
International Journal of Hybrid Information Technology

Vol.8, No.12 (2015), pp. 433-448

http://dx.doi.org/10.14257/ijhit.2015.8.12.34

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

A Double Mutation Cuckoo Search Algorithm for Solving

Systems of Nonlinear Equations

Chiwen Qu
*
 and Wei He

Department of Mathematics & Computer Information Engineering, Baise

University, Baise 533000, China

quchiwen@163.com

Abstract

This paper presents a double mutation cuckoo search algorithm (DMCS) to overcome

the disadvantages of traditional cuckoo search algorithms, such as bad accuracy, low

convergence rate, and easiness to fall into local optimal value. The algorithm mutates

optimal fitness parasitic nests using small probability, which enhances the local search

range of the optimal solution and improves the search accuracy. Meanwhile, the

algorithm uses large probability to mutate parasitic nests in poor situation, which

enlarges the search space and benefits the global convergence. The experimental results

show that the algorithms can effectively improve the convergence speed and optimization

accuracy when applied to basic test functions and systems of nonlinear equations.

Keywords: Cuckoo Search Algorithm, Double Mutation, Systems of Nonlinear

Equations

1. Introduction

Solving systems of nonlinear equations is a vital problem that we often encounter

in engineering field, such as in computational mechanics, geological prospecting,

and engineering optimization. Many researchers have conducted investigations on

this issue [1, 2]. Bader [3] and Luo, et al., [4] solved this problem using a Newton

method and a combination of chaos search and Newton-type, respectively.

However, as the convergence and performance characteristics are sensitive to the

initial guess and the object functions are needed to be continuously differentiable,

the Newton method will lose effect when the initial guess of the solution is

improper or the targeted function is not continuously derivable. Some scholars

solved this issue using intelligent swarm algorithms. Jaberipour, et al., [5] and Mo,

et al., [6] solved a system of nonlinear equations using a particle swarm

optimization method, a combination of the conjugate direction method (CD) and

particle swarm optimization, respectively. Literature [7] putted forward a new

method using leader glowworm swarm optimization algorithm. Literature [8]

proposed an imperialist competitive algorithm for solving systems of nonlinear

equations. However, the basic intelligent swarm algorithms are easy to fall into local

optimal value and have low accuracy. Therefore, it is necessary to develop an

efficient algorithm with high optimization accuracy and the ability to jump out to

local optimum. Generally, a system of nonlinear equations can be expressed as

follows:

0),...,,(

...............................

0),...,,(

0),...,,(

21

212

211

nn

n

n

xxxf

xxxf

xxxf

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

434 Copyright ⓒ 2015 SERSC

Obviously, the solution of the system of nonlinear equations can be transformed into

the problem of solving the minimum of the following function:

n

i

ni xxxfXf

1

21 |),...,,(|)(min (1)

where X is the solution of the systems of nonlinear equations.

As a heuristic intelligent swarm algorithm, the cuckoo search algorithm was presented

by the British scholar Yang and Deb, which is based on the spawning habits of the

cuckoo in the nest and search process in 2009. The algorithm is simple and of few

parameters to be set. Furthermore, optimization accuracy and the rate of convergence are

better than those of PSO and genetic algorithms [11, 12]. Over the past few years, this

algorithm becomes a new research hotspot of computing intelligence. The main

applications of the cuckoo search algorithm are to solving constrained optimization

problems [13], TSP problems [14, 15], task scheduling [16], and other numerical

optimization problems [17, 18]. Because the cuckoo search algorithm is not dependent on

the initial guess and derivability of the objective function, and the solving of the

nonlinear equations can be transferred into an optimal problem, thus, the cuckoo search

algorithm can be used to solve the systems of nonlinear equations.

2. Cuckoo Search Algorithm

The cuckoo search is a metaheuristic algorithm, which imitates the cuckoos’ manner

of looking for suitable parasitic nests for egg hatching. The basic principle is as follows.

(1) The parasitic nests of cuckoo parasitic eggs correspond to a solution in the search

space. (2) Each parasitic nest location corresponds to a fitness value of the algorithm. (3)

The walk process of cuckoos’ manner of looking for parasitic nests maps to the

intelligent optimization process of the algorithm.

