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Abstract 

Chip-multiprocessors have played a significant role in real parallel computer 

architecture design. For integrating tens of cores into a chip, designs tend towards with 

physically distributed last level caches. This naturally results in a Non-Uniform Cache 

Access design, where on-chip access latencies depend on the physical distances between 

requesting cores and home cores where the data is cached. Therefore, data movement 

and management impact access latency and power consumption. Remote misses limit the 

performance of multi-threaded applications, so using data locality is fundamental 

importance in Chip-multiprocessors. In this work we observed that a shared data writing 

behavior dramatically wastes precious on-chip cache resource and seriously affects the 

whole system performance. Therefore, we emphasis on improving the performance of 

applications that exhibit high data sharing, and propose a new prediction mechanism to 

predict accurately the impact of shared data and a scalable, efficient hybrid shared-aware 

cache coherence transition strategy which collaborate with directory-based MESI cache 

coherence protocol. In order to evaluate our proposal transition strategy, we experiment 

with the NAS Parallel Benchmarks and a modern Intel Harpertown multi-core machine. 

Results show the whole performance gains of up to 21% opposed to the traditional 

write-invalidate cache coherence transition strategy. 

Keywords: Chip-multiprocessors; Non-Uniform cache access; Remote misses; Shared 

data; Cache coherence protocol 

1. Introduction 

Emerging multi-core architecture provides parallel execution containing two or more 

cores to execute multi-threaded applications based on shared memory. Today, all major 

chip vendors have their multicore products on the market and trends indicate that future 

multi-core structure will have a large variety of core numbers, on-chip cache hierarchy, and 

interconnected structure. However, compared to computational resources, hardware caches 

occupy larger chip space, play a significant role in accelerating program executions and 

improving the throughput of the whole system [1, 2]. Unfortunately, hardware cache 

management cannot perceive cache contention and collaboration between co-running 

threads; uncontrolled execution of co-running threads would significantly deteriorate 

program executions [3-5] and system throughput [6, 7]. Additionally, multi-core in Chip  
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Figure 1. Distributed LLC Organization in Multi-core System 

Multi-processors (CMPs) systems are usually organized into multiple groups, which are 

called core-groups or memory-domains [8]. This organizational style makes on-chip access 

latencies depend on the physical distances between requesting cores and home cores where 

the data is cached. Figures 1 shows the high-level view of a commercial multi-core 

architecture, which results in a Non-Uniform Cache Access (NUCA) design. When core 0 

on CPU0 accessing a datum A, this data is placed in the last level cache (LLC) of CPU1, 

then it will cause a Remote Miss and injure performance of parallel shared memory 

application.  As parallel applications becoming the standard to take advantage of 

multi-core architectures, it is important to consider the shared data of threads when 

executing a parallel shared memory application on distributed LLC organized CMPs 

architectures. Many works targeting at improving LLC efficiency focused on such general 

architectures [3, 6], including high performance interconnects, more effective threads 

placement, sophisticated caching and coherence mechanisms. This paper focus on the 

latter. 

Typical cc-NUMA systems use directory-based MESI cache coherence protocol with 

write-invalidate transition strategy to maintain cache coherence [9]. Before a processor can 

modify a cache line of data, it must invalidate all remote copies. However, this 

write-invalided transition strategy is not efficient for those applications that seem to have a 

lot of shared data between threads. For example, when a subset of threads that are mapped 

into different core-groups access a shared data item, one of threads writes the datum, so it 

must invalidate all remote copies and a lot of invalidate requests are created. While another 

thread reads the same datum, a cache miss occurs and starts a cache-to-cache transfer to 

re-load the newest data due to the invalidation of that block. Therefore, traditional 

write-invalided cache coherence transition strategy results in plenty of replication, 

invalidation, and cache misses because of this shared data access pattern. In this paper, we 

propose a scalable, efficient hybrid shared-aware cache coherence transition strategy that 

