

needed as we need to store all training data. The algorithm on how to compute the K-

nearest neighbors is as follows:

1. Determine the parameter K = number of nearest neighbors beforehand. This value is all

up to you.

2. Calculate the distance between the query-instance and all the training samples. You can

use any distance algorithm.

3. Sort the distances for all the training samples and determine the nearest neighbor based

on the K-th minimum distance.

4. Since this is supervised learning, get all the Categories of your training data for the

sorted value which fall under K.

5. Use the majority of nearest neighbors as the prediction value.

 Figure 3 gives the schematic diagram of the KNN classifier.

KNN assumes that the data is in a feature space. More exactly, the data points are in a

metric space. The data can be scalars or possibly even multidimensional vectors. Since the

points are in feature space, they have a notion of distance – this need not necessarily be

Euclidean distance although it is the one commonly used.

N

qp
N

i

ii

 1

||

MAE

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

138 Copyright ⓒ 2015 SERSC

Figure 3. Schematic Diagram of the KNN Classifier

Figure 4. Euclidean Distances between Two Vectors Xr and Xs

 We can use the following formula to express the euclidean distances as showed in

Figure 4.

2 2(,) (1 1) (2 2)d Xr Xs Xr Xs Xr Xs Xr Xs

Each of the training data consists of a set of vectors and class label associated with

each vector. In the simplest case, it will be either + or – (for positive or negative classes).

But KNN, can work equally well with arbitrary number of classes.

We are also given a single number "k”. This number decides how many neighbors

(where neighbors are defined based on the distance metric) influence the classification.

This is usually an odd number if the number of classes is two. If k=1, then the algorithm

is simply called the nearest neighbor algorithm.

3.1 KNN for Density Estimation

Although classification remains the primary application of KNN, we can use it to do

density estimation also. Since KNN is non-parametric, it can do estimation for arbitrary

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 139

distributions. The idea is very similar to use of parzen window. Instead of using

hypercube and kernel functions, here we do the estimation as follows – For estimating the

density at a point x, place a hypercube centered at x and keep increasing its size till k

neighbors are captured. Now estimate the density using the formula,

/
()

k n
p x

V

Where n is the total number of V is the volume of the hypercube. Notice that the

numerator is essentially a constant and the volume influences the density. The intuition is

this: Let’s say density at x is very high. Now, we can find k points near x very quickly.

These points are also very close to x (by definition of high density). This means the

volume of hypercube is small and the resultant density is high. Let’s say the density

around x is very low. Then the volume of the hypercube needed to encompass k nearest

neighbors is large and consequently, the ratio is low.

The volume performs a job similar to the bandwidth parameter in kernel density

estimation. In fact, KNN is one of common methods to estimate the bandwidth (e.g.,

adaptive mean shift).

3.2 KNN Classification

In this case, we are given some data points for training and a new unlabeled data for

testing. Our aim is to find the class label for the new point. The algorithm has different

behavior based on k.

Case 1: k = 1 or Nearest Neighbor Rule

This is the simplest scenario. Let x be the point to be labeled. Find the point closest to

x. Let it be y. Now nearest neighbor rule asks to assign the label of y to x. This seems too

simplistic and sometimes even counter intuitive. If you feel that this procedure will result

a huge error, you are right – but there is a catch. This reasoning holds only when the

number of data points is not very large.

If the number of data points is very large, then there is a very high chance that label of

x and y is same. An example might help – suppose that you have a (potentially) biased

coin. You toss it for 1 million time and you have head 900,000 times. Then most likely,

your next call will be head.

Now, assume all points are in a D dimensional plane. The number of points is

reasonably large. This means that the density of the plane at any point is high. In other

words, within any subspace there is adequate number of points. Consider a point x in the

subspace which also has many neighbors. Now let y be the nearest neighbor. If x and y are

sufficiently close, then we can assume that probability that x and y belong to same class is

same – Then by decision theory, x and y have the same class.