The new suitable parasitic nest is generated according to the following law

)(
1

 Levynestnest
t

i

t

i
 (2)

where t

inest is the location of the t generation of the i-th parasitic nest, and is the step

size value depending on the optimization problem. In most cases, can be set to be the

value of 1. The product means entry-wise multiplication. The random step size is

multiplied by the random numbers with Lévy distribution, which according to the

following probability distribution

 tuLevy ~
(3)

where t is step size drawn from a Levy distribution. Because the integral of the Levy

distribution is difficult, the equivalent calculation can be realized by Mantegana

algorithm [12], which is given by

N1,2,...,i ()
1

randnstepsizenestnest
t

i

t

i
 (4)

where randn() is the random function which satisfies Gauss distribution,

)nest-(nest
t

best

t

i stepstepsize ， = 0.01， t

inest is i-th parasitic nest of the t-th generation,

t

bestnest is the optimal parasitic nest of the t-th generation, and step is calculated by

),0(~),,0(~,
|v|

22

/1 vu
NvNu

u
step

 (5)

where 3/2,1 v , and u can be written as

/1

1)/2-(
2)/2][(1

/2)sin()(1

u

 (6)

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 435

After the location update, the egg laid by a cuckoo can be spotted by the host of the

parasitic nest with a probability]1,0[
a

p . For such incidents, the host of the parasitic nest

abandons the nest and seeks for a new site to rebuild the nest.

Based on these rules which described above, the steps involved in the computation of

the standard cuckoo search algorithm are presented in Algorithm 1.

Algorithm 1: The standard cuckoo search algorithm

1. Objective function),(),(,...,21 nnestnestnestnestnestf

2. Generate initial population of n host of the parasitic nests),...,2,1(ninest i

3. Generation iter=1, define probability
a

p , set walk step length

4. Evaluate the fitness function)(inestfF i

5. while (iter < MaxGeneration) or (stop criterion)

6. Get a cuckoo egg
jnest from random host of the parasitic nest by Levy flight

7. Evaluate the fitness function)(jj nestfF

8. Choose a parasitic nest i among n host parasitic nests, and Evaluate the fitness

function)(ii nestfF

9. If(
i

FF
j

) then

10. Replace
i

nest with
j

nest

11. End if

12. A fraction (
a

p) of the worse parasitic nests are evicted

13. Built new parasitic nests randomly to replace lost nests

14. Evaluate the new parasitic nests’ fitness

15. Keep the best solutions

16. Rank the solutions

17. Update the generation number iter= iter+1

18. End while

19. Output the best solutions

3. Double Mutation Cuckoo Search Algorithm

The basic cuckoo algorithm uses Levy flight to update the location of parasitic nests.

The update mode of Levy flight is essentially based on Markov chain methods. The

destination of parasitic nest location update is determined by the current parasitic nest

location and transition probabilities. The search process leads to slow convergence speed

and low accuracy. In this paper, the cuckoo algorithm is modified using double mutation

operators. The mutation operations with large probability are carried out for the parasitic

nests in poor position and the mutation operations with small probability are carried out

for the ones in good position. A school of population is initialized by chaotic search

technology optimization algorithm, making the algorithm high-quality and uniformly-

distributed. To overcome the disadvantage that the cuckoo algorithm is easy to fall into

local boundary optimal value, the parasitic nests are generated randomly when exceeding

the borders.

3.1. Double Mutation Operator

In order to balance the performance of exploration and exploitation in cuckoo search

algorithm, double mutation operators are used for the basic cuckoo search algorithm,

which can jump out of the local optimal value with global search ability. Meanwhile, the

proposed algorithm can get the high accuracy in the global scope of the optimal solution.

3.1.1. Global Search Mutation Operator: Global search mutation operator mutates

parasitic nests with the worst fitness value. The proposed algorithm mutates by

javascript:void(0);

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

436 Copyright ⓒ 2015 SERSC

dimension according to Eq. (7) to enhance the diversity of the population and the global

convergence of the algorithm. In Eq. (7), the algorithm mutates the parasitic nests in poor

position with large probability 1p after each iteration:

）（)1,0(1,
'

, Cnestnest jworstjworst (7)

where jworstnest , is the j-th dimension value of the worst parasitic nest, '
, jworstnest is the j-th

dimension value after variation, is the coefficient of the mutation step (e.g., 0.618 in

this paper), and)1,0(C is a random variable which obeys Cauchy distribution.