collaborates with directory-based MESI cache coherence protocol to eliminate remote 

misses comparing to traditional write-invalidate cache coherence transition strategy. To 

exploit selective write shared-data update, we first reveal the write-shared-data pattern of 

parallel applications. Initial data access operation continues to be handled via native 

write-invalidate transition strategy, however, after we identify cache lines that exhibit a 

stable write shared data access pattern, we extended conventional write-invalidate strategy 

to write-update strategy to maintain cache coherence. For instance, when a core modifies a 

cache line, it requests exclusive access to the cache line. A normal directory-based 

write-invalidate cache coherence strategy invalidates all other cache lines that have a 

shared copy. In the directory, we use Strategy Counter to count the degree of shared data. If 

Strategy Counter of access cache line is higher than the Strategy Threshold, we will take the 

write-update transition strategy to process this access, or else the initial write-invalidate 

transition strategy is used. We evaluated our proposed technique with Sniper simulator 
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[21]. The system architecture we used in our simulations is presented in Figure 1. Besides, 

we used the OpenMP implementation of the NAS Parallel Benchmarks [10] to evaluate our 

proposal. Experimental results show that our mechanism outperforms conventional popular 

directory-base write-invalidate cache coherence protocol in all of tested benchmarks. It 

accelerates these programs by 21%, cache misses and cache-to-cache transfer was reduced 

by up to 25% and 30% in average. 

The rest of this paper is organized as follows: Section II discusses the related researches. 

In section III we introduce our motivation and the background information of write-update 

and write-invalidate cache coherence transition strategy. Section IV details our proposal 

techniques and its implementation. Section V shows how our proposal was evaluated, and 

the results of our experiments. Section VI concludes our work. 

 

2. Related Works 

Effective use of on-chip hardware cache resource is important for improving the 

performance of CMPs system. There is a lot of cache management work aiming at more 

effective threads placement, and sophisticated caching and coherence mechanisms. 

In the terms of threads placement, it has been studied in previous works [6, 11] that the 

execution time of a thread can vary greatly relying on which co-run threads in the same 

core-group. The main reason is the interaction of co-executing threads. In addition, this 

phenomenon is particularly true if several cores share the same LLC. Cruz [11] evaluated a 

technique to collect the communication pattern of the treads of parallel applications. With 

these patterns, they created a static thread mapping strategy to measure the performance, 

and place the threads that communicate a lot into a core-group. Azimi [12] showed that they 

estimate the communication pattern of threads based on stall cycles, cache misses and other 

performance events which can directly been acquired by Performance Monitor Unit 

provided in modern processors. Through this method, they can dynamically map threads of 

parallel applications roughly. Although sophisticated threads placement achieves some 

performance improvement, this is just a static placement strategy, still can’t dynamically 

adjust threads mapping following the real time communication pattern accurately. 

For some coherence mechanisms, LLC organization incurs significant protocol latencies 

when a writer of a data block invalidates multiple readers [13] in CMPs; the impact is 

directly proportional to the degree of shared data block. Kurian [14] propose a 

locality-aware adaptive coherence protocol to manage the distributed private caches in 

CMPs. When a core requests a cache datum that misses the private cache, the coherence 

protocol either brings the entire cache data block using a native directory-based MESI 

protocol with write-invalidate transition strategy, or just remote acquires the requested 

word at the shared cache location. This method decreases the access bandwidth effectively. 

Cheng [15] proposes a directory delegation mechanism whereby the “home node” of a 

cache line can be delegated to another node. Other nodes that learn the delegation can send 

requests directly to the delegated node by passing the home node as long as the delegation 

persists. Mukherjee [16] was the first to utilize prediction mechanism in the context of 

shared memory. Additionally, Lai [17, 23] improved upon this mechanism by reducing the 

searching overhead. This works support speculative coherence operations. All these works 

do well from predicting the processor action to a particular cache line, but all require to 

change the processor die greatly, hence will lead to large hardware overhead, and they are 

difficult to apply to real commercial CMPs.  

