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Abstract 

The extension of ant colony algorithm was proposed by Dorigo, the founder of ant 

colony algorithm, which is the latest ant colony algorithm for solving a continuous space 

optimization problem. Considering the blindness of man-made choice of initial solution 

and initial parameters of the algorithm, and according to the algorithm converging 

slowly and easily falling into local optimum, this paper has provided improvement 

strategy for this optimization. It has introduced quantum computing and genetic 

algorithm, chaos optimization to carry out combination and comparison, and it has 

carried out improvement on the weight internally solved by memory in the algorithm. The 

effectiveness of various combined algorithms was determined through the optimization of 

numerous multi-dimensional continuous functions. 
 

Keywords: Extension of ant colony optimization, Optimization of continuous space, 

Genetic algorithm, chaos 

 

1. Introduction 

Ant colony algorithm (ACO [1, 13]) is a bionic optimization algorithm that imitates 

the foraging behavior of ants, the major advantages of ACO are positive feedback of 

message, distributed computing, combining with other algorithms easily, etc. And now, It 

has been successfully applied to the field of discrete space optimization [2-3]. But for 

processing continuous space optimization problems, there are two main ways: Firstly, 

making the continuous space discretized, and then transform the continuous problem into 

discrete problem [16]; the second is combination with evolutionary algorithms [4], but 

the convergence was slow. Whether the first approach could be adapted to high-

dimensional problems are yet inconclusive, in addition, it carry out a lot of changes on 

the basic structure of the ant colony optimization algorithm, which is not conducive to 

improving the algorithm. 

In 2008, on the basis of ACO, Dorigo, et al., proposed extension of ant colony 

algorithm (ACOR) [5-6]. ACOR was simple and easy because it was designed still in 

accordance with the ACO algorithm framework. It was applied to solve the classic 

continuous function and compared with existing algorithms to achieve higher accuracy. 

However, due to ACOR still using a random method to obtain the initial solutions, the 

initial pheromones accumulation were too slow; At the same time, the solution was 

influenced largely by the algorithm parameters , especially in solving the unknown 

optimization problems, there was a problem of algorithm parameters re-selection; The 

algorithm constructed pheromone only through the target function value size of the 

solution of memory in one search, so the direction of solution was not clear enough, 

convergence speed was slow , and was easy to fall into local optimum. 

With the development of computing technology, there were a lot of intelligent 

algorithms which were used to solve the complex optimization problems, such as genetic 

algorithms, particle swarm optimization [7-12, 14-15], each algorithm has irreplaceable 
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advantages, the combination between individual algorithm and extensive ant colony 

algorithm can get more effective optimization strategy. This paper studied the 

improvement on extension of ant colony algorithm from the algorithm combination of 

view, proposed two new fusion algorithm based on literature [7-12, 14-15], and 

comprehensively improved the convergence speed of ACOR algorithm to avoid falling 

into local optimal. Meanwhile, it used various improvement methods to do simulation for 

four classic multi-peak and nonlinear test functions in literature [5], and compared with 

extensive ant colony algorithm to determine the advantages of various methods. 

 

2. Extension of Ant Colony Algorithm 
 

2.1. The Process of Extension of Ant Colony Optimization 

The literature [5] introduced Gauss kernel probability density function and solution 

memory in probability selection rule of pheromone to extend ACO algorithm [1, 13], so it 

could be applied to the continuous space, then the ACOR algorithm was obtained 
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Gaussian kernel ( )
i

G x contains three parameter vectors: is a single Gaussian weight 

vector,
i


is the mean vector,

i
 is the standard deviation of the vector. All dimensions of 

these vectors are equal to k , the number of Gaussian functions, which are the 

composition of the Gaussian kernel. 

When the basic ant colony algorithm was used for the continuous optimization, choice 

of each ant was no longer confined to a finite set. Each solution vector l
s

, the objective 

function value
( )

l
f s

and weight of a n-dimensional problem were stored in one solution 

memory T. Therefore, the ith variable of the lth solution was 
i

l
s

, Which structure was 

illustrated in Figure 1. 
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Figure 1. Structure of Solution Memory of ACOR 

On the Figure 1, the feasible solutions was ordered according to their function values 

(or fitness) 
( )

l
f s

. For example, the problem of finding the minimum value was sorted 

as 1 2
( ) ( ) ... ( )

k
f s f s f s  

. Each function value had a corresponding weight , and 
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the order was 1 2
. . .

k
    

. Structuring probability density function Gi only 

required the i-dimensional coordinates of all k(k=K)solution. Gauss kernel function was 

composed by the k independent Gauss functions. For each
i

G , all solutions value of i-

variable in solution memory were changed into the elements of 

vector
i

 : 1 1
{ , ..., } { , ..., }

i i i i i

k k
s s   

. the formula(2) was used to Calculate the weight 
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In which q k is the standard deviation, q is a parameter of the algorithm. 

