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Abstract 
 

A robust beamforming with quadratic constraints, formulated as a semidefinite 

programming (SDP) problem, is proposed in this paper. With this formulation, the 

constraints on magnitude response can be easily imposed on the adaptive beamformer. And 

the non-convex quadratic constraints can be transformed into linear constraints. Therefore, 

the proposed method can be robust against the steering direction error. In practice, there are 

many array imperfections except steering direction error. In order to resist all kinds of array 

imperfections, the adaptive beamformer based on worst-case optimization technique is 

proposed by minimizing the array output power with respect to the worst-case array 

imperfections. Simulation results demonstrate that the proposed method is effective and can 

achieve a better performance. 

Keywords: Adaptive array; Robust adaptive beamforming; Semidefinite programming; 

Worst-case optimization 

1. Introduction 

Array signal processing is widely used in many fields such as radar, communication, sonar, 

acoustics, medical imaging and so on. Beamforming is an important assignment in array 

processing applications. A well-known representative, named the Capon beamformer [1] 

constrains the response of the signal of interest (SOI) to be unity and minimizes the variance 

of the beamformer output. The Capon beamformer has better resolution and interference 

rejection capability if the array steering vector corresponding to the SOI is known accurately.  

In practical applications, the array steering vector (ASV) of the SOI can be imprecise due 

to the existence of array imperfections, such as steer direction errors, local scattering, near-far 

spatial signature mismatch, waveform distortion, source spreading, imperfectly calibrated 

arrays and distorted antenna shape [2]. Adaptive array is very sensitive to the ASV errors, 

which cause serious target signal cancellation problem and result in array performance drastic 

degradation, especially for the array output signal-to-interference-plus-noise ratio (SINR) [3]. 

In such cases, robust approaches to adaptive beamforming are required.  

Many methods have been proposed to make the adaptive beamformer robust against ASV 

errors. In [4-8], linear constraints have been imposed when minimizing the output variance, 

which can be designed to broaden the main beam of adaptive array. These beamformers are 

the so-called linearly constrained minimum variance (LCMV) beamformers. Convex 

quadratic constraints [9-10], a Bayesian approach [11], also have been proposed to make the 

array robust against steer direction error. However, the applicability of these techniques is 

limited by scenarios with the steering direction error of the SOI only. Considering more 

general array imperfections, diagonal loading method [3] is known to provide robustness. But 

the main problem of the conventional diagonal loading method is how to determine the level 

of diagonal loading. Another popular approach to robust adaptive beamforming is the 
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eigenspace-based beamformer [12-13]. Nevertheless, it is ineffective at low signal-to-noise 

ratio (SNR) and when the dimension of the signal-plus-interference subspace is high or not 

exactly known, the performance of eigenspace-based beamformer degrades drastically.  

Recently, there are some robust methods with clear theoretical background have been 

proposed [14-17]. The designed beamformers are robust against general types of ASV errors 

with an assumed uncertainty set. The uncertainty set has been selected as polyhedron, sphere, 

or ellipsoid, and these beamformers are equivalent to and belong to the diagonal loading 

method [16]. The diagonal loading level can be calculated based on the known level of 

uncertainty of the signal steering vector. In [18], inspired by these uncertainty-based methods, 

a simplified uncertainty set has been considered, which contains only the steering vectors 

with a desired uncertainty range of direction-of-arrival. However, it is not clear how to 

generate the array weight because the constraint is an infinite number of non-convex 

quadratic constraints. In [18], a suboptimal solution has been derived by loosening the 

constraint. 

In this paper, we consider an alternative and efficient approach to solve the robust 

beamformer with non-convex quadratic constraints. We formulate the robust adaptive 

beamformer in the form of an SDP problem. With this formulation, the constraints on 

magnitude response can be easily imposed on the adaptive beamformer. The non-convex 

quadratic constraints can be transformed into linear constraints. With the quadratic 

constraints, the method is only robust against the steering direction error. In order to ensure 

the robustness against arbitrary array imperfections, the technique of worst-case optimization 

is used to enhance the robustness against arbitrary array imperfections and outstanding SINR 

improvement. The approach is to find the worst effect of the array imperfection on the array 

output power, and minimizes the array output power according to the worst-case array 

imperfection. By ignoring the rank-one constraint, the proposed SDP with quadratic 

constraints based on worst-case optimization can be formulated as a relaxed SDP problem, 

which can be solved efficiently by using the interior-point method [19] with some open 

solvers, e.g. CVX [20] and SeDuMi [21] available.  

