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Abstract 

This paper presents a double mutation cuckoo search algorithm (DMCS) to overcome 

the disadvantages of traditional cuckoo search algorithms, such as bad accuracy, low 

convergence rate, and easiness to fall into local optimal value. The algorithm mutates 

optimal fitness parasitic nests using small probability, which enhances the local search 

range of the optimal solution and improves the search accuracy. Meanwhile, the 

algorithm uses large probability to mutate parasitic nests in poor situation, which 

enlarges the search space and benefits the global convergence. The experimental results 

show that the algorithms can effectively improve the convergence speed and optimization 

accuracy when applied to basic test functions and systems of nonlinear equations. 

 

Keywords: Cuckoo Search Algorithm, Double Mutation, Systems of Nonlinear 
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1. Introduction 

Solving systems of nonlinear equations is a vital problem that we often encounter 

in engineering field, such as in computational mechanics, geological prospecting, 

and engineering optimization. Many researchers have conducted investigations on 

this issue [1, 2]. Bader [3] and Luo, et al., [4] solved this problem using a Newton 

method and a combination of chaos search and Newton-type, respectively. 

However, as the convergence and performance characteristics are sensitive to the 

initial guess and the object functions are needed to be continuously differentiable, 

the Newton method will lose effect when the initial guess of the solution is 

improper or the targeted function is not continuously derivable. Some scholars 

solved this issue using intelligent swarm algorithms. Jaberipour, et al., [5] and Mo, 

et al., [6] solved a system of nonlinear equations using a particle swarm 

optimization method, a combination of the conjugate direction method (CD) and 

particle swarm optimization, respectively. Literature [7] putted forward a new 

method using leader glowworm swarm optimization algorithm. Literature [8] 

proposed an imperialist competitive algorithm for solving systems of nonlinear 

equations. However, the basic intelligent swarm algorithms are easy to fall into local 

optimal value and have low accuracy. Therefore, it is necessary to develop an 

efficient algorithm with high optimization accuracy and the ability to jump out to 

local optimum. Generally, a system of nonlinear equations can be expressed as 

follows: 
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Obviously, the solution of the system of nonlinear equations can be transformed into 

the problem of solving the minimum of the following function: 
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where X is the solution of the systems of nonlinear equations. 

As a heuristic intelligent swarm algorithm, the cuckoo search algorithm was presented 

by the British scholar Yang and Deb, which is based on the spawning habits of the 

cuckoo in the nest and search process in 2009. The algorithm is simple and of few 

parameters to be set. Furthermore, optimization accuracy and the rate of convergence are 

better than those of PSO and genetic algorithms [11, 12]. Over the past few years, this 

algorithm becomes a new research hotspot of computing intelligence. The main 

applications of the cuckoo search algorithm are to solving constrained optimization 

problems [13], TSP problems [14, 15], task scheduling [16], and other numerical 

optimization problems [17, 18]. Because the cuckoo search algorithm is not dependent on 

the initial guess and derivability of the objective function, and the solving of the 

nonlinear equations can be transferred into an optimal problem, thus, the cuckoo search 

algorithm can be used to solve the systems of nonlinear equations. 

 

2. Cuckoo Search Algorithm 

The cuckoo search is a metaheuristic algorithm, which imitates the cuckoos’ manner 

of looking for suitable parasitic nests for egg hatching. The basic principle is as follows. 

(1) The parasitic nests of cuckoo parasitic eggs correspond to a solution in the search 

space. (2) Each parasitic nest location corresponds to a fitness value of the algorithm. (3) 

The walk process of cuckoos’ manner of looking for parasitic nests maps to the 

intelligent optimization process of the algorithm. 