The Process of ACOR algorithm mainly included three steps: solution memory 

initialization, construction of feasible solutions through the Gauss kernel probability 

density function and the pheromone updating. 

(1) Solution Memory Initialization 

Assumed that there were m ants in the ant colony, the length of solution memory T is 

K, the variable of continuous optimization problem was n-dimensional, solutions of 

memory T was initialized to K-dimensional solution vector randomly, and the length of 

each solution vector was n. corresponding objective function values could be calculated 

according to the K solution vector, and the weights of each solution vector could be 

calculated by the formula (2). 

(2) Constructing feasible solution by sampling from Probability Density Function of 

the Gaussian kernel 

Sampling process involved two steps. The first step was select one Gaussian Function 

from the compositions of the Gaussian Kernel Function, and according to the follows 

formula (3) to calculate selection probability. 
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Second step was to sample for the Gaussian Function selected in the first step. This 

sampling procedure could be completed by using a parametric normal random number 

generator to generate a random number. The formula as follows, 
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The parameter  for all variables was the same regardless of whether variables’ 

dimensions and  > 0. 

(3) The pheromone updating 

A temporary solution vector could be formed of the solution vectors from above m 

ants sampling and original solution in memory T, and it was ordered by the objective 

function. In order to keep the length of K, the former K solution vectors were added in 

memory T. which ensures only the optimal solution could be stored in solution memory 

T, then the solution in memory would be able to guide the ants search better 
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2.1. Algorithm Analysis 

Literature [5] had verified the effectiveness of the ACOR algorithm by experiment. 

However, a large number of instances showed that ACOR algorithm also had some 

shortcomings: 

(1) For continuous space optimization, feasible solution shows density, while only the 

initial solutions in ACOR were determined by random method, so the quality of individual 

could not be guaranteed. In addition, the initial information was blind, and accumulation 

of information is slowly. 

(2) In the ACOR, constructing and updating the solution memory only depended on the 

size of the objective function values. The weight of each solution was only determined by 

the formula(2).Therefore, the selection probability of solution (equation(3)) was only 

related to the objective function value quality, without considering the contribution extent 

of the current solution to explore the optimal value, so search direction was not clear 

enough, the speed of convergence was slowly 

(3) When the search cycles rose to a certain number, it was easily to be precocious 

phenomenon and lead to a local optimum optimal solution due to the concentration of 

pheromone produced by local optimal solution is too high. The reason was the ACOR 

uses solution memory as storage of pheromone to construct next solution. 

 

3. Improvement on ACOR Algorithm Integrated with Intelligent 

Algorithm 

In order to overcome these shortcomings of ACOR algorithm, this paper introduced 

two optimization algorithms to integrate with ACOR algorithm, making use of the 

advantages of each algorithm fully to accelerate the convergence speed of ACOR 

algorithm, while avoiding of falling into local optima. 

 

3.1. Improvement on Extension of Ant Colony Algorithm Integrated with Genetic 

Algorithm 

 

3.1.1. The Idea of Algorithm 

The main features of Genetic Algorithm (GA) are the search strategy in the population 

and the exchange of information between individuals and groups. Genetic Algorithm has 

fast and stochastic global search capability, but it is powerless for the use of the system 

feedback. When solving a certain range, it tends to do a lot of redundant iterations, which 

lead to low efficiency when the exact solution to be demanded [7-10, 15]. 

This paper integrated Genetic Algorithm and ACOR, using genetic algorithm to 

generate the initial solution and the initial pheromone, and using ACOR algorithm for 

exact solution. While after each iteration, it carried out mutation to avoid falling into 

local optima. In addition, the paper also had following improvements: using the change 

rate of solution to reflect contribution extent of current solution for finding the optimal 

solution. Assuming, 
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In which, the l  was calculated by formula (2), the )(
l
jj xf was the gradient of 

evaluation function )( xf  in the point of 
l
jx , maxlf was the maximum of gradient of 

evaluation function )( xf for the jth variable, nj ,,2,1  . If it needed minimum of 

objective function,
lj

f would be negative, and the absolute value be larger, then it 

Indicated that the objective function was to be better, the corresponding weights should 

be larger, whereas weights should be smaller. From formula (5), the first part was 

equivalent of the ‘use’ of solution that has been used, the second part was equivalent of 

‘explore’ for unused solution, the size determined the ability of ants finding new good 

solution. 

