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Abstract 
 

A human chromosome is a DNA molecule with approximately 10
8
 base pairs. The 

techniques developed to date for sequencing are restricted to pieces of DNA with up to tens of 

thousands of base pairs. This means that when a piece is sequenced, only an extremely small 

part of a chromosome can be seen. Molecular biologists use special techniques to deal with 

DNA molecules comparable in size to a chromosome. These techniques enable them to create 

maps of an entire chromosome or of significant fractions of chromosomes. Computational 

techniques were studied that could potentially aid biologists in the map-generation process. 

An algorithm that solves the consecutive 1s problem was studied. Such a problem is a good 

model of hybridization mapping when there are no errors and when probes are unique. If 

errors are present, another approach is needed, and the approximation algorithm is a 

prospective problem solver for hybridization physical mapping of DNA with errors. 

Keywords: Physical Mapping, DNA, Hybridization, Probes matrix, Greedy TSP, 

Consecutive 1s Problem (C1P) 

1. Introduction 

A physical map of a piece of DNA shows the location of certain markers in a molecule. 

These markers are small but precisely defined sequences. These maps help molecular 

biologists explore genomes further.  For example, if a certain stretch of DNA has been 

completely sequenced, revealing a sequence S, and if it is known which chromosome S came 

from, and a physical map of this chromosome is available, an attempt can be made to find one 

of the map’s markers in S. If successful, S has been located in the chromosome [1-2]. 

 How are these maps made? The first task is to obtain several copies of the DNA molecule 

that is to be mapped. Each copy must then be broken into several fragments, using restriction 

enzymes. Mapping is done by carefully comparing the subsequent fragments and carefully 

observing overlap
 
[3]. For the most part, a fragment of a DNA piece is still too long to be 

sequenced, so overlap information is obtained by generating fingerprints of the fragments. A 

fingerprint describes part of the information contained in a fragment in a unique way, just like  

our fingerprints uniquely describe a part of ourselves [4]. Two popular ways of acquiring 

DNA fingerprints are restriction site analysis and hybridization.  

Just as in other problems from molecular biology, possible lack of information and the 

presence of numerous experimental errors make the physical mapping problem especially 
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hard. In particular, it may not be possible with a given collection of fragments to obtain one 

contiguous physical map. This may happen simple because the fragmentation process did not 

produce fragments covering certain section of the target DNA. When this happens, the 

physical map pieces are called contigs. This is a feature common to all physical mapping 

processes.  

We studied an algorithm that solves the consecutive 1s problem saw such a problem is 

good model of hybridization mapping when there are no errors and when probes are unique. 

If errors are present, some other approach is needed, and that is the subject of this section. 

First examine the effect errors can have on a clones x probes binary matrix M. Suppose M 

is presented to use with the true column permutation. Given one row, if there are no errors, all 

its 1s will be consecutive [1, 5]. If a row corresponds to a chimera clone, where two 

fragments were joined, we will see two blocks of 1s separated by some number of 

0s(assuming no other errors are present in this row).We will call a consecutive block of 0s 

bordered by 1s a gap. Notice that this is different from the use of the term gap in other 

researchers. We can thus say that a gap was created in this row because of the chimera 

fragment
 [2]

. If, on another row there is false negative, the corresponding 0 mat separate two 

blocks of 1s,creating another gap, as shown below: 

 
0 1 1 0 1 1 1 1 0 0 

   ↑       

A false negative 

 

The gap will not be created if the probe was leftmost and rightmost for this clone. Finally, 

a false positive may split a block of 0s in two, thus possibly creating yet another gap. In this 

way we see that there is a close correspondence between errors and gaps in the matrix. Given 

the basic assumption that we want to avoid explaining gaps by experimental error as much as 

possible, a reasonable approach is to try to find a permutation where the total number of gaps 

in the matrix is minimum, such an approach has the desirable property that, if there is a C1P 

permutation, it will have the minimum number if gaps. In other words, gap minimization can 

be seen as a generalization of the consecutive 1s problem we have mentioned in paper that 

some extensions to the C1P are NP-hard [3-4]. Such is the case also with the gap 

minimization problem just sketched. However, for this particular NP-hard problem, we can 

use many special techniques to get approximate solutions that we can expect to be reasonably 

good, as we show next. 