The new suitable parasitic nest is generated according to the following law 

                                                  )(
1

 Levynestnest
t

i

t

i 
                                          (2) 

where t

inest is the location of the t generation of the i-th parasitic nest, and  is the step 

size value depending on the optimization problem. In most cases,  can be set to be the 

value of 1. The product   means entry-wise multiplication. The random step size is 

multiplied by the random numbers with Lévy distribution, which according to the 

following probability distribution 

                                          


 tuLevy ~                                                            
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where t is step size drawn from a Levy distribution. Because the integral of the Levy 

distribution is difficult, the equivalent calculation can be realized by Mantegana 

algorithm [12], which is given by 
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where randn() is the random function which satisfies Gauss distribution, 
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i stepstepsize  ， = 0.01， t

inest is i-th parasitic nest of the t-th generation, 

t

bestnest is the optimal parasitic nest of the t-th generation, and step is calculated by 
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where 3/2,1   v , and u can be written as 
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After the location update, the egg laid by a cuckoo can be spotted by the host of the 

parasitic nest with a probability ]1,0[
a

p . For such incidents, the host of the parasitic nest 

abandons the nest and seeks for a new site to rebuild the nest. 

Based on these rules which described above, the steps involved in the computation of 

the standard cuckoo search algorithm are presented in Algorithm 1. 

Algorithm 1: The standard cuckoo search algorithm 

1. Objective function ),(),( ,...,21 nnestnestnestnestnestf   

2. Generate initial population of n host of the parasitic nests ),...,2,1( ninest i   

3. Generation iter=1, define probability 
a

p , set walk step length    

4. Evaluate the fitness function )( inestfF i   

5. while (iter < MaxGeneration) or (stop criterion) 

6. Get a cuckoo egg 
jnest from random host of the parasitic nest by Levy flight 

7. Evaluate the fitness function )( jj nestfF   

8. Choose a parasitic nest i among n host parasitic nests, and Evaluate the fitness 

function )( ii nestfF   

9. If(
i

FF 
j

) then 

10. Replace 
i

nest with 
j

nest  

11. End if 

12. A fraction (
a

p ) of the worse parasitic nests are evicted  

13. Built new parasitic nests randomly to replace lost nests  

14. Evaluate the new parasitic nests’ fitness 

15. Keep the best solutions 

16. Rank the solutions 

17. Update the generation number iter= iter+1 

18. End while 

19. Output the best solutions 

 

3. Double Mutation Cuckoo Search Algorithm 

The basic cuckoo algorithm uses Levy flight to update the location of parasitic nests. 

The update mode of Levy flight is essentially based on Markov chain methods. The 

destination of parasitic nest location update is determined by the current parasitic nest 

location and transition probabilities. The search process leads to slow convergence speed 

and low accuracy. In this paper, the cuckoo algorithm is modified using double mutation 

operators. The mutation operations with large probability are carried out for the parasitic 

nests in poor position and the mutation operations with small probability are carried out 

for the ones in good position. A school of population is initialized by chaotic search 

technology optimization algorithm, making the algorithm high-quality and uniformly-

distributed. To overcome the disadvantage that the cuckoo algorithm is easy to fall into 

local boundary optimal value, the parasitic nests are generated randomly when exceeding 

the borders. 

 

3.1. Double Mutation Operator 

In order to balance the performance of exploration and exploitation in cuckoo search 

algorithm, double mutation operators are used for the basic cuckoo search algorithm, 

which can jump out of the local optimal value with global search ability. Meanwhile, the 

proposed algorithm can get the high accuracy in the global scope of the optimal solution. 

 

3.1.1. Global Search Mutation Operator: Global search mutation operator mutates 

parasitic nests with the worst fitness value. The proposed algorithm mutates by 

javascript:void(0);
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dimension according to Eq. (7) to enhance the diversity of the population and the global 

convergence of the algorithm. In Eq. (7), the algorithm mutates the parasitic nests in poor 

position with large probability 1p after each iteration: 

）（ )1,0(1,
'

, Cnestnest jworstjworst                                         (7) 

where jworstnest , is the j-th dimension value of the worst parasitic nest, '
, jworstnest is the j-th 

dimension value after variation,  is the coefficient of the mutation step (e.g., 0.618 in 

this paper), and )1,0(C is a random variable which obeys Cauchy distribution. 