3.1.2. Local Search Mutation Operator: Local search mutation operator mutates

parasitic nests with optimal fitness values. The mutation opportunity is carried out by

evaluating the change rate of the fitness values of the optimal individuals, which is given

by

10,

)(nest

|)(nest-)(nest|

t

best

10-t

best

t

best
 t

fit

fitfit

 (8)

where)(nest
t

best
fit is the optimal fitness value of the t-th iteration, and is a threshold

value.

If the change rate is less than a certain threshold value (e.g., 0.005 in this paper), the

algorithm mutates the parasitic nests with small probability 2p to improve the local search

ability.

）（ ()1,
'

, randnnestnest jbestjbest (9)

where jbestnest , is the j-th dimension value of the best parasitic nest, '

, jbestnest is the j-th

dimension value after variation, is the coefficient of the mutation step (e.g., 0.5 in this

paper), and ()randn is a random variable which obeys Gaussian distribution.

3.2. Initial Population Generated by a Chaotic Array

In evolutionary algorithms based on population iterations, the diversity of the initial

population can produce active effect on the search performance of the algorithms [19].

Due to the uncertainty of the area of the optimal values, the optimization problems need

to be solved by multiple searches or to increase the size of the population. The calculated

amount of the algorithms is increased, and the stability is reduced. Chaos phenomenon is

an inherent characteristic in deterministic nonlinear dynamic systems, which is random

and ergodic. It satisfies the diversity of the initial population of the swarm intelligent

algorithms. In this paper, Eq. (10) is chosen to initialize the population.

1),1/()1(

0,/

nn

nn

n
xaax

axax
x (10)

According to Eq. (10), the basic steps of the initializing the cuckoo algorithms is as

follows.

Step 1:Generate randomly a d-dimensional initial sequence value,

))0(),...,0(),0(()0(
21 d

xxxx . Each dimension value of)0(x is a random number

between 0 and 1.

Step 2:We use Eq. (10) to iterate T times. The i-th order is))(),...,(),(()(
21

ixixixix
d

 .

Step 3:According to Eq. (11), we can get an initial individual in solution space.

)(
22

)(ix
luul

inest j

jjjj

j

 (11)

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 437

where)(inest j
is j-th dimensional value of i-th initial,)(ix j

is j-th dimensional value of i-

th chaotic sequence value,
jl and

ju are the corresponding lower and upper boundary

values of the j-dimensional solution space.

3.3. Handling Strategy of Boundary Values

In basic cuckoo algorithms, the positions of the parasitic nests are set at the boundary

of the population when the Levy flight exceeds the border. The algorithms are apt to fall

into local optimal values of the boundary, which results in a search stagnation and multi-

directional boundary gathering. After iterations, it is inevitable for the parasitic nests to

form similar behaviours, and the diversity of the population is dropped. In the proposed

algorithm, Eq. (12) is adopted to handle the boundary values, which is given by

)(())(jjjj lurandlinest

 (12)

where jl and ju are the corresponding lower bound and upper bound values of the j-

dimensional solution space, respectively. The handling strategy of boundary values

ensures the search scope of the algorithm, and overcomes the disadvantage that the basic

cuckoo algorithms are easy to fall into local optimal values on the boundary.

3.4. The Procedure of the Proposed Algorithm

The procedure of the proposed algorithm for solving the systems of nonlinear equation

is summarized in Algorithm 2.

Algorithm 2: dynamic double mutation cuckoo algorithm

1. Objective function),(),(
,...,21 n

nestnestnestnestnestf

2. Generate initial population of n parasitic nests),...,2,1(ninest
i

 according to 3.2.

3. Generation iter=1, initialization parameters of ap , , 1mp , 2mp , jl , ju .

4. for all inest do

5. Calculate the fitness function)(inestfF i according to Eq.(1).

6. end for

7. while (iter < MaxGeneration) or (stop criterion)

8. Get a cuckoo egg
jnest from random host of the parasitic nest by Levy flight.

9. Evaluate the fitness function)(jj nestfF ,select the parasitic nest of the worst

fitness values worstnest and bestnest , respectively.

10. Update the worstnest according to 3.1.1, and evaluate the fitness

function ）（ worstnestf .

Update the bestnest according to 3.1.2,and evaluate the fitness

function ）（ bestnestf .