 

3.1.2. Process of Improvement on Genetic ACOR 

The main process of Genetic algorithm-extension of ant colony optimization 

(GAACOR) was as follows: 

 

(1) Producing a more optimal solution by using genetic algorithm, it was constructed 

the initial solution of the ACOR algorithm. 

Set the iteration times of GA were )(
cb

tttt  , 
b

t and
c

t respectively represented the 

minimum and maximum genetic iterations. If three consecutive generation evolution 

rate R  meet the request
min

0 RR   in the process of calculating each iteration 

evolution rate )()(
1

sfsfR
ii 

 , then genetic algorithm was terminated and turned into 

the ant colony algorithm. Among them )( sf
i

represents the average value fitness function 

of GA after the ith times iteration, 
min

R was the given minimum threshold. Matrix
1

S was 

formed by K/2 individual of the highest fitness function by choose from the last 

generation population of GA. In order to prevent falling into local optimum, it randomly 

formed the matrix
2

S composed by K/2 individuals to form a NK  -dimensional new 

matrix S together with matrix
1

S , in which N was dimensions of decision variables. 

(2) 0t Based on matrix S as initial solution, to construct the initial solution memory; 

(3) used formula (5) and formula (2) to calculate the weight of each solution in 

memory, used formula (3)to select Gaussian kernel probability density function and 

determine the new solution; 

(4) According to the mutation probability judged whether variation was carried out. If 

there were variations, then new solution was gotten, otherwise rejected. According to the 

process to get a new memory; 

(5) t ← 1t , Go to step 3 to continue to iteration, If t )max( t , output the global 

optimal solution. 

 

3.2. Improvement on ACOR Integrated with Chaos Optimization 
 

3.2.1. Algorithm Ideal 

Chaotic motion has some characteristics like randomness, ergodic, and sensitive to 

initial value, it can be not repeated through all states in a certain range according to their 

own laws [12]. Chaos optimization, which is a relatively new optimization algorithm 

using these properties of chaotic motion to do optimization search. Logistic chaotic 

sequence is a general sequence that is used by this algorithm commonly. It can be 

described by the following formula: 

)1(
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In which  is control parameter, when 4 , 10
0
 z , Logistic sequence is in the 

chaotic station. 

According to the shortcomings of ACOR, in the base of literature [9], this paper 

constructed the initial solution by introduction of chaos optimization, designing search 

radius of variable scale, using Chaos search, accelerating convergence speed, and 

avoiding local optima. According to the importance of solutions in memory to improve 

weight value of each solution so that increase directionality and quickly access to optimal 

solution. 

 

3.2.2. The Process of Improved Chaos-extended ant Colony Algorithm 

Improved chaos-extended ant colony algorithm (CACOR) was achieved by two 

nested searching. First, ACOR to do global search with ACOR, the next, carry out 

mutative scale Chaos search near to optimal solution of per iteration and achieve 

local fine search. 

(1) Search 1: process of global search  

  1) Constructing initial solution of Chaotic; 

  1t ,m initial populations that was n-dimensional variables generated by Logistic 

mapping in [0,1] ,which was denoted 

as )( tz
ij

, ni ,,2,1  , mj ,,2,1  , 4 , 9.0)1(
1


i

z . 

2) The independent variable produced by the first step were mapped to optimize 

space, ))(()(
iiijiij

abtzatx  ， ni ,,2,1  ， mj ,,2,1  . 

3) Calculating the fitness of each individual to construct memory of solutions of figure 

(1); 

4) to do the chaos search by using this improved mutative scale chaos fine search in the 

near global optimal ant（ )(
*

tx
ik

， ni ,,2,1  ）,if it could find the better than the 

global optimal ants, set it to the global optimal ants; 

5) Using formula (5) and formula (2) to calculate the weight of each solution in 

memory and using formula (3) to select Gaussian kernel probability density function, 

determine the data solution; 

6) Repeating step3~step5 until termination condition was met. 