The book "Pattern Classification" by Duda and Hart has an excellent discussion about

this Nearest Neighbor rule. One of their striking results is to obtain a tight error bound to

the Nearest Neighbor rule. The bound is

* *(2 *)
1

c
P P P P

c

Where 𝑃* is the Bays error rate, c is the number of classes and P is the error rate of

Nearest Neighbor. The result is indeed very striking (at least to me) because it says that if

the number of points is large then the error rate of Nearest Neighbor is less than twice the

Bays error rate.

Case 2: k = K or k-Nearest Neighbor Rule

This is a straightforward extension of 1NN. What we do is that we try to find the k

nearest neighbor and do a majority voting. Typically, k is odd when the number of classes

is 2. Let us say k = 5 and there are 3 instances of C1 and 2 instances of C2. In this case,

KNN says that new point has to label as C1 as it forms the majority. We follow a similar

argument when there are multiple classes.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

140 Copyright ⓒ 2015 SERSC

One of the straightforward extensions is not to give 1 vote to all the neighbors. A very

common thing to do is weighted KNN where each point has a weight which is typically

calculated using its distance. For e.g. under inverse distance weighting, each point has a

weight equal to the inverse of its distance to the point to be classified. This means that

neighboring points have a higher vote than the farther points.

It is obvious that the accuracy might increase when you increase k but the computation

cost also increases.

4. Our Method of Similarity Analysis by Using KNN Algorithm

Given a collection S where the target attribute can take on k different values, the

entropy of S can be defined as:

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) ≡ ∑ − 𝑝𝑖 log2
𝑘
𝑖=1 𝑝𝑖 (1) Where pi is the

proportion of S belonging to class i. With this entropy we can calculate the information

gain, Gain(S, A) of an attribute A, relative to a collection of examples S as follows:

𝐺𝑎𝑖𝑛(𝑆, 𝐴) ≡ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(A))

(2) Where Values (A) is the set of all possible values for attribute A, and Sv is the subset

of S for which attribute A has values v. In this equation, the first term is the entropy after S

is partitioned using attribute A. The second term describes the expected entropy which is

the sum of the entropies of each subset Sv, weighted by the expected reduction in entropy

caused by knowing the value of attribute A. The gain ratio incorporates the split

information [16], that is sensitive to how broadly and uniformly the attribute splits the

data:

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆, 𝐴) ≡ − ∑
|𝑆𝑖|

|𝑆|
 log2

𝑘
𝑖=1

|𝑆𝑖|

|𝑆|
 (3) Where S1

through Sk are the k subsets of examples resulting from partitioning S by the k-valued

attribute A. The GainRatio measure is defined in terms of the Gain measure, as well as the

SplitInformation that discourages the selection of attributes with many uniformly

distributed values:

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑆, 𝐴) ≡
𝐺𝑎𝑖𝑛(𝑆,𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆,𝐴)
 (4) For attributes with

continuous values, new discrete-valued attributes are dynamically defined that partition

the continuous attribute value into a discrete set of intervals. For an attribute A that is

continuous-valued, the algorithm can dynamically create a new boolean attribute Ac that is

true if A < c and false otherwise. The threshold c is the value that produces the greatest

gain ratio. To find the threshold c, the collection of examples S is first sorted on the values

of the attribute A as {v1, v2, . . . , vm}. Any threshold value lying between vi and vi+1 can

split A, so there are only m – 1 candidate thresholds. These candidate thresholds can then

be evaluated by computing the gain ratio of each candidate threshold.