11. Choose a parasitic nest i among n host parasitic nests,)(ii nestfF

12. If(
i

FF
j

) then

 Replace
i

nest with
j

nest

13. End if

14. A fraction (
a

p) of the worse parasitic nests are evicted

15. Built new parasitic nests randomly to replace lost nests

16. Evaluate the new parasitic nests’ fitness

17. Keep the best solutions

18. If junest ji, or jlnest ji,

19. Generate new parasitic nests which are out of bounds according to

Eq.(12),

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

438 Copyright ⓒ 2015 SERSC

and evaluate the fitness values accordingly.

20. End if

21. Rank the solutions

22. Update the generation number iter= iter+1

23.End while

24.Output the best solutions

4. Experiment and Results

4.1. Algorithm Simulation and Analysis

To test the performances of the proposed algorithm, four standard functions (Sphere,

Rastrigrin, Griewangk, Six-Hump Camelback) are selected. To further study the

performances of ICS algorithm, comparisons are carried out with several typical methods

from the literatures, including the standard cuckoo search (CS) algorithm, opposition-

based differential evolution (OBDE) [20] method, comprehensive learning particle

swarm optimizer (CLPSO) [21], artificial bee colony(ABC) [23], and particle swarm

optimization with an aging leader and challengers (ALC-PSO) [22] algorithm. The search

results are from the four kinds of the algorithms in the corresponding literatures. Their

statistical results are shown in Table 1 and Table 2, respectively. In this paper, the scale

of the population 100size , 25.0ap , 2.01 mp , 03.02 mp , 2 , the iteration number of

the Six-Hump Camelback function t=500. The iteration number t of the other 3 functions

is 3000. For each test function, 20 independent runs are performed in Matlab R2009b.

Test 1: Six-Hump Camelback function

F1
4

2

2

221

6

1

4

1

2

1 44
3

1
1.24)(min xxxxxxxxf

The Six-Hump Camelback function has six local optimal values and two variables.

The global solutions are located at either)71266.0,08984.0(x or)71266.0,08984.0(x , and

each solution has a corresponding function value -1.0316285. The bound variables are set

between -100 and 100.

Test 2: Sphere function

F2

n

i

ixxf

1

2
)(min

The Sphere function has a global optimal value. The minimum solution is located at
)0,...,0,0(x , and the corresponding function value is 0. Set n=30, and the bound variables

are set to be -10 and 10.

Test 3: Rastrigrin fuction

F3

D

i

ii xxxf

1

2
)10)2cos(10()(min

The solution is 0)0,...,0,0(f . Set D=30, and the bound variables are set to be -5.2 and

5.2.

Test 4: Griewangk function

 F4 1)cos(
4000

1
)(min

11

2

D

i

i

D

i

i

i

x
xxf

The Griewangk function is a multimodal function, and it is difficult to find the global

optimal value. When
),...,2,1(0 Dix i
, the function can reach the global minimum value 0.

Set D=30, and the bound variables are set to be -100 and 100.

On these functions, we focus on comparing the performance of the algorithms in terms

of the solution accuracy and convergence speed. For 1F , it is a 2-dimensional function. As

can be seen from Table 1, the DMCS and CS algorithms for 1F have the same precisions,

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 439

and they both attain theoretical values. The mean number of the iterations of the DMCS

algorithm is 345.5, which is less than that of the CS algorithm with 451.25 iterations.

With regard to 2F - 3F , the optimal values, mean values, and the deviations of the DMCS

algorithm are much better than those of the other methods. For 4F , the mean values and

the deviations of the DMCS algorithm are superior to those of the other algorithms. The

reliability of search is reflected by the “suc%” in Table 2, which stands for the percentage

of the successful runs that acceptable solutions are found. It is found from Table 2 that,

the “suc%”, the minimum number of iterations, and the mean number of the iterations of

the DMCS algorithm are better than those of the CS algorithm. The convergence history

of the DMCS algorithm and CS algorithm are shown in Figure 1-Figure 4.