 

2. TSP Graph Model 

2.1. Build DNA Physical Mapping Model 

It is believed that gap minimization is equivalent to solving a well -known graph 

problem, the traveling salesman problem (TSP). 

The input to this version of the TSP is a complete undirected weighted graph G. The 

vertices of G correspond to columns of the clones x probes binary matrix M; that is, 

they correspond to probes. For reasons that will soon become clear, we also have to add 

an extra column to M filled with zeros, and G must have the corresponding vertex
 
[6]. 

The weight on each edge of G is the number of rows where the two corresponding 

columns differ (this is also known as the hamming distance between the rows), For 

example, in table I we have an example of binary matrix, and in figure 1 we see the 

corresponding graph [5]. We will now argue that a minimum-weight cycle in G 

corresponds to a column permutation in M with the least number of gaps.  



International Journal of Hybrid Information Technology 

Vol.8, No.2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  357 

P4 

Table 1. Clones x Probe Matrix with Added Column 
*

6
p  

clones    p1 p2 p3 p4 p5 p6* 

c1 1 1 1 0 0 0 

c2 0 1 1 1 0 0 

c3 1 0 0 1 1 0 

c4 1 1 1 1 0 0 

   

 

 

Figure 1. TSP Graph for Matrix of Table 1 

2.2. Minimum-weight Cycle Computation of G Graph 

Note that given a permutation of columns, a gap in a row means that at a certain point there 

is a transition from 1 to 0 and further on, a transition from 0 to 1. Therefore, for each gap 

there are two transitions and each gap contributes exactly two to the weights of the cycle 

corresponding to the given column permutation [7]. However, edge weights may also be 

increased by external transitions. That is, there may be transitions between elements in 

external (1 or m) columns, and these do not correspond to gaps. To ensure that every row has 

a pair of external transitions, an extra column of zeros is included in column m+1. Without 

such a column, cycles in the graph correspond to permutations where consecutive 1s are 

allowed to wrap around in each row, and this should not happen. So, the relationship between 

cycles and permutations now becomes: 

   Cycle weight=number of gap transitions+2n 

This means that for a given n the minimizing cycle weight is the same as minimizing the 

number of gaps. 

2.3. NP-hard Problem  

 The previous exercise showed how to reduce the gap minimization issue to the TSP. It is 

well known that the TSP is an NP-hard problem, so in principle this does not accomplish 

much. However, a wide array of techniques is available to solve or approximate the traveling 

salesman problem, and these techniques can be used in this paper
 
[8-9]. The mere existence of 

such techniques is not enough to provide confidence that solving traveling salesman problems 

will deliver the true probe permutation answer. A guarantee is needed that the solutions 

gained are in some sense close to the correct solutions. This paper will show algorithm 

feasibility. 
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Before that, let us go back to the gap minimization problem and present an example of the 

ideas outlined at the end of paper. We have defined above a function that, given an input 

matrix, returns the total number of gaps in the matrix. Return the total number of gaps in the 

matrix. We have further argued that obtaining a permutation that has the minimum value for 

this function (or approximately minimum) will help us find the true column permution. 
Since we do not have a guarantee that the true permutation will be among the solution we 

find, we should look for other functions that might also be helpful. The idea is that by 

carefully defining several such optimization functions and developing algorithms for them we 

will increase the likelihood of hitting upon the true solution. In particular, it is reasonable to 

expect that the true solution will be in the intersection of all solution sets. This will only be 

the case. however, if each function represents one property that true solution do have or are 

likely to have. 