In equations (2), (3), (4) it is assumed that the values of the attributes are known. When

the value of an attribute is unknown, it is not possible to calculate the gain, the split

information, and thus the gain ratio of an attribute. To calculate the gain of an attribute

whether the values is known or not, the gain has to be modified as follows [12]:

Let F be the fraction that the value of an attribute A is known. Then the gain can be

calculated as:

𝐺𝑎𝑖𝑛(𝑆, 𝐴) ≡ probability 𝐴 is known ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)

− ∑ 〖
|𝑆𝑣|

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣〗)

𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(A)

+ probability 𝐴 is not known ∗ 0

 ≡ 𝐹 ∗ (𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(A)))

(5) Where only the known values of A are taken into account by 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) and

∑
|𝑆𝑣|

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(A)). The split information can be modified by considering the

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 141

cases of A with unknown values as an extra group:

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆, 𝐴) ≡ − ∑
|𝑆𝑖|

|𝑆|
 log2

𝑘+1
𝑖=1

|𝑆𝑖|

|𝑆|
 (6)

The attribute that best classifies the training examples is selected and used as the test at

the root node of the tree. A child node of the root node is created for each of the two

subsets that are split by that attribute and its threshold, and the training examples are

sorted with weights for each case to the appropriate child node. If the case has a known

value, the weight for that case is 1. If the case does not have a known value, the weight

for this case is the probability that this case will have the outcome of the appropriate child

node. The subsets that are created for the root node are collections of possible fractional

cases. This process is then repeated using the training examples associated with each child

node to select the best attribute to test at that point in the tree. During this process, the

algorithm never backtracks to consider earlier choices.

The recommender systems are characterized by managing large dataset. One of the

most important challenges for them after giving good recommendations is to work with

this amount of data in a reasonable computing time.

In order to test how the built system works from the computational time point of view,

we run some tests as explained in the previous sections.

The results obtained are as showed in Table 2:

Table 2. Similarity of Different User (u) and Product (p)

File 100u
100p

500u
500p

1000u
1000p

2000u
1500p

3000u
2000p

4000u
2500p

5000u
3000p

6000u
3900p

SimFor1 0.884 0.893 0.896 0.895 0.894 0.894 0.891 0.885
SimFor2 0.896 0.887 0.897 0.895 0.893 0.894 0.891 0.885

SimFor3 0.886 0.892 0.895 0.896 0.895 0.894 0.891 0.884
SimFor4 0.901 0.890 0.899 0.895 0.893 0.895 0.891 0.885

After these results we calculate the values for the hypothesis contrast as in Table 3:

Table 3. Similarity of Different user (u) and Product (p)

File 100u
100p

500u
500p

1000u
1000p

2000u
1500p

3000u
2000p

4000u
2500p

5000u
3000p

SimFor1-
SimForm2

-0.66 1.69 -0.24 0.46 0.41 0.73 -0.97
SimFor1-
SimForm3

-0.09 0.35 1.13 -0.64 -1.73 -0.16 -0.39

SimFor1-
SimForm4

-0.95 0.90 -1.67 1.04 1.29 -1.45 -0.23
SimFor2-
SimForm3

0.56 -1.48 1.31 -1.08 -2.04 -0.95 0.55

SimFor2-
SimForm4

-0.29 -0.84 -1.39 0.54 0.83 -2.30 0.70
SimFor3-
SimForm4

-0.85 0.62 -2.59 1.69 2.95 -1.36 0.15

There are differences between the similarity formulas 2, 4 and 5, and the precision is

significant better in one formula and with other files it is the opposite, as showed in Figure

5.

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

142 Copyright ⓒ 2015 SERSC

Figure 5. Simulation Results for Tables, 2 and 3

5. Conclusions and Future Work

A variety of approaches to information overload in recommender system have been

proposed in the paper. First, it introduces recommender system and CF models. Second, it

actually implemented KNN algorithm in the system by using KNN algorithm. Third, the

evaluation results of the KNN algorithm point out that based on the basic

recommendation methods, the approach may be a better policy due to the balancing issue

among accuracy, prediction coverage and system run-time. The experimental results, as

well as the analysis of the users’ perception showed this approach has a positive impact

on recommender systems.

We demonstrate the applicability of association rules in a different domain: user and

product. In the future work, our approach could be improved by allowing the manager the

specification of more constraints to the recommender system, in addition to the user level

and product pool constraints. Other hybridization methods could also be explored to see

how these methods perform compared to each other and to the content-based and

collaborative recommender systems.

