
International Journal of Hybrid Information Technology

Vol.8, No.12 (2015), pp. 143-152

http://dx.doi.org/10.14257/ijhit.2015.8.12.09

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

The Combination of Extension of Ant Colony Algorithm and

Other Intelligent Algorithms

Ma Li
1
, Li Qianting

1
, Ma Meiqiong

1
, Meng Jun

2
 and Bai Jiyun

2

1
Engineering College, Northeast Agricultural University, China

2
College of Science, Northeast Agricultural University, Ha’erbin 150030, China

drizzlem19@163.com

Abstract

The extension of ant colony algorithm was proposed by Dorigo, the founder of ant

colony algorithm, which is the latest ant colony algorithm for solving a continuous space

optimization problem. Considering the blindness of man-made choice of initial solution

and initial parameters of the algorithm, and according to the algorithm converging

slowly and easily falling into local optimum, this paper has provided improvement

strategy for this optimization. It has introduced quantum computing and genetic

algorithm, chaos optimization to carry out combination and comparison, and it has

carried out improvement on the weight internally solved by memory in the algorithm. The

effectiveness of various combined algorithms was determined through the optimization of

numerous multi-dimensional continuous functions.

Keywords: Extension of ant colony optimization, Optimization of continuous space,

Genetic algorithm, chaos

1. Introduction

Ant colony algorithm (ACO [1, 13]) is a bionic optimization algorithm that imitates

the foraging behavior of ants, the major advantages of ACO are positive feedback of

message, distributed computing, combining with other algorithms easily, etc. And now, It

has been successfully applied to the field of discrete space optimization [2-3]. But for

processing continuous space optimization problems, there are two main ways: Firstly,

making the continuous space discretized, and then transform the continuous problem into

discrete problem [16]; the second is combination with evolutionary algorithms [4], but

the convergence was slow. Whether the first approach could be adapted to high-

dimensional problems are yet inconclusive, in addition, it carry out a lot of changes on

the basic structure of the ant colony optimization algorithm, which is not conducive to

improving the algorithm.

In 2008, on the basis of ACO, Dorigo, et al., proposed extension of ant colony

algorithm (ACOR) [5-6]. ACOR was simple and easy because it was designed still in

accordance with the ACO algorithm framework. It was applied to solve the classic

continuous function and compared with existing algorithms to achieve higher accuracy.

However, due to ACOR still using a random method to obtain the initial solutions, the

initial pheromones accumulation were too slow; At the same time, the solution was

influenced largely by the algorithm parameters , especially in solving the unknown

optimization problems, there was a problem of algorithm parameters re-selection; The

algorithm constructed pheromone only through the target function value size of the

solution of memory in one search, so the direction of solution was not clear enough,

convergence speed was slow , and was easy to fall into local optimum.

With the development of computing technology, there were a lot of intelligent

algorithms which were used to solve the complex optimization problems, such as genetic

algorithms, particle swarm optimization [7-12, 14-15], each algorithm has irreplaceable

http://www.iciba.com/College_of_Science
http://www.iciba.com/transform

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

144 Copyright ⓒ 2015 SERSC

advantages, the combination between individual algorithm and extensive ant colony

algorithm can get more effective optimization strategy. This paper studied the

improvement on extension of ant colony algorithm from the algorithm combination of

view, proposed two new fusion algorithm based on literature [7-12, 14-15], and

comprehensively improved the convergence speed of ACOR algorithm to avoid falling

into local optimal. Meanwhile, it used various improvement methods to do simulation for

four classic multi-peak and nonlinear test functions in literature [5], and compared with

extensive ant colony algorithm to determine the advantages of various methods.

2. Extension of Ant Colony Algorithm

2.1. The Process of Extension of Ant Colony Optimization

The literature [5] introduced Gauss kernel probability density function and solution

memory in probability selection rule of pheromone to extend ACO algorithm [1, 13], so it

could be applied to the continuous space, then the ACOR algorithm was obtained

Gaussian kernel
)(xG

i

is defined to the weight sum of some Gaussian functions
)(xg

i

l

that was formula (1).
2

2

()

2

1 1

1
() ()

2

i

l

i

l

x
k k

i i

l l l i

l l
l

G x g x e





 

 




 

   (1)

Gaussian kernel ()
i

G x contains three parameter vectors: is a single Gaussian weight

vector,
i


is the mean vector,

i
 is the standard deviation of the vector. All dimensions of

these vectors are equal to k , the number of Gaussian functions, which are the

composition of the Gaussian kernel.