Our previous similar work [22] just combined the advantage of write-invalidate and 

write-update transition strategy; dynamically select the appropriate strategy to maintain 

cache coherence based on prediction mechanism with coarse-granularity and not provide a 

accurately policy to direct to choose a proper transition strategy. In this paper, we expand 

and improve our previous work. We further proposed a low overhead, just two bits for each 

directory entry, more accurate and effective prediction mechanism and a more 
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comprehensive hybrid cache coherence transition strategy. At last, we give a more detailed 

implementations of our strategy.  

 

3. Motivation and Background 

In this section, we will introduce our motivation at first. Additionally, in order to 

illustrate mechanism of hybrid shared aware cache coherence transition strategy, we should 

firstly understand backgrounds of write-invalidate transition strategy and write-update 

transition strategy. 

 

3.1. Motivation 

The utility of cached data block at LLC can be illustrated by cache data block Lifetime 

[18]. Lifetime is defined as the number of access to a cache line (at the LLC) from cores 

before it is invalidated or evicted. Figure 2 plots the distribution of Invalidated and Evicted 

cache line’s Lifetime. An invalidated cache line indicates that at least one of accesses to this 

cache line is a write before reused. We observe that many cache lines residing in the LLC 

exhibit low Lifetime. For example, In EP over 95% of the cache lines Lifetime is lower than 

3. Almost for all tested bechmarks, Lifetime is lower than 5 over 90% averagely. Greater 

the number of cache lines with high Lifetime in the LLC, greater is the utilization of LLC. 

Hence, most of our test benchmarks would not benefit from native write-invalidate cache 

coherence transition strategy. Due to this low utilization of LLC, great amount of remote 

access occurs. There are two ways to load the needed data for this remote access. One is that 

getting the available data directly from the main memory, and the other is to get the 

required data from the remote LLC in another core-group. Figure 3 shows distributions of 

this two access ways. We observe that about 60% of remote accesses on average get the 

required data from the remote LLC; especially in SP, almost 90% of required data got form 

remote LLC. The main reason is that there is great amount of data interaction among 

threads. In conventional write-invalidate cache coherence transition strategy, when a thread 

writes a cache line in a SHARED state [19], it must invalidate all copies in another 

core-group for the exclusive access. Therefore, the cache line in this core-group is not 

available for the next access. In this time when a thread in this core-group re-access the 

cache line, there is a remote miss, and the newest cache line will be updated from the 

remote LLC. However, the remote LLC access is not inevitable. Decreasing remote LLC 

access is a great opportunity to improve the whole system performance.  

Because of this great amount of shared data between threads in scientific applications, 

the conventional write-invalidate cache coherence transition strategy is not optimized in 

such case, and leads to low whole system performance. Therefore, it is important to adopt a 

new method to decrease remote LLC access times. Our goal is to ensure that, if a stable 

access pattern of interactive read/write a shared data among threads, the write-update 

transition strategy will replace the conventional write-invalidate transition strategy. 

Immediately the interactive read/write pattern disappears, we again adopt the conventional 

write-invalidate strategy. 
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Figure 2. Distribution of Cache line Lifetime; Classification is Done at Cache 
Line Granularity 

 

Figure 3. Distribution of Remote Access 

3.2. Write-invalidate Transition Strategy Vs Write-update Transition Strategy 

Most implementations of CMPs use write-invalidate transition strategy because early 

studies based on the system bus, and the write-invalidate strategy can effectively reduce 

traffic and acquire overall better performance. Every time a write operation is executed on 

shared cache line, write-invalidate cache coherence transition strategy send invalidation 

messages for exclusive priority. A common situation in multi-threaded applications is that 

two threads interleaving write or read the same area of memory. In this case, the write 

thread will successively invalidate the cache lines that will be accessed by the other thread. 

Therefore, write operations impact more on performance than read operations, as all writes 

to shared cache lines invalidate the corresponding lines on the other core-group caches [11]. 