The optimization could also be done for each simulation step separately on as a part of

the training set to see if the performance will improve. This way each user would have its

own optimized Weak-parameter values.

Acknowledgments

The work was sponsored by The National Natural Science Foundation of China (Grant

No.61003234, No. U1304606), the Research Foundation for Humanities and Social

Sciences at Universities in Jiangxi Province, China (No. JC1428).

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 143

References

[1] M. R. McLaughlin and J. L. Herlocker, “A collaborative filtering algorithm and evaluation metric that

accurately model the user experience,” in Proceedings of 27th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR ’04), (2004), pp. 329-336,

Sheffield, UK.

[2] M. Deshpande and G. Karypis, “Item-based top-N recommendation algorithms,” ACM Transactions on

Information Systems, vol. 22, no. 1, (2004), pp. 143-177.

[3] K. Miyahara and M. J. Pazzani, “Improvement of collaborative filtering with the simple Bayesian

classifier,” Information Processing Society of Japan, vol. 43, (2002), pp. 11-18.

[4] X. Su, M. Kubat, M. A. Tapia and C. Hu, “Query size estimation using clustering techniques,” in

Proceedings of the 17th International Conference on Tools with Artificial Intelligence (ICTAI ’05),

(2005) November, pp. 185-189, Hong Kong.

[5] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite and C. Kadie, “Dependency networks for

inference, collaborative filtering, and data visualization,” Journal of Machine Learning Research, vol. 1,

no. 1, (2001), pp. 49-75.

[6] D. Nikovski and V. Kulev, “Induction of compact decision trees for personalized recommendation,” in

Proceedings of the ACM Symposium on Applied Computing, vol. 1, (2006), pp. 575-581, Dijon, France.

[7] P. Melville, R. J. Mooney and R. Nagarajan, “Contentboosted collaborative filtering for improved

recommendations,” in Proceedings of the 18th National Conference on Artificial Intelligence (AAAI

’02), (2002), pp. 187-192, Edmonton, Canada.

[8] B. Schafer, D. Frankowski, J. Herlocker and S. Sen, “Collaborative Filtering Recommender Systems”.

In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web: Methods and Strategies of Web

Personalization. Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg New York, vol.

4321, (2007).

[9] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques. Advances in Artificial

Intelligence”, vol. 2009, (2009), pp. 1-20.

[10] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-Based Collaborative Filtering Recommendation

Algorithms", in Tenth International World Wide Web Conference (WWW10), (2001), pp. 285-295,

Hongkong, China.

[11] J. Quan and Y. Fu, "A Novel Collaborative Filtering Algorithm Based on Bipartite Network Projection",

JDCTA, vol. 6, no. 1, (2012), pp. 391-397.

[12] A. Selamat and S. G. Moghaddam. "Improved Collaborative Filtering on Recommender Based Systems

Using Smoothing Density-Based User Clustering", IJACT, vol. 4, no. 13, (2012), pp. 352-359.

[13] J. Ye, L. Wang, J. Chen and W. Chen, "Algorithm Based on The Interest of The User, Collaborative

Filtering and Resources Clustering", JDCTA, vol. 6, no. 21, (2012), pp. 472-481.

[14] Z. Yao and F. Yu-qiang, "Hybrid Recommendation method IN Sparse Datasets: Combining content

analysis and collaborative filtering", JDCTA, vol. 6, no. 10, (2012), pp. 52-60.

[15] Z. Chen, Y. Jiang and Y. Zhao. "A Collaborative Filtering Recommendation Algorithm Based on User

Interest Change and Trust Evaluation", JDCTA, vol. 4, no. 9, (2010), pp. 106-113.

[16] T. M. Mitchell, “Machine learning”, McGraw-Hill, New York, NY, USA, (1997).

International Journal of Hybrid Information Technology

Vol.8, No.3 (2015)

144 Copyright ⓒ 2015 SERSC