When the basic ant colony algorithm was used for the continuous optimization, choice

of each ant was no longer confined to a finite set. Each solution vector l
s

, the objective

function value
()

l
f s

and weight of a n-dimensional problem were stored in one solution

memory T. Therefore, the ith variable of the lth solution was
i

l
s

, Which structure was

illustrated in Figure 1.

1
s 1

1
s ·

1

i
s ·

1

n
s

1
()f s

1


 · · · · · · ·

l
s 1

l
s ·

i

l
s · n

l
s ()

l
f s l



 · · · · · · ·

k
s 1

k
s

 i

k
s

 n

k
s)(

k
sf

k


 1
G

i
G

 n
G

Figure 1. Structure of Solution Memory of ACOR

On the Figure 1, the feasible solutions was ordered according to their function values

(or fitness)
()

l
f s

. For example, the problem of finding the minimum value was sorted

as 1 2
() () ... ()

k
f s f s f s  

. Each function value had a corresponding weight , and

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 145

the order was 1 2
. . .

k
    

. Structuring probability density function Gi only

required the i-dimensional coordinates of all k(k=K)solution. Gauss kernel function was

composed by the k independent Gauss functions. For each
i

G , all solutions value of i-

variable in solution memory were changed into the elements of

vector
i

 : 1 1
{ , ..., } { , ..., }

i i i i i

k k
s s   

. the formula(2) was used to Calculate the weight

l


of the solution vector l
s

:

2

2 2

(1)

2
1

2

l

q k

l
e

q k







 (2)

In which q k is the standard deviation, q is a parameter of the algorithm.

The Process of ACOR algorithm mainly included three steps: solution memory

initialization, construction of feasible solutions through the Gauss kernel probability

density function and the pheromone updating.

(1) Solution Memory Initialization

Assumed that there were m ants in the ant colony, the length of solution memory T is

K, the variable of continuous optimization problem was n-dimensional, solutions of

memory T was initialized to K-dimensional solution vector randomly, and the length of

each solution vector was n. corresponding objective function values could be calculated

according to the K solution vector, and the weights of each solution vector could be

calculated by the formula (2).

(2) Constructing feasible solution by sampling from Probability Density Function of

the Gaussian kernel

Sampling process involved two steps. The first step was select one Gaussian Function

from the compositions of the Gaussian Kernel Function, and according to the follows

formula (3) to calculate selection probability.

1

l

l k

rr

p







 (3)

Second step was to sample for the Gaussian Function selected in the first step. This

sampling procedure could be completed by using a parametric normal random number

generator to generate a random number. The formula as follows,

1 1

i i
k

e li

l

e

s s

k
 







 (4)

The parameter  for all variables was the same regardless of whether variables’

dimensions and  > 0.

(3) The pheromone updating

A temporary solution vector could be formed of the solution vectors from above m

ants sampling and original solution in memory T, and it was ordered by the objective

function. In order to keep the length of K, the former K solution vectors were added in

memory T. which ensures only the optimal solution could be stored in solution memory

T, then the solution in memory would be able to guide the ants search better

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

146 Copyright ⓒ 2015 SERSC

2.1. Algorithm Analysis

Literature [5] had verified the effectiveness of the ACOR algorithm by experiment.

However, a large number of instances showed that ACOR algorithm also had some

shortcomings:

(1) For continuous space optimization, feasible solution shows density, while only the

initial solutions in ACOR were determined by random method, so the quality of individual

could not be guaranteed. In addition, the initial information was blind, and accumulation

of information is slowly.

(2) In the ACOR, constructing and updating the solution memory only depended on the

size of the objective function values. The weight of each solution was only determined by

the formula(2).Therefore, the selection probability of solution (equation(3)) was only

related to the objective function value quality, without considering the contribution extent

of the current solution to explore the optimal value, so search direction was not clear

enough, the speed of convergence was slowly

(3) When the search cycles rose to a certain number, it was easily to be precocious

phenomenon and lead to a local optimum optimal solution due to the concentration of

pheromone produced by local optimal solution is too high. The reason was the ACOR

uses solution memory as storage of pheromone to construct next solution.

3. Improvement on ACOR Algorithm Integrated with Intelligent

Algorithm

In order to overcome these shortcomings of ACOR algorithm, this paper introduced

two optimization algorithms to integrate with ACOR algorithm, making use of the

advantages of each algorithm fully to accelerate the convergence speed of ACOR

algorithm, while avoiding of falling into local optima.