The notations adopted hereafter are standard.  
T

 denotes the transpose operator, 

 
H

 denotes the Hermitian transpose operator, E  denotes the mathematical 

expectation, and tr  denotes the trace operator. 

 

2. Robust Adaptive Beamfromer based on Semidefinite Programming 

2.1. Background 

Consider a uniform linear array (ULA) of N  isotropic sensors with inter-element spacing 

d . The SOI is a narrowband plane wave with wavelength   impinging form angle  . The 

received sensor-sampled complex signals (array snapshot)       
0 1

, ...,
T

N
n x n x n


x is linearly 

combined with complex weight  
0 1
, ...,

T

N
w w


w to yield the beamformer output  

   Hy n n w x                               (1) 

Conventional adaptive beamforming method, e.g., the Capon beamformer minimizes array 

output power while constraining the SOI response to be unity. If the direction   is accurately 

known, the Capon beamformer is formulated as the following optimization problem 

 

min    

s.t.   1

H

H  s

w
w Rw

w
                                                               (2) 
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where     H
E n nR x x  is the covariance matrix of array snapshot.  s  is the ASV of the 

SOI, and  

      2 sin 1 2 sin
1  e   ...  e

T
j d j N d     


 

 
s                                         (3) 

The Capon beamformer is very sensitive to ASV mismatches caused by array 

imperfections. The most typical array imperfection is the steer direction error. If   deviates 

from the true one, the minimization in (2) suppresses the magnitude response of the SOI, the 

phenomenon is called target signal cancellation. To avoid this, [18] use the constraints on 

magnitude response force the magnitude responses at a range of arrival angles to exceed unity 

while minimizing array output power. The optimal robust beamformer problem can be 

expressed as 

   
2

min    

s.t.   1,   ,   

H

H

l u
    

w

w Rw

s w

                                         (4) 

where 
l  and 

u  are the lower and upper bounds of the uncertainty of SOI arrival angle with 

a high probability. It is not clear how to solve the optimal beamformer w  in (4) because the 

magnitude constraints are an infinite number of nonconvex quadratic constraints over w , 

which implies that an optimization problem with such constraints cannot be solved by the 

well developed convex optimization technique. 

 

2.2. Robust Adaptive Beamfromer based on Semidefinite Programming with Magnitude 

Response Constraints 

In this paper, we will formulate the robust adaptive beamformer in the form of a SDP 

problem. With this formulation, the constraints on magnitude response can be easily imposed 

on the adaptive beamformer. The non-convex quadratic constraints can be transformed into 

linear constraints. The array output power in (2) can be expressed as  

   tr trH H w Rw w Rw RW                                        (5) 

where the matrix W  is defined as HW ww . It is clear that the rank of W  should be 

constrained to one, i.e.,  rank 1W . W  is the Hermitian positive semidefinite matrix and 

denoted as  

0W                                                              (6) 

Since the magnitude response can be transformed as 

         
2

tr trH H H

s    s w s s ww R W                         (7) 

where      H

s   R s s . The constraints in (2) are equivalent to  

    tr 1,   ,s l u    R W                                                (8) 

From (8), it is clear that this new constraint is linear inW . However, the constraint (8) is a 

semi-infinite constraint. In this paper, it is approximated in a straightforward way by 

sampling or discretizing the angle. We choose a set of angles such that 

1
ˆ ˆ

l k u                                                                (9) 

which are often uniformly or logarithmically spaced. The semi-infinite constraint is replaced 

by a set of ordinary constraints 

  ˆ ˆ1,   str   R W                                                   (10) 
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where  ˆ ˆ , 1,...,i l i u i k        is a sampled angle set. Combining (5), (10) 

and  rank 1W , the robust adaptive beamfromer can be formulated as 

 min    tr
w

RW  

  ˆ ˆs.t.   tr 1,   s   R W                                                          

 0,  rank 1W W                                                  (11) 

which is an equivalent formulation of the beamformer in (4). However, (11) has a non-convex 