Here is an example of another optimization function. One possible drawback of gap 

minimization is that in a permutation with a minimum value for this function one or a few 

rows may have many gaps, while others may have none [9]. Having many gaps in one row is 

undesirable, since it would mean that one clone was subject to many more errors than other 

clones, which contradicts laboratory experience. Therefore we could try to minimize the 

number of gaps per row. We leave as exercise 15 how to show that we can still use the 

preceding graph model. The resulting graph problem is known as the bottleneck traveling 

salesman problem, which is also NP-hard. 

 

3. Main Title Algorithm Feasibility Analysis 

3.1. DNA Physical Mapping Probe Permutation 

In this paper proof will be presented that the TSP approach outlined in the last section will 

provide, with a high probability, the true permutation. The proof depends on two basic 

assumptions: that the number of probes is sufficiently large, and that the mapping process 

obeys a certain mathematical model [7]. This model appears to be a good representation of 

what occurs in large mapping projects. The model is described next. 

First we assume that the DNA molecule we are dealing with is so long that we may think 

of it as an interval on the real line, extending from 0 to N. The clones are subintervals of this 

long interval, and we assume that all of them have the same length; for convenience each 

clone is one unit long. To simplify the exposition, will speak of clone permutation rather than 

probe permutation. The unit length assumption makes them equivalent. This means that we 

will be looking for consecutive 1s in columns
 
[8]. Not in rows, and that each vertex in the 

associated TSP will correspond to a clone. We use each clone’s left endpoint as a clone 

locator, We, of course, do not know the precise position of each clone along the molecule; 

and because we are dealing with hybridization, all we will be able to determine is relative 

clone order. 

 A critical feature of this model is clone distribution along the target DNA. We will assume 

that each clone’s position is an independent random variable, That clone locators are 

distributed uniformly over [0, N-1],and that the clones cover the interval [0,N](that is, for 

every subinterval I of [0,N],there always exists at least one clone C such that C I   ). 

Another important aspect of the model is probe distribution. We will not assume that each 

probe is unique; instead, we will assume that each probe occurs rarely along the target DNA. 
More formally, we will say that the occurrences of a given probe obey a Poisson process with 

rare  .Moreover; the Poisson process of may one probe is independent of all the others. This 
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part of the model lets us immediately obtain an expression for the probability of a specific 

probe hybridizing to a clone. The expression is: 

   Pr {a given probe occurs k times in a given clone} ( / !)
k

e k




   (1) 

This expression can be obtained from any textbook formula for Poisson processes, using 

the fact that our clones are unit length intervals. 

3.2. Clones x Probes Binary Matrix 

  This completes the model description. We shall now argue that given a clones x probes 

binary matrix, the row permutation given by solving the associated TSP is a good 

approximation to the true permutation, in the following precise sense: The probability that 

both permutations are the same tends to 1 as the number of probes increases. Note that the 

number of probes is fixed for a given instance if the problem. We are just claiming that in 

larger and larger instances of the problem (and we are measuring size here by number of 

probes) the TSP permutation will be the same as the true permutation with higher and higher 

probability. 

To prove this claim, we must argue in term of graph weights, or more appropriately, clone 

distances. As we mentioned ,the weight of each edge of the graph associated with input 

matrix M is called the Hamming distance between its two endpoints(clones).We denote by  

ij
h the Hamming distance between clone i and clone j.We can also think of the true distance 

between clones. Do noting a clone’s coordinates by l  (left) and r  (right) we can define this 

distance to be  given that clones are all of the same size. 