3.1. Improvement on Extension of Ant Colony Algorithm Integrated with Genetic

Algorithm

3.1.1. The Idea of Algorithm

The main features of Genetic Algorithm (GA) are the search strategy in the population

and the exchange of information between individuals and groups. Genetic Algorithm has

fast and stochastic global search capability, but it is powerless for the use of the system

feedback. When solving a certain range, it tends to do a lot of redundant iterations, which

lead to low efficiency when the exact solution to be demanded [7-10, 15].

This paper integrated Genetic Algorithm and ACOR, using genetic algorithm to

generate the initial solution and the initial pheromone, and using ACOR algorithm for

exact solution. While after each iteration, it carried out mutation to avoid falling into

local optima. In addition, the paper also had following improvements: using the change

rate of solution to reflect contribution extent of current solution for finding the optimal

solution. Assuming,

Weight calculation of solution in the solution storage is as follows:





n

j

ljll
f

1

 (5)

max

)(

j

l

jj

lj

f

xf
f






International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 147

In which, the l was calculated by formula (2), the)(
l
jj xf was the gradient of

evaluation function)(xf in the point of
l
jx , maxlf was the maximum of gradient of

evaluation function)(xf for the jth variable, nj ,,2,1  . If it needed minimum of

objective function,
lj

f would be negative, and the absolute value be larger, then it

Indicated that the objective function was to be better, the corresponding weights should

be larger, whereas weights should be smaller. From formula (5), the first part was

equivalent of the ‘use’ of solution that has been used, the second part was equivalent of

‘explore’ for unused solution, the size determined the ability of ants finding new good

solution.

3.1.2. Process of Improvement on Genetic ACOR

The main process of Genetic algorithm-extension of ant colony optimization

(GAACOR) was as follows:

(1) Producing a more optimal solution by using genetic algorithm, it was constructed

the initial solution of the ACOR algorithm.

Set the iteration times of GA were)(
cb

tttt  ,
b

t and
c

t respectively represented the

minimum and maximum genetic iterations. If three consecutive generation evolution

rate R meet the request
min

0 RR  in the process of calculating each iteration

evolution rate)()(
1

sfsfR
ii 

 , then genetic algorithm was terminated and turned into

the ant colony algorithm. Among them)(sf
i

represents the average value fitness function

of GA after the ith times iteration,
min

R was the given minimum threshold. Matrix
1

S was

formed by K/2 individual of the highest fitness function by choose from the last

generation population of GA. In order to prevent falling into local optimum, it randomly

formed the matrix
2

S composed by K/2 individuals to form a NK  -dimensional new

matrix S together with matrix
1

S , in which N was dimensions of decision variables.

(2) 0t Based on matrix S as initial solution, to construct the initial solution memory;

(3) used formula (5) and formula (2) to calculate the weight of each solution in

memory, used formula (3)to select Gaussian kernel probability density function and

determine the new solution;

(4) According to the mutation probability judged whether variation was carried out. If

there were variations, then new solution was gotten, otherwise rejected. According to the

process to get a new memory;

(5) t ← 1t , Go to step 3 to continue to iteration, If t)max(t , output the global

optimal solution.

3.2. Improvement on ACOR Integrated with Chaos Optimization

3.2.1. Algorithm Ideal

Chaotic motion has some characteristics like randomness, ergodic, and sensitive to

initial value, it can be not repeated through all states in a certain range according to their

own laws [12]. Chaos optimization, which is a relatively new optimization algorithm

using these properties of chaotic motion to do optimization search. Logistic chaotic

sequence is a general sequence that is used by this algorithm commonly. It can be

described by the following formula:

)1(
1 jjj

zzz 


 ， ,2,1,0j ，

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

148 Copyright ⓒ 2015 SERSC

In which  is control parameter, when 4 , 10
0
 z , Logistic sequence is in the

chaotic station.

According to the shortcomings of ACOR, in the base of literature [9], this paper

constructed the initial solution by introduction of chaos optimization, designing search

radius of variable scale, using Chaos search, accelerating convergence speed, and

avoiding local optima. According to the importance of solutions in memory to improve

weight value of each solution so that increase directionality and quickly access to optimal

solution.

3.2.2. The Process of Improved Chaos-extended ant Colony Algorithm

Improved chaos-extended ant colony algorithm (CACOR) was achieved by two

nested searching. First, ACOR to do global search with ACOR, the next, carry out

mutative scale Chaos search near to optimal solution of per iteration and achieve

local fine search.