Write-invalidate transition strategy have lower traffic because of the sequence of writes 

from the same core-group, only the first write needs to send invalidate request to 

corresponding copies in remote LLC of other core-groups. However, plenty of coherence 

misses occurred due to the invalidation of remote LLC. Coherency misses occurred when 

the requested data is continually invalidated due to write-invalidate cache coherence 

transition strategy. These misses can incur a significant access penalty. At first, the request 

is forwarded from directory to the remote LLC to keep the exclusive copy. Secondly, the 

remote LLC with the exclusive copy must flush the corresponding cache line to main 

memory and send it to the request cache. Thus, the total penalty of this coherence miss 

includes several cache-to-cache cache line transfers.  

In contrast, in a write-update transition strategy, a block loaded into a cache remains 

until it is replaced, which results in update actions from other cores. Write-update cache 

coherence transition strategy can eliminate all coherence misses due to all copies of a cache 

line in remote LLC are updated with a new value instead of invalidation while write a 

shared block. To guarantee correctness, all writes must keep a stable logical access order. In 

0%

20%

40%

60%

80%

100%

bt cg ep ft is lu mg sp ua

1~2 3~4 5~6 7~8 >9

0%

20%

40%

60%

80%

100%

bt cg ep ft is lu mg sp ua

Main Memory Remote_LLC



International Journal of Hybrid Information Technology 

Vol.8, No.2 (2015) 

 

 

372   Copyright ⓒ 2015 SERSC 

this write-update strategy, the update phase includes two transactions. In the first 

transaction, the cache lines are updated but the copies are locked. A core cannot access a 

locked cache line. During the second transaction, the copies are updated and unlocked, 

cores are allowed to access their copies again. The prices to pay for the updated new cache 

line is an increased number of write actions, and more traffic is needed.  

As a result, write-invalidate transition strategy has lower write traffic and write penalty 

at the cost of a higher coherence miss rate whereas write-update strategy eliminates 

coherence misses at the cost of increased write traffic in the network. Our approach learned 

the advantages of these two methods and takes write-update transition strategy for those 

data blocks with high degree of sharing whereas original write-invalidate transition strategy 

for other data blocks without high degree of sharing. Through our method high coherence 

miss rate in write-invalidate transition strategy and high write penalty in write-update 

transition strategy can achieve a good trade-off. 

 

4. Hybrid Shared-aware Cache Coherence Transition Strategy 

In this section, we will first describe overview of our cache coherence transition strategy. 

At last, we give a detail introduction of the implementations of the transition strategy, and 

how to maintain the cache coherence by using read requests, write requests, eviction and 

invalidation, respectively.  

 

4.1. Overview of the Transition Strategy 

To achieve a good performance of our transition strategy and reduce the mechanism 

overhead, it is important to accurately predict which cache line will use effectively 

write-update strategy instead of original write-invalidate strategy while maintaining cache 

coherence. To limit the number of unnecessary updates, we should only send update to the 

LLC that most likely to consume the newly written data. In summary, we try our best to 

guarantee that the updated cache line will be accessed later.  In the following, we describe 

the prediction mechanism that we employ. 

In the directory-based MESI cache coherence protocol [9], the directory controller 

manages all memory access to all distributed LLC, so it has a global history of access of 

each cache line. To allow finding the usage of cache line, as shown in Figure 4, we extend 

directory entry with Strategy Counter (2 bits, saturating). This Strategy Counter tracks 

coherence misses corresponding to the access cache line, which is caused when the 

requested data is invalidated due to write-invalidate cache coherence transition strategy. 

Typically a directory cache only contains a small number of entries. e.g, 8K entries on SGI 

Altix systems[15], which only includes only a fraction of memory cached in the LLC. So 

for our mechanism, the overhead is limited. 