     2
ij j i j i j i

t l l r r l l        (2) 

Suppose now that we knew all true distances. Then it is clear that the largest such distance 

would give us the clones that ate farthest apart, which is to say, the clones that occur at 

opposite ends of the interval[0.N].The next largest such distance gives us another similar pair 

that occurs between the precious two, and so on. This means that given the true distance we 

ate able to obtain the true clone permutation, which is not surprising 
[9]

. However, we have 

distances 
i j

h  and not distances 
i j

t ,But because we are trying to obtain only the true relative 

order of clones, it would suffice if we could say that, given any four clones , ,i j r and 

,
i j r s

s h h implies that
i j r s

t t  and vice versa. The reason is that some notion of order 

between clone distances was all we needed to place clones relative to each order using the 

true distances. If we prove that the probability that 
i j r s ij r s

h h t t    tends to 1 as the 

number of probes increases, we will have the result we need. 

Let us look at a pair of clones i  and j , and let us find the probability that a certain probe 

p contributes to their Hamming distance. This will happen if probe p hybridizes to i  but not 

to j  or vice versa. Referring to Equation(1)we see that the probability that probe p does not 

occur on clone j is e


,since 0k  .On the other hand, the probability of probe p occurring 

at least once in clone i is the same as the complement of the probability of probe p not 

occurring in that paper of i  that does not overlap j .if this overlap is
ij

z ,we obtain the 

following result: 

Pr{ p  hybridizes to i  and not to j  or vice versa
(1 )

2 (1 ) .
ij

z

ij
p e e

  
   }  (3) 
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3.3. Hybridization Probability Computational 

This essentially means that there is a well-defined probability of this event happening. We 

can now take into account all probes, and each of them will have a certain probability of 

hybridizing to clones i  and j .Assume we have m probes, and consider /
i j

h m  this 

represents the mean contribution of each probe to the Hamming distance between clone  i  

and j .(Note that a probe’s contribution to the Hamming distance is either 0 or 1)If the 

number of probes is large, we can invoke the law of large numbers and say that /
i j

h m  

approaches 
i j

p .Or, for any fixed small positive real number  ,that 

         P r{ } 0
i j

i j

h
p

m
    (4) 

As m   .Note now that since clones are unit length, the true distance between two 

overlapping clones i  and j  with and intersection measuring 
ij

z  is given by (see Equation 

2).This allows us to substitute 
i j

t for 
ij

z  in Equation(3),effectively showing us that 
i j r s

t t if 

and only if
i j r s

p p ,for pairs of clones ,i j and ,r s .But if this is the case, then we can say 

that P r{ } 0
ij ij

t h     

This implies that  
ij r s ij r s

h h t t   , which is what we waned to prove. 

 

4. Computational Practice 

4.1. Hybridization Mapping Algorithms 

 In this paper we present some actual results of computational tests with algorithms for the 

hybridization mapping problem. Before presenting these results, however, we must make 

considerations regarding the way the results of such tests can be interpreted. Some of these 

considerations are valid for many problems in computational biology
 
[10]. 

Initially we shall look at the input data using another graph. By doing so it will become 

clearer what we can expect of any algorithm that tries to obtain the true probe permutation. 

This graph will also be used in the paper. 

 

Figure 2. H Hybridization Graph H Corresponding to Hybridization Matrix 
from Table I, without the Added Column 

We define the hybridization graph H as a bipartite graph (U,V,E)that is built using 

information from the hybridization matrix: Clones are the vertices of U partition, and probes 

P1 

 

P2 P3 

 

P4 P5 

c1 c2 c3 c4 
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are the vertices of the V partition. There is an edge between two vertices if the corresponding 

probe hybridized to the corresponding clone. In Figure 2 we can see the bipartite graph H that 

was built based on matrix M shown in Table I, but excluding the all-zeros column. 

 The firs thing to notice is that H may not be connected, even if all entries in the 

hybridization matrix are correct. If this is the case, then no matter how good our algorithm is, 

we will not be able to tell the relative order between probes that belong to different connected 

component; the information to do so is simply not present in the hybridization matrix [3]. A 

connected component may be as simply as a singleton vertex, meaning that there is a probe 

that did not hybridize to any clone or a clone that was not hybridized to any probe. Another 

observation is that there may be redundant probes, or probes that hybridize to exactly the 

same set of clones. This could happen if the probes, although different, hybridize to parts of 

the target DNA that are close together. It could also happen if certain clones for that particular 

DNA stretch are missing, leacing some probes without any positive hybridization result. 