rank-one constraint  rank 1W . It is difficult to solve the problem with non-convex 

constraint. Using the semidefinite relaxation (SDR) approach [22], we drop the rank-one 

constraint and relax (11) to the following convex optimization problem 

 min    tr
w

RW  

  ˆ ˆs.t.   tr 1,   s   R W                                    

0W                                                (12) 

which can be solved efficiently by using the interior-point method. Due to the 

relaxation, the rank of the matrix W  obtained by solving the SDR problem may be 

higher than one. If it is, then the principal eigenvector of W  is the optimal weight 

vector. Otherwise, the optimal weight vector can be recovered from W by using the 

spectral factorization method [23]. Fortunately, the rank of the matrix W  is always one 

in numerical examples and such spectral factorization procedure does not need.  

 

3. Robust Adaptive Beamformer based on Worst-case Optimization 

The method described in (12) works well for array with only steering direction errors. 

However, in practice, due to the limited number of array snapshots and many other array 

imperfections, the estimated covariance matrix may deviate from the true covariance matrix. 

When these happen, there is serious performance degradation for the designed adaptive 

beamformer. In order to ensure the robustness against arbitrary array imperfections, the 

technique of worst-case optimization is used to enhance the robustness against arbitrary array 

imperfections and providing outstanding SINR improvement. 

We define an error matrix  , which takes into account all mismatches that may be caused. 

With such a general error model, the estimated array covariance matrix R̂  can be expressed 

as 
ˆ  R R                                                         (13) 

where R  is the true covariance matrix. The only constraint on the error matrix   is the 

limited Frobenius norm, i.e.,  , where   is a positive real number. Similar to [14, 24], 

we use the idea of the worst-case optimization. The array output power is minimized when 

the error matrix   brings the worst-case effect on the objective function. Substituting (13) 

into (4) and using worst-case optimization, the optimization problem is expressed as 

 

 ˆmin   max   H 
w

w R w


                                                               

   
2

1 2s.t.   1,   ,   H     s w                                                       

                                                          (14) 
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With this new optimization formulation, the robustness of the beamformer should be 

improved.  

To simplify the (14), consider the solution for the following problem 

 ˆmax      s.t.   H  w R w


                                               (15) 

(15)can be rewritten the as  

 ˆmin   -    s.t.   H  w R w


                                              (16) 

and using a derivation similar to that given in [24], the solution of (16) is  

2

H


ww

w
                                                                    (17) 

and the maximum of the objective function in (14) is  

 ˆH w R I w                                                                  (18) 

Then, using (18), the (14) can be rewritten in a much simpler equivalent form 

 ˆmin   H

w
w R I w  

   
2

1 2s.t.   1,   ,   H     s w                                        (19) 

Similar to the problem (12), the robust adaptive beamfromer based on semidefinite 

programming and worst-case optimization can be given as 

  min    tr 
w

R I W                                                           

  ˆ ˆs.t.   tr 1,   s   R W                                               

0W                                                       (20) 

Its optimal solution is easy to be obtained with the interior-point method (IPM) [19] as same 

as the method in (12). 

 

4. Numerical Results 

Analyzing the theoretical performance of general adaptive beamformers is difficult, except 

some special cases when adaptive beamformers have closed-form solution. Our method also 

has no closed-form solution. Like other state-of-the-art adaptive beamformers [14-18], we use 

numerical experiments to evaluate the performance according to the improvement of output 

SINR. We compare the performance of the proposed method with the performance of the 

standard Capon beamformer (SCB) [1], the robust Capon beamformer (RCB) [16], 

Shahbazpanahi’s method [24] and Chen’s method [18].  

We assume a uniform linear array (ULA) with 10 sensors and half-wavelength inter-

element spacing is used. In all the experiments, the non-directional noise is assumed to be a 

spatially white Gaussian noise and its covariance matrix is the identity matrix I . The power 

and directions-of-arrival (DOA) of the SOI are 10 dB and 0 . Two interferences have the 

power of 20 dB and DOAs 30  and 45 , respectively. All the results are calculated by the 

average of 200 Monte Carlo trials.  