The prediction mechanism logic we adopt is very simple and space overhead is limited 

and this mechanism can employed in the near-future designs. However, it is very effective 

to select a better transition strategy considering the whole performance between 

write-invalidate and write-update strategies. Our prediction mechanism starts out as a 

conventional write-invalidate transition strategy, and all Strategy Counters in directory 

cache are initializes to zero.  For instance, when a core reads or writes a data block, it 

searches its private L1 cache at first. On a L1 cache miss, the core starts to look up its local 

LLC. In searching, if the required data tag matches a cache line tag that is invalidated (valid 

bits unset) by other cores, a coherence miss occurs and the request is forwarded to the 

directory. The directory starts to process this request and Strategy Counter (as shown in 

Figure 4) is incremented by 1. Immediately Strategy Counter is not lower than the Strategy 

Threshold which initialized by 2 (as shown in Figure 5), the cache coherence protocol is 

converted from write-invalidate transition strategy to write-update transition strategy. 

Because there are a lot of interactions among the executing threads for this cache line, 
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write-update strategy is more suitable for reducing the coherence misses and improving 

whole system performance.  

 

 

Figure 4. Extended Directory Entry 

 

 

Figure 5. Strategy Transformation Diagram 

On the eviction of a cache line in LLC, the corresponding Strategy Counter in directory 

entry is decrement by 1. If the number of the counter is lower than RT, write-invalidate 

strategy is taken to process this memory access. Through this mechanism, write-invalidate 

and write-update transition strategy are inter-changed with granularity of cache line. It 

effectively takes advantage of LLC cache resources and reduces the coherence misses, thus 

improving the whole system performance. 

 

4.2. Implementations 

In the following, we describe the implementation of our mechanism. We extend each 

directory entry with two bits saturating counter (as shown in Figure 4) to track the access 

pattern of cache line. We will introduce our implementation mechanism in aspects of read 

requests, write requests, evictions and invalidation, respectively. 

 

4.2.1 Read Requests: When a core initiates a read request and misses in its private L1 

cache, the request is forwarded to its local LLC. The core starts to search the local LLC for 

matching an appropriate cache line. There are three possible of matching results. (1) A 

cache line is found, and the cache line is inserted at the private L1 cache directly. (2) It finds 

a cache line, which is the same tag as the destination data block, but its valid bit is unset, 

then a coherence miss occurs. This kind of misses occurred due to invalidation of the 

requesting cache line by another core in write-invalidate cache coherence protocol. In this 

scenario, Rd_S_I request is sent to the directory. On receiving this transaction, the directory 

searches the whole directory cache for this cache line. If the cache line is found, the Rd_S 

request is forward to the owner of this cache line, and Strategy Counter of the cache line is 

incremented. On the other hand, if the cache line is not found, then the directory sends 

Rd_S request to memory controller and selects a directory entry with LRU replacement 

algorithm for the new entering cache line.  (3) There is no corresponding cache line in the 

local LLC, we call a truly cache miss, Rd_S request is sent to the directory, the action of 

directory is the same as the conventional write-invalidate transition strategy and Strategy 

Counter in the directory entry is unchanged. 

 

4.2.2. Write Requests: When a core makes a write request for an exclusive copy of a cache 

line and a miss occur in its private L1 cache line, the request is sent to its local LLC. In this 

 Valid  Tag StateLRU Sharers
Strategy
Counter

 

Write-invalidate 
Transition Strategy

Write-Update 
Transition Strategy

Strategy Counter < ST

Strategy Counter >=  ST

Initial State



International Journal of Hybrid Information Technology 

Vol.8, No.2 (2015) 

 

 