 
4.2. Consecutive 1s Problem Feature 

Connected components of H show up when we solve the corresponding consecutive 1s 

problem. Redundant probes can also be easily seen in the hybridization matrix: They are 

columns that have exactly the same 1s and 0s.But if there are errors we may get wrong 

information regarding the number and structure of connected components of H and whether a 

probe pair is redundant. We say that errors may mask these properties [10]. So notice the 

difficult situation that errors creat: The input matrix without errors may lack information 

necessary to find the true permutation (for example, the errorless H has several components), 

and we may have a lot of trouble just to recognize that lack of information (because our 

errorful H has only one component). Assuming matrix in table I is errorless, probes
2

p  and
3

p  

are redundant, but if there were a false positive between clone
3

c  and probe 
3

p we would not 

be able to recognize that. 

Given this situation, it is clear that evaluation of a mapping algorithm is a difficult task (in 

addition to mapping itself).We will now take a look at how we can evaluate such algorithms 

assuming that we somehow know the correct answer to any mapping problem. This can be 

done, for example, if we use a computer program to generate artificial instances of mapping 

problems, simulating experimental errors. If such instances, are faithful to real instances, it 

should be clear from the above discussion that the input matrix mat lack information to enable 

an algorithm to determine the true probe order. Therefore we should try to evaluate how 

“close” the solution found by a particular mapping algorithm is to the true probe order. The 

question now becomes: How should we define closeness in this context? At the moment there 

is no consensus on how to do this. However, to give some idea of the performance of current 

mapping algorithms in practice, we will present as an example one definition that has 

appeared in the literature. It is a reasonable definition, but even if becomes widely accepted, it 

may still undergo some refinements. 

We will measure a mapping algorithm by the fraction of strong adjacencies reported by it. 

Strong adjacencies are defined in terms of the number b of blocks of consecutive 1s present in 

a hybridization matrix with a given probe permutation 
1 2
, , ,

m
p p p  .We analyze the 

effect of translocation, which are operations that reverse the order of a set of consecutive 

probes. We say that two adjacent probes 
i

p  and 
1i

p


 represent a strong adjacency if placing 

these probes apart by any translocation increase b in each row when such as increase takes 
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place we have some evidence(albeit not conclusion) that probes 
i

p  and 
1i

p


should stay 

adjacent in all solution. 

Based on this concept, we can define the strong adjacency cost of a given permutation. 

This is given by the formula  

         
2

0

1
1 0 0 ( )

1

m

i

im





  (5) 

Where 1
i

   if  
i

p  and 
1i

p


is a strong adjacency in the true permutation but these probes 

are not adjacent in the proposed permutation, and 0
i

  otherwise. Note that the cost is 

given as a percentage. Good permutations should have low strong adjacency cost. 

4.3. Greedy TSP and Random Algorithm Compare 

 With this definition we are finally able to give the reader an idea of algorithm 

performance. TableⅡpresents the strong adjacency cost of two algorithms. One of them is 

“random”: A random probe permutation is selected. The other is based on the TSP approach; 

this is how it works [11]. Given the TSP graph the algorithm builds a cycle by choosing pairs 

of vertices and making them adjacent on path. The pair (u, v) chosen at each iteration must 

fulfill the following conditions: If both u and v already belong to paths, and these paths are 

different, the paths can be joined only if u and v are endpoints in their respective paths(that is, 

they each have just one neighbor);and they must be the closest among all qualifying pair. 

After all vertices are on the same path, that path is closed forming a cycle. This solution is 

then submitted to another algorithm, which tries to improve the solution by applying another 

heuristic. 