 

3.1.2. Local Search Mutation Operator: Local search mutation operator mutates 

parasitic nests with optimal fitness values. The mutation opportunity is carried out by 

evaluating the change rate of the fitness values of the optimal individuals, which is given 

by 

10,
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                                    (8)  

where )(nest
t

best
fit is the optimal fitness value of the t-th iteration, and  is a threshold 

value. 

If the change rate is less than a certain threshold value (e.g., 0.005 in this paper), the 

algorithm mutates the parasitic nests with small probability 2p to improve the local search 

ability. 

）（ ()1,
'

, randnnestnest jbestjbest                                          (9)  

where jbestnest , is the j-th dimension value of the best parasitic nest, '

, jbestnest is the j-th 

dimension value after variation,  is the coefficient of the mutation step (e.g., 0.5 in this 

paper), and ()randn is a random variable which obeys Gaussian distribution. 

 

3.2. Initial Population Generated by a Chaotic Array 

In evolutionary algorithms based on population iterations, the diversity of the initial 

population can produce active effect on the search performance of the algorithms [19]. 

Due to the uncertainty of the area of the optimal values, the optimization problems need 

to be solved by multiple searches or to increase the size of the population. The calculated 

amount of the algorithms is increased, and the stability is reduced. Chaos phenomenon is 

an inherent characteristic in deterministic nonlinear dynamic systems, which is random 

and ergodic. It satisfies the diversity of the initial population of the swarm intelligent 

algorithms. In this paper, Eq. (10) is chosen to initialize the population. 
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According to Eq. (10), the basic steps of the initializing the cuckoo algorithms is as 

follows. 

Step 1:Generate randomly a d-dimensional initial sequence value, 

           ))0(),...,0(),0(()0(
21 d

xxxx  . Each dimension value of )0(x is a random number 

between 0 and 1.  

Step 2:We use Eq. (10) to iterate T times. The i-th order is ))(),...,(),(()(
21

ixixixix
d

 . 

Step 3:According to Eq. (11), we can get an initial individual in solution space.   
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where )( inest j
is j-th dimensional value of i-th initial, )( ix j

is j-th dimensional value of i-

th chaotic sequence value,
jl and 

ju  are the corresponding lower and upper boundary 

values of the j-dimensional solution space. 

 

3.3. Handling Strategy of Boundary Values 

In basic cuckoo algorithms, the positions of the parasitic nests are set at the boundary 

of the population when the Levy flight exceeds the border. The algorithms are apt to fall 

into local optimal values of the boundary, which results in a search stagnation and multi-

directional boundary gathering. After iterations, it is inevitable for the parasitic nests to 

form similar behaviours, and the diversity of the population is dropped. In the proposed 

algorithm, Eq. (12) is adopted to handle the boundary values, which is given by 

)(())( jjjj lurandlinest 

         
                               (12)  

where jl and ju  are the corresponding lower bound and upper bound values of the j-

dimensional solution space, respectively. The handling strategy of boundary values 

ensures the search scope of the algorithm, and overcomes the disadvantage that the basic 

cuckoo algorithms are easy to fall into local optimal values on the boundary. 

 

3.4. The Procedure of the Proposed Algorithm 

The procedure of the proposed algorithm for solving the systems of nonlinear equation 

is summarized in Algorithm 2. 

Algorithm 2: dynamic double mutation cuckoo algorithm 

1. Objective function ),(),(
,...,21 n

nestnestnestnestnestf   

2. Generate initial population of n parasitic nests ),...,2,1( ninest
i

  according to 3.2. 

3. Generation iter=1, initialization parameters of ap , , 1mp , 2mp , jl , ju . 

4. for all inest do 

5. Calculate the fitness function )( inestfF i   according to Eq.(1). 

6. end for 

7. while (iter < MaxGeneration) or (stop criterion) 

8.       Get a cuckoo egg 
jnest from random host of the parasitic nest by Levy flight. 

9.        Evaluate the fitness function )( jj nestfF  ,select the parasitic nest of the worst 

fitness values worstnest and bestnest , respectively. 