374   Copyright ⓒ 2015 SERSC 

case, if a cache hit occur in local LLC, it denotes the state of the cache line either Exclusive 

or Modify state, and LLC controller can directly operate on the cache line. This cache line’s 

copy is inserted at the private L1 cache. On the other hand, when a cache miss occurs in its 

local LLC, the LLC controller performs the appropriate actions according to valid bit, 

cache line state and the tag bits of corresponding cache line. (1) The valid bit of the cache 

line is unset, but the tag bits is matched with the required data block. It sends Rd_E_I 

request to the directory. On receiving Rd_E_I request, the directory searches the directory 

cache, if the cache line is found, Rd_E request is forwarded to the Owner of this cache line, 

and Strategy Counter of the cache line is incremented. Otherwise, the directory sends this 

Rd_E request to main memory and allocates a directory entry with LRU replacement 

algorithm. (2) Cache line is matched, but the state of cache line is SHARED. In this case, it 

send UPGRADE request to the directory for the exclusive priority. In response to this 

request, the directory checks directory cache, and finds the corresponding directory entry 

for this cache line. If Strategy Counter of the directory entry is larger than the ST, we select 

write-update transiton strategy to process this cache line access. Then, UPDATE request is 

sent to the requester, telling the requester that the write-update transition strategy was 

selected. Then the local and remote LLC will be updated by the newly data. Otherwise, 

Strategy Counter of the directory entry is lower than the ST, we don’t alter the original 

write-invalidate transition strategy. 

 

4.2.3 Evictions  and Invalidations: On an invalidation request, both the bottom LLC and 

the upper private L1 cache on a core-group are probed and invalidated as the native 

write-invalidate cache coherence transition strategy. When a LLC cache line is evicted due 

to eviction, the LLC controller ignores the directory, and decrement Strategy Counter of the 

corresponding directory entry. 

 

5. Evaluation 

5.1. Methodology 

This section explains how we evaluated our proposed cache coherence transition 

strategy. In the next, we will detail introduce our methodology form the two aspects of 

hardware environment and workload. 

 

5.1.1. Hardware Environments: We simulated our proposed mechanism in the Sniper 

full system simulator[21]. The base cache coherence protocol we choose is directory-based 

MESI cache coherence protocol. The system architecture we used in our simulations is 

presented in Figure 1. The system contains two physical processors, modeled after the Intel 

Hapertown architecture [20], each consisting of four cores. Each core has private L1 caches 

for data and instructions, but the L2 cache is shared between two cores. The detail 

configuration is listed in Table I 

Table 1. Simulation Platforms Configuration and Performance Parameters 

Parameters Value 

Configuration (chips * cores) 2 * 4 

LLC size 4MB * 4 

Local LLC access (cycles) 38 ~ 42 

Remote cache access (cycles) 150 ~ 250 

Memory access (cycles) 300 ~ 350 

Cache coherence protocol Directory-based MESI 
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5.1.2. Workloads: In the rest of the paper, we used the OpenMP implementation of the 

NAS parallel benchmarks (NPB)[10] to evaluate our proposal. The benchmarks were 

executed using the W input size, since it is the most appropriate size for simulation. We ran 

all the benchmarks except DC, which takes too much time to simulate. 

 

5.2. Results Analysis 

In this section, we present the results we obtained by using our hybrid shared-aware 

cache coherence strategy. Figure 6 shows the speedup of the tested parallel applications 

opposed to the traditional write-invalidate cache coherence transition strategy. Almost for 

all tested parallel applications, the performance has great improvement. The average 

speedup of all applications is up to 21%, and the IS applications is up to 47%. The 

application of MG is an exception, and there is a low performance due to low sharing of 

accessing data block. To get a more detailed understanding of the benefits of our 

mechanism, we also illustrate the number of LLC cache line invalidation, LLC cache 

misses, Cache-to-cache transfer. Cache-to-cache transfer occurs when a core access a data 

which is present neither in its private L1 cache nor local LLC and has to acquire the data 

from anther LLC. Figure 7, 8, 9 denote the normalized numbers of LLC cache line 

invalidation, LLC cache misses and cache-to-cache transfers, respectively. 