Table 1. Experimental Comparison between OBDE, CLPSO, ALC-PSO, ABC,
CS, ICS and DMCS

function Algorithm Best Mean Dev

F1
CS -1.03162845348988 -1.03162845348988 0

DMCS -1.03162845348988 -1.03162845348988 0

F2

OBDE[20] 3.05991167e-86 1.42671462e-6 7.810816693e-6

CLPSO[21] 2.567e−29 1.390e−27 2.052e−27

ALC-PSO [22] 1.135e−172 1.677e−161 8.206e−161

ABC[23] N/A 4.69e-16 1.07e-16

CS 6.71006692182639e-15 1.26130238689835e-14 3.697855e-15

ICS [24] 2.9807e-22 9.5438e-21 1.1279e-20

DMCS 0 0 0

F3

OBDE[20] 7.91516238 1.4083459e+1 4.46978243

CLPSO[21] 0 2.440e−14 5.979e−14

ALC-PSO [22] 7.105e−15 2.528e−14 1.376e−14

ABC[23] N/A 4.80e-5 0.000243

CS 7.6481865285416e-10 5.59051123172338e-08 1.25653487e-9

ICS [24] 1.1939e+01 2.2296e+01 4.1242e+00

DMCS 2.6683564222 e-25 8.5590435844 e-22 5.2290854372 e-28

F4

OBDE[20] 5.55111512e-16 5.16170306e-3 1.637476538e-2

CLPSO[21] 0 2.007e−14 8.669e−14

ALC-PSO [22] 0 1.221e−2 1.577e−2

ABC[23] N/A 5.82e-6 3.13e-5

CS 5.99674524890748 6.27549115481021e+1 20.45980263522

ICS [24] 1.1102e-16 3.1173e-09 1.1340e-08

DMCS 5.8933557546 e-32 7.893900369 e-28 3.768812901 e-31

Table 2. Search Speed and Reliability Comparisons between CS and DMCS

Function
Number of

Generation

CS DMCS

suc%
best

iterations

mean

iterations

Running

time(S)
suc%

best

iterations

mean

iterations

Running

time(S)

F1 500 100 402 451.25 3.160804 100 335 345.5 4.866809

F2 3000 100 2576 2683.75 18.022565 100 489 496.25 20.95774

F3 3000 80 2897 2962.5 16.835218 100 478 490.75 18.82253

F4 3000 60 2606 2776.25 17.751657 100 443 457.05 20.01353

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

440 Copyright ⓒ 2015 SERSC

Figure 1. F1 Curves of the Objective Value

Figure 2. F2 Curves of the Objective Value

Figure 3. F3 Curves of the Objective Value

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 441

Figure 4. F4 Curves of the Objective Value

4.2. The Solution of the Nonlinear Equations

Some standard systems are introduced to demonstrate the efficiency of the proposed

algorithm for solving systems of nonlinear equations. The scale of the

population 100size ,
25.0ap

,
2.01 mp

,
03.02 mp

, 2 . The iteration number t of the

other 3 functions is 1000.

Case 1:

25.1,125.0

02/))(
4

1
1()(

05.0/25.0)sin(5.0)(

21

12

2

2

12211

1

xx

xexeeexf

xxxxxf

x

This problem has already been solved by many researchers. Wang, et al., [25]

presented a new filled function method. Abdollahi, et al., [8] proposed an imperialist

competitive algorithm. The best solutions obtained by the mentioned approaches are

shown in Table 3. From Table 3, the optimal value of DMCS algorithm for Case 1 is

superior to that of other two methods. In Figure 5, it is shown that DMCS algorithm can

quickly converge to the optimal value by the convergence curves.

Table 3. Comparing Results of DMCS and CS for Case 1 with those by
Wang, et al., [25] and Abdollahi, et al., [8]

Algorithm Solutions Functions values

Wang et al.[25]
1x 0.50043285)(1 xf -2.3851e-004

2x 3.14186317)(2 xf 4.7741e-005

Abdollahi et al.[8]
1x 0.299448692495720)(1 xf 2.3267e-012

2x 2.836927770471037)(2 xf 4.6696e-013

CS
1x 0.500000000000745)(1 xf -3.86524146023248E-13

2x 3.14159265358997)(2 xf -1.70086167372574E-13

DMCS
1x 0.500000000000006)(1 xf -1.16573417585641E-15

2x 3.14159265358977)(2 xf -2.26485497023531E-14

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

442 Copyright ⓒ 2015 SERSC

Case 2:

25.04253

02)(

060)(

0855)(

321

23

3

13

32

3

12

321211

1

23

12

xxx

xxxxf

xxxxf

xxxxxxf

x

xx

xx

，，

This problem involves three variables and three nonlinear equations. Mo, et al., [6]

and Zhang, et al., [26] solved the system. The best solutions obtained by the DMCS and

other algorithms are listed in Table 4.