(1) Search 1: process of global search

 1) Constructing initial solution of Chaotic;

 1t ,m initial populations that was n-dimensional variables generated by Logistic

mapping in [0,1] ,which was denoted

as)(tz
ij

, ni ,,2,1  , mj ,,2,1  , 4 , 9.0)1(
1


i

z .

2) The independent variable produced by the first step were mapped to optimize

space,))(()(
iiijiij

abtzatx  ， ni ,,2,1  ， mj ,,2,1  .

3) Calculating the fitness of each individual to construct memory of solutions of figure

(1);

4) to do the chaos search by using this improved mutative scale chaos fine search in the

near global optimal ant（)(
*

tx
ik

， ni ,,2,1  ）,if it could find the better than the

global optimal ants, set it to the global optimal ants;

5) Using formula (5) and formula (2) to calculate the weight of each solution in

memory and using formula (3) to select Gaussian kernel probability density function,

determine the data solution;

6) Repeating step3~step5 until termination condition was met.

(2)Search 2: The process of fining mutative scale chaos search

1) to carry out initialization by using Logistic map to produce p initial solutions

)(tz
ij

within [0, 1] , in which ni ,,2,1  ， pj ,,2,1  .

2) to compute fine search radius, do a scale transform for the independent variables and

map to optimization space])([
*

tiik rtx  。

The purpose of using mutative scale chaos search was to make the early search range of

algorithm larger to avoid early falling into local optimum, and let the search range was

smaller in the later in order to improve search precision. According to the requirement,

this paper used Gaussian probability density function to determine the search radius, let,

2

2

2
)1(

2

1









t

t
er

In which, t is the number of iterations. According to the principle of the Gaussian

kernel probability density function 3 , let)max(t , therefore, search radius of the i-

dimensional variable of the i-times iteration is as follows:

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 149

)
2

(

2

1 2
2

2
)1(

ii

t

ti

ab
er










 (6)

3) Calculating the function values of each individual and updating the current optimal

function value;

4. Solving the Multi-dimensional Continuous Function by Improved

ACOR

For Contrast, the two test functions of literature [6] were applied in this paper to

make a comparison analysis between the improved algorithms of ACOR (GAACOR and

CACOR)and ACOR to determine the effectiveness of the improved algorithms.

4.1. Test Function

(1) Shaffer’s F6 function

2 2 2

1 2 2 2

s in 0 .5
(,) 0 .5

(1 0 .0 0 1())

x y
f x y

x y

 
 

 

In which , [1 0 0 ,1 0 0]x y   .

This function has infinite numbers of local maximum points, only one point (0, 0) is

the global maximum point, the maximum is 1.

(2) Rosenbrock function









1

1

22

1

2

2
])1()(100[

N

i

iii
xxxf

N=5, 1010 
i

x , When xi =1 ,it can obtain the global minimum value 0 and it is

success when f2=0.0001.

4.2. Parameter Selection

Referencing literature [5], initial parameter selection of GAACOR was as follow:

genetic parts, population size M = 35, the largest number of iterations was 100, the

minimum number of iterations was 50, minimum evolution rate R=10, crossover

probability 90.0
c

p and mutation probability MMp
m

)01.0(]:1:1[10.0  ;

Extended ant colony parts, ants number m=70 , solution storage capacity 45K ,

parameter 1 ， 0001.0q .

Initial parameters of CACOR, ants number m=70, capacity of solution storage 45K ,

and parameter 1 , 0001.0q .

4.3. Simulation Result

10 times optimization was done with each algorithm of GAACOR, CACOR, and ACOR

on the function f1 and f2, the simulation results were shown in Tables 1 to 2, Figure 2 to

Figure 3.

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

150 Copyright ⓒ 2015 SERSC

Table 1. The Optimization Results of Extremum Problems of),(
1

yxf (10

Times Experiment)

Algorithms

),(
1

yxf

Optimum Average The first optimal

number of iterations

Numbers

of success

corresponding

curve

GAACOR 1 1 180 10 1

CACOR 1 1 120 10 2

ACOR 1 0.9925 261 2 3

Table 2. The Optimization Results of Extremum Problems of f2 (10 Times
Experiment)

Algorithms

2
f

Optimum Average The first optimal

number of iterations

Numbers

of success

corresponding

curve

GAACOR 0.0001 0.0011 210 7 1

CACOR 0.0001 0.0002 176 9 2

ACOR 0.0001 0.0761 407 1 3

Figure 2.),(
1

yxf Function Optimization Results

Figure 3.
2

f Function Optimization Results

It can be seen from Table 1 to 2, Figures. 2 to 3 that the three improved

algorithms of this paper not only have a faster search speed, but also have a strong

global search capability on the continuous space optimization problems. The two

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 151

functions that were used to simulate have more local extremums and complex

forms. ACOR algorithm was often difficult to jump out local extremum, GAACOR

and CACOR algorithm almost jumped out of local minimum entirely.