(2)Search 2: The process of fining mutative scale chaos search 

1) to carry out initialization by using Logistic map to produce p initial solutions 

)( tz
ij

within [0, 1] , in which ni ,,2,1  ， pj ,,2,1  . 

2) to compute fine search radius, do a scale transform for the independent variables and 

map to optimization space ])([
*

tiik rtx  。 

The purpose of using mutative scale chaos search was to make the early search range of 

algorithm larger to avoid early falling into local optimum, and let the search range was 

smaller in the later in order to improve search precision. According to the requirement, 

this paper used Gaussian probability density function to determine the search radius, let, 
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In which, t is the number of iterations. According to the principle of the Gaussian 

kernel probability density function 3 , let )max( t , therefore, search radius of the i-

dimensional variable of the i-times iteration is as follows: 
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3) Calculating the function values of each individual and updating the current optimal 

function value; 

 

4. Solving the Multi-dimensional Continuous Function by Improved 

ACOR 

For Contrast, the two test functions of literature [6] were applied in this paper to 

make a comparison analysis between the improved algorithms of ACOR (GAACOR and 

CACOR)and ACOR to determine the effectiveness of the improved algorithms. 

 

4.1. Test Function 

(1) Shaffer’s F6 function 

2 2 2
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In which , [ 1 0 0 ,1 0 0 ]x y   . 

This function has infinite numbers of local maximum points, only one point (0, 0) is 

the global maximum point, the maximum is 1. 

(2) Rosenbrock function 
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N
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iii
xxxf  

N=5, 1010 
i

x , When xi =1 ,it can obtain the global minimum value 0 and it is 

success when f2=0.0001. 

 

4.2. Parameter Selection 

Referencing literature [5], initial parameter selection of GAACOR was as follow: 

genetic parts, population size M = 35, the largest number of iterations was 100, the 

minimum number of iterations was 50, minimum evolution rate R=10, crossover 

probability 90.0
c

p and mutation probability MMp
m

)01.0(]:1:1[10.0  ; 

Extended ant colony parts, ants number m=70 , solution storage capacity 45K , 

parameter 1 ， 0001.0q . 

Initial parameters of CACOR, ants number m=70, capacity of solution storage 45K , 

and parameter 1 , 0001.0q . 

 

4.3. Simulation Result 

10 times optimization was done with each algorithm of GAACOR, CACOR, and ACOR 

on the function f1 and f2, the simulation results were shown in Tables 1 to 2, Figure 2 to 

Figure 3. 
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Table 1. The Optimization Results of Extremum Problems of ),(
1

yxf  (10 

Times Experiment) 

 

Algorithms 

 

),(
1

yxf  

Optimum Average The first optimal 

number of iterations 

Numbers 

of success 

corresponding 

curve 

GAACOR 1 1 180 10 1 

CACOR 1 1 120 10 2 

ACOR 1 0.9925 261 2 3 

Table 2. The Optimization Results of Extremum Problems of f2 (10 Times 
Experiment) 

 

Algorithms 

 

2
f  

Optimum Average The first optimal 

number of iterations 

Numbers 

of success 

corresponding 

curve 

GAACOR 0.0001 0.0011 210 7 1 

CACOR 0.0001 0.0002 176 9 2 

ACOR 0.0001 0.0761 407 1 3 

 

 

Figure 2. ),(
1

yxf Function Optimization Results 

 

Figure 3. 
2

f Function Optimization Results 

It can be seen from Table 1 to 2, Figures. 2 to 3 that the three improved 

algorithms of this paper not only have a faster search speed, but also have a strong 

global search capability on the continuous space optimization problems. The two 
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functions that were used to simulate have more local extremums and complex 

forms. ACOR algorithm was often difficult to jump out local extremum, GAACOR 

and CACOR algorithm almost jumped out of local minimum entirely. 

 

5. Conclusions 

This paper analyzed advantages and weaknesses of ACOR, so far as to analyze several 

common intelligent algorithms. It proposed combination algorithm of ACOR and other 

intelligent algorithms, which overcame the shortcomings of ACOR, and improved 

searching efficiency of it. Meanwhile the study was a comprehensive attempt on the 

integration of ACOR and other intelligent algorithms. In the end, it got two new fusion 

algorithms, through applied to optimize several representative multidimensional 

continuous functions to determine the advantages of them. 
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