 

 

Figure 6. Normalized Applications Speedup 

 

Figure 7. Normalized LLC Cache Line Invalidation 

 

Figure 8. Normalized Cache-to-cache Transfers 
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Figure 9. Normalized LLC Cache Misses 

LLC capacity of a machine is very important for a programs performance. From Figure 

7, we can investigate that the LLC cache line invalidation of all tested applications is 

dramatically decreased in our mechanism, about 72% in average because of the goal of our 

mechanism is to decrease the number of invalidation of cache line through selective using 

write-update strategy. On the other hand, Figure 7 can demonstrate that our mechanism 

achieves the goal of reducing the invalidation, and our mechanism works well too. The 

invalidation of IS is reduced about 80%, because IS is a bucket-based large integer sort, it 

require a lot of communication. LU exhibits good performance improvements (33% 

speedup, 75% LLC cache line invalidation).Because of the using data are assigned to 

individual processors, and directly result in amount of shared data that can be accesses by 

many cores. However, for the EP, there is a limited reducing, because EP is an 

embarrassingly parallel benchmark, which generates pairs of Gaussian random deviates 

according to a specific scheme and almost does not require communication between the 

processor in computing. 

Figure 8 and Figure 9 show that the LLC cache misses and cache-to-cache transfer are 

improved about 22% and 40% in average. The reason for this reduction is that the reduction 

of invalidation of shared cache line lead to less coherence misses, and converts this 

coherence misses to cache hit almost. For almost tested applications, the cache-to-cache 

transfer are reduced, all required data is directly acquired form the home core-group. The 

utility of hardware cache resource are improved dramatically. In summary, our 

performance improvement largely depends on the thread writing of shared data, but almost 

tested applications satisfy for our proposal cache coherence transition strategy. 

In the next, we select some representative applications to give more detail analysis. LU 

solves a finite difference discretization of the 3D compressible Navier-Stokes equations 

through a block-lower block-upper approximate factorization of the original difference 

scheme. The vertical columns of data are assigned to individual processors, and directly 

result in amount of shared data that can be accesses by many cores. Therefore, LU exhibits 

good performance improvements (33% speedup, 75% LLC cache line invalidation, 25% 

LLC cache misses reduction). CG uses a Conjugate Gradient method to compute an 

approximation to the smallest eigenvalue of a large, sparse, unstructured matrix. CG 

exhibits a limited communication due to the data it used is the sparse and unstructured data 

matrix. Although the cache line invalidation is reduced about 60%, there is a little 

improvement in speedup (5%), LLC cache misses (8%). In addition, the sparse matrix used 

in CG leads to plenty of false sharing which confine performance improvement. 

 

6. Conclusions 

Our work focuses on the design mechanism that improves the performance of 

multi-threaded applications by eliminating coherence misses and coherence traffic. In this 

paper, we propose a scalable, efficient hybrid shared-aware cache coherence transition 

strategy that collaborates with directory-based MESI cache coherence protocol that can be 
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used to improve the performance of parallel applications that exhibit large amount of data 

sharing between threads. Through detecting instance of coherence misses of a cache line 

using a simple directory-based predictor, we can demonstrate that these shared cache line 

are accessed frequently. In this scenario, we alter the original write-invalidate cache 

coherence transition strategy to write-update cache coherence transition strategy, which can 

update the cache line in real time instead of invalidation, and covert next coherence misses 

to cache hit. We evaluated our proposal mechanism using OpenMP implementation parallel 

applications from the NPB. We demonstrate that our proposal hybrid shared aware cache 

coherence transition strategy mechanism can reduce the number of coherence misses 

compared to conventional write-invalidate cache coherence transition strategy. We 

evaluate our hybrid cache coherence transition strategy by the execution time, number of 

cache line invalidation, cache misses and cache-to-cache transfer, the results show the 

performance gains of up to 21% averagely opposed to the native cache coherence transition 

strategy, cache misses and cache-to-cache transfers were reduced by up to 25% and 30%. 

This shows that our hybrid transition strategy is a better method for managing precious 

cache resource. 
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