In table Ⅱ we can see that the TSP-based approach (called “greedy”) performs well 

compared to “random.” The paper from which these results were obtained presents the 

performances of three other, much more sophisticated algorithms, and the results are similar 

to those shown above for “greedy TSP.”this can be seen as a point in favor of the TSP 

approach, but in a sense it is yet another measure of how difficult the mapping problem is. 

The table also shows that in the presence of false negatives the solution of “greedy TSP” was 

fairly poor. It is fair to assume that results would be even worse if all kinds of errors were 

combined in the same instance. This motivates our next paper, in which wee present a 

heuristic that appears to be robust in the presence of false negative. 

Table 2. Two Algorithms Efficiency Compare 

Algorithm 
C

1P 
Chimera 

False 

Positives 

False 

Negatives 

Greedy TSP 1.

9 

0.9 16.0 28.3 

Random 84

.6 

89.7 94.4 94.9 

 

Strong adjacency costs for two algorithms on matrices with different kinds for errors. Error 

rate are indicated in the heading of each column (only one type of error per column). 

Coverage in all cases in 10, where coverage is the ratio between the total length of all clones 

and target DNA length. 
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4.4. Heuristics for Hybridization Mapping 

As the previous papers have shown, mapping is a difficult problem, and no general and 

good algorithms for it have been found. As a consequence, what we see in practice is that 

researchers resort to various heuristics to help them arrive at a solution. In this paper we 

present two such heuristics that have yielded good results in hybridization mapping projects. 

As noted above, chimera clones occur with high frequency ion clone libraries, and their 

presence brings serious problems to any mapping algorithm
 
[8]. In this paper we present a 

simple heuristic that tire to split chimera clones into fragments. Such a heuristic is very useful 

as a screening procedure, which can be used as a preprocessing step before employing more 

sophisticated techniques. 

This idea is very simple: if a clone is chimera (and let us assumes it is composed of only 

two fragments), the probes that hybridize to one of its fragments should not be related to the 

probes hybridizing to the other fragment. The key here is of course the concept of 

“relatedness”. This is made concrete by looking at the following describes
 
[9]. 

Take clone i  and the set of probes that hybridize to it,
i

P .We crate a graph 

( , )
i i

H P E for every clone i . We create an edge between two probes from 
i

P  if they 

hybridize to a clone other than i .If the resulting graph is connected, we say that i  is not 

chimera. If it has more than one component, we say that i  is chimera and we replace i  by 

new “artificial” clone, each new clone given by a connected component of 
i

H . This method 

can be refined by requiring that an edge exists between probes p and q in 
i

H  only if p and 

q  hybridize to at least k  other clones, where k is a parameter depending on the particular 

problem at hand. See Figure 3 for an example. 

   

 

Figure 3. Hybridization Graph and Connect Graph 

Above the line we show the hybridization graph H for some clones × probes matrix. 

Below the line at left is graph Hb for clone b. This clone is probably not chimera, because Hb 

is connected. At right is graph He for clone e. This clone could be chimera, because He is not 

connected. 

Experience has shown that this heuristic behaves well. On the other hand it may consider a 

clone chimera when in fact it is not. Therefore, another useful heuristic would be one that 

combines two clones that are actually one. 

 

4.5. Obtaining a Good Probe Ordering 

 The heuristic presented here is more ambitious than the one we saw in the previous paper. 

It aims at actually solving the problem that is, obtaining a permutation of the probes. The idea 

is to estimate for every probe p the number of probes to its left and the number of probe to its 

P1 P2 P3 

a b c 

P4 P5 P6 

d e f 

P1 P2 

P3 

 

P4 P5 

P6 

 
Hb 

 

He 
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right by looking at the hybridization graph H . We can then sort the probes using this estimate 

and thus obtain one “good” permutation. 