Table 4. Comparsion Results of Case 2 by DMCS, CS, Zhang, et al., [26] and
Mo, et al., [6]

Algorithm Solutions Functions values

Mo et al.[6]

1x 4)(1 xf 0

2x 3)(2 xf 0

3x 1)(3 xf 0

Zhang et al.[26]

1x 4.00118)(1 xf -0.0640

2x 3.00013)(2 xf 0.0322

3x 1.00385)(3 xf 0.0380

CS

1x 4.00000000000101)(1 xf -1.49640300151077E-11

2x 3.00000000000005)(2 xf 3.28341798194742E-11

3x 1.00000000000247)(3 xf 2.45665709996956E-11

DMCS

1x 4)(1 xf 0

2x 3)(2 xf 0

3x 1)(3 xf 0

It is shown that the best solutions obtained by DMCS can achieve exact solution, and

the solution accuracy is far better than that by CS and Zhang, et al., [26]. So DMCS is

efficient for solving the systems of nonlinear equations.

Case 3:

61,1010

0)(

0)(

0)(

0)(

01)(

01)(

4

2

263

2

156

2

2

46

2

3155

3

26

3

154

3

46

3

353

2

4

2

22

2

3

2

11

ix

xxxxxxxf

xxxxxxxf

xxxxxf

xxxxxf

xxxf

xxxf

i

The system of nonlinear equations of Case 3 involves six variables and six nonlinear

equations. Table 5 listed the results by Grosan, et al., [9] and the best results of DMCS

and CS. From Table 5, it is observed that DMCS algorithm can obtain the approximate

roots of the system of nonlinear equations, and the calculation accuracy achieves 10e-05.

Compared with the results of Grosan, et al., [9], the optimal solution by DMCS algorithm

has small errors.

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 443

Table 5. Comparison Results of Case 3

The best results of [9] The best results of CS The best results of DMCS

Variables

values

Functions

values
Variables values

Functions

values
Variables values

Functions

values

-0.8078668904 -0.0050 0.997077606024159 6.253476E-05 1 6.060615E-06

-0.9560562726 -0.0367 0.997035297339922 2.544754E-05 1 5.971777E-06

0.5850998782 0.0125 0.076803530685376 1.397927E-06 0.002461831574518 -3.385235E-11

-0.2219439027 -0.0276 0.077110721652628 -1.314747E-05 0.002443721874666 2.611694E-05

0.0620152964 -0.0169 -0.254520085156639 1.204824E-05 -0.104737114527382 -9.148682E-09

-0.0057942792 0.0249 0.25453922272324 7.754110E-05 0.104763231468994 -1.832935E-06

Case 4:

0)(

05.1
2

)(

0395.0605.0)(

05.1
2

)(

0405.1405.0)(

075.0
4

)(

5166

62
55

)1(

44

64
33

1

22

64

4

2
11

2

3

21

xxxxf

xx
xxf

exxf

xx
xxf

exxf

xxx
xxf

x

xx

This system has six variables and six nonlinear equations. Mo, et al., [6] presented a

Conjugate direction particle swarm optimization for solved the system, and Jaberipour, et

al., [5] solved it using a particle swarm optimization. Table 6 lists the best solution by

DMCS algorithm and other methods. From Table 6, it is observed that the DMCS results

are very close to the theoretical solution which obtained by Mo, et al., [6] and the

solution accuracy is better than the solution of the CS algorithm.

Table 6. Comparison Results of Case 4

Algorithm x Variables values)(xf Functions values

Mo et al.[6]

1x -1)(1 xf 0

2x 1)(2 xf 0

3x -1)(3 xf 0

4x 1)(4 xf 0

5x -1)(5 xf 0

6x 1)(6 xf 0

CS

1x -0.999639167)(1 xf 1.588257E-04

2x 0.999501109)(2 xf -1.506263E-04

3x -0.999747837)(3 xf 1.573150E-04

4x 1.000276522)(4 xf -2.863310E-05

5x -1.00028690)(5 xf 5.922799E-06

6x 0.999913197)(6 xf -1.276931E-05

DMCS

1x -0.999999985)(1 xf 2.958164E-09

2x 0.999999991)(2 xf 8.783643E-10

3x -1.000000018)(3 xf -2.005251E-09

4x 0.999999977)(4 xf -1.096312E-09

5x -1.000000006)(5 xf 2.527675E-09

6x 0.999999991)(6 xf -7.837286E-11

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

444 Copyright ⓒ 2015 SERSC

Case 5:

021)53()(

9,...,3,2,021)53()(

021)53()(

9101010

121

2111

xxxxf

ixxxxxf

xxxxf

iiii

Table 7. Comparison Results of DMCS with CS and Mo, et al., [6]

Mo et al.[6] CS DMCS

x)(xf
x)(xf

x)(xf
0.915551 -3.1680e-006 -0.382085114 -1.813716E-07 -0.382085089 1.554312E-15

-0.222256 3.5232e-007 -0.438100165 9.731738E-08 -0.43810017 -2.664535E-15

-0.414654 -1.6986-006 -0.445937127 -1.334805E-07 -0.445937108 1.221245E-15

-0.439254 1.7710e-006 -0.447005346 -4.114950E-08 -0.447005339 2.997602E-15

0.420892 -1.6836 -0.447073882 9.840950E-09 -0.447073887 -1.998401E-15

-0.354588 2.5254 -0.446795796 6.933357E-08 -0.44679581 -1.887379E-15

-0.135767 -0.8418 -0.445722995 1.289920E-07 -0.445723013 3.774758E-15

0.427562 -3.9144e-007 -0.441859131 3.325555E-09 -0.441859125 -2.220446E-16

0.752203 6.8078e-007 -0.428025929 -2.294208E-07 -0.428025896 -1.110223E-15

-0.440697 2.3396e-007 -0.379124703 4.536877E-08 -0.3791247 -1.110223E-15

In Table 7, it is observed that we can obtain the approximate roots of Case 5, and the

calculation accuracy achieves 10e-15. Compared with the solutions of the Ref. [6], the

DMCS results are the exact solution and outperform those by Mo, et al., [6]. From Figure

5 to Figure 9, in terms of convergence speed, DMCS consumes smaller numbers of

iteration than those of CS to reach acceptable results. Overall, DMCS is an efficient

method for solving the systems of nonlinear equations in the comparison.

Figure 5. Case 1 Curves of the Objective Value

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 445

Figure 6. Case 2 Curves of the Objective Value

Figure 7. Case 3 Curves of the Objective Value

Figure 8. Case 4 Curves of the objective value

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

446 Copyright ⓒ 2015 SERSC

Figure 9. Case 5 Curves of the Objective Value

Conclusion

This paper proposes a double mutation cuckoo search algorithm for systems of

nonlinear equations. The systems of nonlinear equations can be converted to

minimization problems. To avoid the sensitivity to initial values, the algorithm adopts

double mutation method to enhance the abilities of local search and global optimization.

Meanwhile, the boundary value handling strategy adds diversity to the population. The

proposed algorithm does not rely on the selection of the initial values, and the equations

do not need to be continuous and differentiable. Some standard problems were solved by

DMCS, and the proposed method is effective and has high accuracy for solving systems

of nonlinear equations in comparison with other methods.

Acknowledgments

This work is financially supported by the Natural Science Foundation of Guangxi

Province (Grant No. 2014GXNSFBA118283) and the Higher School Scientific Research

Project of Guangxi Province (Grant No. 2013YB247).

References

[1] Pielorz and Amalia, “Nonlinear equations with a retarded argument in discrete-continuous systems”,

Mathematical Problems in Engineering, vol. 2007, article no. 28430, (2007).

[2] L. Xiao and R. Lu, “Finite-time solution to nonlinear equation using recurrent neural dynamics with a

specially-constructed activation function”, Neurocomputing, vol. 151, no. P1, (2015), pp. 246-251.

[3] Bader and W. Brett, “Tensor-Krylov methods for solving large-scale systems of nonlinear equations”,

SIAM journal on numerical analysis, vol. 43, no. 3, (2005), pp. 1321-1347.

[4] Y.-Z. Luo, G.-J. Tang and L.-N. Zhou, “Hybrid approach for solving systems of nonlinear equations

using chaos optimization and quasi-Newton method”, Applied Soft Computing, vol. 8, no. 2, (2008), pp.

1068-1073.

[5] M. Jaberipour, E. Khorram and B. Karimi, “Particle swarm algorithm for solving systems of nonlinear

equations”, Computers & Mathematics with Applications, vol. 62, no. 2, (2011), pp. 566-576.