5. Conclusions

This paper analyzed advantages and weaknesses of ACOR, so far as to analyze several

common intelligent algorithms. It proposed combination algorithm of ACOR and other

intelligent algorithms, which overcame the shortcomings of ACOR, and improved

searching efficiency of it. Meanwhile the study was a comprehensive attempt on the

integration of ACOR and other intelligent algorithms. In the end, it got two new fusion

algorithms, through applied to optimize several representative multidimensional

continuous functions to determine the advantages of them.

Acknowledgments

The research is funded by Heilongjiang Youth Fund (QC2011C045) , Doctoral Fund

of Northeast agricultural University.

References

[1] M. Dorigo, V. Maniezzo and A. Colorni, “Ant System: Optimization by a colony of cooperating

agents”, IEEE Trans Syst Man Cybernetics, vol. 26, no. 1, (1996), pp. 29-41.

[2] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning approach to the

traveling salesman problem”, IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,

(1997), pp. 53-66.

[3] A. Colorni, M. Dorigo and V. Manizezzo, “Ant colony system for job-shop scheduling”,

Belgian Journal of Operations Research Statistics and Computer Science, vol. 34, no. 1, (1994),

pp. 39-53.

[4] V. K. Jayaraman, B. D. Kulkarni, K. Sachin, et al., “Ant colony framework for optimal design

and scheduling of batch plants”, Computer and Chemical Engineering, vol. 24, no. 8, (2000),

pp. 1901-1912.

[5] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains”, European Journal

of Operational Research, vol. 185, no. 3, (2008), pp. 1155~1173.

[6] L. Shiyong and B. Jiyun, “Extended quantum ant colony algorithm for continuous function

optimization”, Journal of Harbin Engineering University, vol. 33, no. 1, (2012), pp. 80-84.

[7] H. Ming, W. Cong and L. Xu, “Improved Gene Volume Control Hybrid Ant Colony Genetic

Algorithm for Traveling Salesman Problem”, Journal Of Dalian Jiaotong University, vol. 32,

no. 2, (2011), pp. 86-88.

[8] X. J. Rong, L. Yun and L. H. Tao, “Hybrid genetic ant colony algorithm for traveling salesman

problem”, Computer Applications, vol. 28, no. 8, (2008), pp. 2084-2087.

[9] W. Bin-Xiao, H. Yan-Quan, S. Ting-Zhen and D. Jia-Du, “Load model parameters identification

based on chaos ant colony optimization”, Power System Protection and Control, vol. 39, no. 14,

(2011), pp. 47-51.

[10] L. S. Yong and W. Qing, “Extensive Particle Swarm Ant Colony Algorithm for Continuous

Space Optimization”, Journal of Test and Measurement Technology, vol. 23, no. 4, (2009), pp.

319-325.

[11] P. S. Shelokar, P. Siarry, V. K. Jayaraman and B. D. Kulkarni, “Particle swarm and ant colony

algorithms hybridized forimproved continuous optimization”, Appl Math Comput., vol. 188,

(2007), pp. 129-42.

[12] Y. Xuecai and Z. Tianwen, “Multiple colony ant algorithm based on particle swarm

optimization”, Journal of Harbin Institute of Technology, vol. 42, no. 5, (2010), pp. 766-769.

[13] M. Dorigo and T. Stützle, “Ant Colony Optimization”, MIT Press, Cambridge, (2004).

[14] L. S. Yong, “Nonlinear Science and Complexity Science”, Harbin Harbin Institute of

Technology Press, (2006).

[15] S. W. Mahfoud and D. E. Goldgerg, “A genetic algorithm for parallel simulated annealing”,

Parallel Problem Solving from Nature, North Holland, vol. 2, (1992), pp. 301-310.

[16] W. Lei and W. Qidi, “Ant system algorithm for optimization in continuous space”, Proceedings

of the IEEE Inter, Conference on Control Applications. Mexico City, Mexico: IEEE Press,

(2001), pp. 395-400.

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

152 Copyright ⓒ 2015 SERSC