Given a probe we will be able to count the number of probes to its left and to its right if we 

can somehow split the other probes into two separate components: one left component and 

one right component. Probes near the ends of the target DNA may not split the others in two; 

therefore, the probes for which we can obtain two components will be called splitters [6]. The 

method ofr detecting splitters is described next. 

 

4.6. DNA Physical Mapping Algorithm Design  

   Give a probe p build a set of vertices 
p

s  (whose elements are clones and probes)by 

including p in 
p

s and every other probe that shares clone with p .Include in 
p

s  all clones 

that are incident to any probe in
p

s .Now remove all vertices in 
p

s  from H. We will say that 

p is a splitter if the resulting graph has exactly two components. Using this method. the 

heuristic for obtaining a good probe ordering is described in algorithm. 

 Algorithm probe permutation heuristic 

      Input: clones x probes hybridization matrix 

      Output: a ”good” permutation for the probes 

for every splitter I do determine the components Ai and Bi 

    for each probe p do initialize
p

l and 
p

r with zero 

select a pair(
k

A ,
k

B )arbitrarily 

for each probe p do 

   for each pair of components(
i

A ,
i

B ) do  

    if 
i

p A then 

        if 
i k i k

A A A B    then 

             increment 
p

l  

       else 

            increment 
p

r  

              else if 
i

p B  then 

              if 
i k i k

B A B B    then 

                    increment 
p

l  

              else   

                  increment 
p

r  

       sort probes in decreasing order of 
p p

l r  

heuristic to obtain a “good” probe permutation. 

 

For each probe p , the algorithm keeps two counter, 
p

l  and 
p

r , recording the nember of 

left and right regions that contain p . These counters are initialized with zero and are 

incremented using the splitters. It is not obvious how to do this, because although we know 

the two components 
i

A  and 
i

B  of a splitter i , we cannot tell which one goes to the left or to 
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the right [12]. To solve this difficulty we rely on a fixed arbitrary splitter k  that we  use as a 

reference. We assume that 
k

A  lies to the left of 
k

B . Then, given another splitter i , a 

component X of i (either
i

A  or 
i

B )is the leftmost one when
k k

X A X B   . Once we 

have the final counts, we sort probes so that the ones with higher left bias 
p p

l r come first. 

A simple improvement to this heuristic is in the choice of splitter k . The more “central” this 

splitter, the better should the results be. 

4.7. Algorithm Implications 

Before describing algorithmic technique for obtaining physical maps, the constraints of the 

difficulty of the problem can be explored. The first consideration is that this is an attempt to 

solve a real-life problem, not an abstract mathematical problem [13]. The reality is that the 

true order of the clones in a target DNA is a goal that many seek. It is a combinatorial 

problem: There is an infinite number of possible orders, but only one of them is the true 

order. Discovering the true order by means of abstract models that give rise to the 

optimization problem is one way to attempt to solve this issue [10], but these problems are 

very difficult and they are abstractions of an even more difficult problem. To say the least, 

optimal solutions will not be discovered quickly.  

As with the heuristic of the previous paper, experience has shown that this one performs 

well. In particular, it is relatively robust with respect to false negatives. In addition, one can 

envisage this heuristic also used as delivering its result to other algorithms or heuristics that 

could try to improve the solution. 

 

5. Conclusion 

 This study presented two techniques that yield data for DNA mapping: digestion by 

restriction enzymes, and hybridization experiences. The first method employed restriction 

enzyme data to measure and compare the corresponding fragment lengths. However, this led 

to the double digest and partial digest problems. The double digest problem was NP-

complete. The second method involved data regarding fragments that can be reconstructed by 

determining overlaps between the fragments based on “fingerprints”. This can be modeled in 

various ways by interval graphs, although most models result in a NP-complete problem. 

DNA mapping is a quandary that many pursue the solution for. Although there are good 

techniques and algorithms that shed a little light on this issue, the perfect instrument to 

definitively solve it continues to be sought. 
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