[6] Y. Mo, H. Liu and Q. Wang, “Conjugate direction particle swarm optimization solving systems of

nonlinear equations”, Computers & Mathematics with Applications, vol. 57, no. 11, (2009), pp. 1877-

1882.

[7] Y. Zhou, J. Liu and G. Zhao, “Leader glowworm swarm optimization algorithm for solving nonlinear

equations systems”, Przeglad Elektrotchniczny, vol. 88, no. 1b, (2012), pp. 101-106.

[8] M. Abdollahi, A. Isazadeh and D. Abdollahi, “Imperialist competitive algorithm for solving systems of

nonlinear equations”, Computers & Mathematics with Applications, vol. 65, no. 12, (2013), pp. 1894-

1908.

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

Copyright ⓒ 2015 SERSC 447

[9] C. Grosan and A. Abraham, “A new approach for solving nonlinear equations systems”, IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 38, no. 3, (2008), pp.

698-714.

[10] X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights”, IEEE World Congress on Nature &

Biologically Inspired Computing (NaBIC), (2009), pp. 210-214.

[11] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo search”, International Journal of

Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, (2010), pp. 330-343.

[12] X. S. Yang, “Nature-inspired metaheuristic algorithms”, Luniver press, (2010).

[13] A. H. Gandomi, X.-S. Yang and A. H. Alavi, “Cuckoo search algorithm: a metaheuristic approach to

solve structural optimization problemsc”, Engineering with computers, vol. 29, no. 1, (2013), pp. 17-35.

[14] X. Ouyang, Y. Zhou, Q. Luo and H. Chen, “A novel discrete cuckoo search algorithm for spherical

traveling salesman problem”, Appl. Math, vol. 7, no. 2, (2013), pp. 777-784.

[15] X. Ding, Z. Xu, N. J. Cheung and X. Liu, “Parameter estimation of Takagi-Sugeno fuzzy system using

heterogeneous cuckoo search algorithm”, Neurocomputing , vol. 151, no. P3, (2015), pp. 1332-1342.

[16] S. Burnwal and S. Deb, “Scheduling optimization of flexible manufacturing system using cuckoo

search-based approach”, The International Journal of Advanced Manufacturing Technology, vol. 64,

(2013), pp. 951-959.

[17] X.-S. Yang and S. Deb, “Multiobjective cuckoo search for design optimization”, Computers &

Operations Research, vol. 40, no. 6, (2013), pp. 1616-1624.

[18] M. Tuba, M. Subotic and N. Stanarevic, “Modified cuckoo search algorithm for unconstrained

optimization problems”, Proceedings of the 5th European Conference on European Computing

Conference, World Scientific and Engineering Academy and Society (WSEAS), (2011), pp. 263-268.

[19] R. L. Haupt and S. E. Haupt, “Practical genetic algorithms”, John Wiley & Sons, (2004).

[20] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, “Opposition-based differential evolution”, IEEE

Transactions on Evolutionary Computation, vol. 12, no. 1, (2008), pp. 64-79.

[21] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive learning particle swarm

optimizer for global optimization of multimodal functions”, IEEE Transactions on Evolutionary

Computation, vol. 10, no. 3, (2006), pp. 281-295.

[22] W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H.-S.-H. Chung, Y. Li and Y.-H. Shi, “Particle

swarm optimization with an aging leader and challengers”, IEEE Transactions on Evolutionary

Computation, vol. 17, no. 2, (2013), pp. 241-258.

[23] D. Karaboga and B. Akay, “Artificial bee colony (ABC), harmony search and bees algorithms on

numerical optimization”, Proceeding of IPROMS-2009 on Innovative Production Machines and

Systems, (2009).

[24] E. Valian, S. Mohanna and S. Tavakoli, “Improved cuckoo search algorithm for global optimization”,

International Journal of Communications and Information Technology, vol. 1, no. 1, (2011), pp. 31-44.

[25] C. Wang, R. Luo, K. Wu and B. Han, “A new filled function method for an unconstrained nonlinear

equation ”, Journal of Computational and Applied Mathematics, vol. 235, no. 6, (2011), pp. 1689-1699.

[26] X. Zhang and B. Zhou, “Artificial bee colony algorithm for solving systems of nonlinear equations”,

International Journal of Advancements in Computing Technology, vol. 5, no. 9, (2013), article no.

757391.

International Journal of Hybrid Information Technology

Vol.8, No.12 (2015)

448 Copyright ⓒ 2015 SERSC