Firstly, we examine the robustness of the beamfomers only in the presence of DOA 

mismatch. In this example, we assume the DOA error varies form 0  to 10 , and the number 

of sampling points is 300. For the RCB, we set the spherical uncertainty set parameter   

equal to 0.35N . In Shahbazpanahi’s method, the value  9 str R N   is chosen as [24], 

where sR is the signal covariance matrix. We set the interested robust response region 

2 ,13      in Chen’s method and our method. Fig. 1 shows the output SINRs versus the 
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mismatch angle. One can observe that the SCB is very sensitive to the arrival angle mismatch. 

The SCB and Shahbazpanahi’s method have good performance for small mismatch angle, but 

they degrade severely for large mismatch angle since the norm of mismatch steering vector 

being upper bounded. The performance of proposed method and Chen’s method are 

guaranteed for all mismatch angles, but the performance of proposed method is better than the 

Chen’s method. Moreover, when the mismatch angle is small, the SINR of proposed method 

decreases slightly compared to the SCB because response region is too large. The 

performance of these beamformers versus the SNR for the fixd mismatch angle 5  is shown 

in Fig. 2. In the high SINR region, the output SINRs of SCB and RCB are seriously degraded 

by the DOA mismatch. However, the proposed method still has good performance compared 

to Chen’s method. The performance of Shahbazpanahi’s method also has good performance 

since the value of   is selected properly when the mismatch angle is 5 . 
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Figure 1. Output SINR versus Mismatch Angle 
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Figure 2. Output SINR versus the SNR for the Fixd Mismatch Angle 5  

Then, we study the sensitivity of output SINR to regularization factor in the proposed 

method. As before, the interested robust response region is set 2 ,13     . Since the 

parameter   changes with the power of input signal, we use a relative regularization factor 

 ˆ
r N tr  R . In this experiment, the array is assumed to have random phase errors with 

standard deviation 5  . The relative regularization factor r  varies from 0 to 2. Fig. 3 

shows the output SINR of proposed method with various numbers of array snapshots versus 
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regularization factors. It is clear that even with different number of array snapshots, the 

performance of proposed method with random phase errors is not very sensitive to the 

selection of regularization factor. When the array snapshots are larger than the 50, the 

proposed method has good performance.  
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Figure 3. Output SINR of Proposed Method with Different Numbers of Array 
Snapshots versus Regularization Factors 

Moreover, we evaluate the performance of proposed method considering different kinds of 

array imperfections. Without loss of generality, we only consider the arbitrary array steer 

vector (ASV) error. In this example, the ASV is modeled as      s s e , where e  is a 

random vector with i.i.d. components  20,i ee CN   for all i . The 2

e  varies from 0 to 0.2. 

Fig. 4 shows the output SINR of proposed method versus arbitrary ASV error. It can be seen 

that if the regularization factor is properly selected, the proposed method is robust against 

these array imperfections. The performance of proposed method with large regularization 

factor is slightly below the others in the case of small array imperfection. However, to resist 

significant array imperfections, a large regularization factor is necessary.  
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Figure 4. Output SINR of Proposed Method with Various Regularization Factors 
versus Arbitrary ASV Error 

Finally, the performance of proposed method is compared with the other adaptive 

beamformers considering various kinds of array imperfections. As before, we consider the 

arbitrary array steer vector (ASV) error. The simulation parameters are set the same as the 

first example. Fig. 5 shows the output SINR of these methods versus arbitrary ASV error, in 
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which the number of sampling points is 100. It can be seen that the performance of proposed 

method is guaranteed if a suitable regularization factor is used. The other methods are not 

very sensitive to the change of array imperfections, but the output SINR of these 

beamformers is less than the proposed method.  
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Figure 5. The SINR Outputs of Adaptive Beamformers versus Arbitrary ASV 
Error 

 

5. Conclusions 

In this paper, we formulate the robust beamformer as a semidefinite programming (SDP) 

problem. With constraints imposed on the magnitude response, the proposed adaptive 

beamformer can be robust against DOA mismatch. Moreover, the proposed beamformer 

designed based on worst-case optimization is robust against all kinds of array imperfections. 

The numerical experiments have been carried out to illustrate the superior performance of the 

proposed method on output SINR enhancement and robustness against array imperfections. 

Since the performance of the designed beamformer is not very sensitive to the change of 

regularization factor, it is very suitable for practical applications. 
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