10.      Update the worstnest  according to 3.1.1, and evaluate the fitness 

function ）（ worstnestf . 

Update the bestnest  according to 3.1.2,and evaluate the fitness 

function ）（ bestnestf . 

11.      Choose a parasitic nest i among n host parasitic nests, )( ii nestfF   

12.      If(
i

FF 
j

) then 

                       Replace 
i

nest with 
j

nest  

13.      End if 

14.      A fraction (
a

p ) of the worse parasitic nests are evicted  

15.      Built new parasitic nests randomly to replace lost nests  

16.      Evaluate the new parasitic nests’ fitness 

17.      Keep the best solutions 

18.      If junest ji,  or jlnest ji,  

19.              Generate new parasitic nests which are out of bounds according to 

Eq.(12), 
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and evaluate the fitness values accordingly. 

20.      End if 

21.      Rank the solutions 

22.      Update the generation number iter= iter+1 

23.End while 

24.Output the best solutions 

 

4. Experiment and Results 
 

4.1. Algorithm Simulation and Analysis 

To test the performances of the proposed algorithm, four standard functions (Sphere, 

Rastrigrin, Griewangk, Six-Hump Camelback) are selected. To further study the 

performances of ICS algorithm, comparisons are carried out with several typical methods 

from the literatures, including the standard cuckoo search (CS) algorithm, opposition-

based differential evolution (OBDE) [20] method, comprehensive learning particle 

swarm optimizer (CLPSO) [21], artificial bee colony(ABC) [23], and particle swarm 

optimization with an aging leader and challengers (ALC-PSO) [22] algorithm. The search 

results are from the four kinds of the algorithms in the corresponding literatures. Their 

statistical results are shown in Table 1 and Table 2, respectively. In this paper, the scale 

of the population 100size  , 25.0ap , 2.01 mp , 03.02 mp , 2 , the iteration number of 

the Six-Hump Camelback function t=500. The iteration number t of the other 3 functions 

is 3000. For each test function, 20 independent runs are performed in Matlab R2009b. 

Test 1: Six-Hump Camelback function 

F1 
4

2

2

221

6

1

4

1

2

1 44
3

1
1.24)(min xxxxxxxxf   

The Six-Hump Camelback function has six local optimal values and two variables. 

The global solutions are located at either )71266.0,08984.0(x or )71266.0,08984.0( x , and 

each solution has a corresponding function value -1.0316285. The bound variables are set 

between -100 and 100. 

Test 2: Sphere function 

F2  




n

i

ixxf

1

2
)(min  

The Sphere function has a global optimal value. The minimum solution is located at 
)0,...,0,0(x , and the corresponding function value is 0. Set n=30, and the bound variables 

are set to be -10 and 10. 

Test 3: Rastrigrin fuction 

F3 




D

i

ii xxxf

1

2
)10)2cos(10()(min   

The solution is 0)0,...,0,0( f . Set D=30, and the bound variables are set to be -5.2 and 

5.2. 

Test 4: Griewangk function 

       F4 1)cos(
4000

1
)(min

11

2
 



D

i

i

D

i

i

i

x
xxf  

The Griewangk function is a multimodal function, and it is difficult to find the global 

optimal value. When
),...,2,1(0 Dix i 
, the function can reach the global minimum value 0. 

Set D=30, and the bound variables are set to be -100 and 100. 

On these functions, we focus on comparing the performance of the algorithms in terms 

of the solution accuracy and convergence speed. For 1F , it is a 2-dimensional function. As 

can be seen from Table 1, the DMCS and CS algorithms for 1F  have the same precisions, 
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and they both attain theoretical values. The mean number of the iterations of the DMCS 

algorithm is 345.5, which is less than that of the CS algorithm with 451.25 iterations. 

With regard to 2F - 3F , the optimal values, mean values, and the deviations of the DMCS 

algorithm are much better than those of the other methods. For 4F , the mean values and 

the deviations of the DMCS algorithm are superior to those of the other algorithms. The 

reliability of search is reflected by the “suc%” in Table 2, which stands for the percentage 

of the successful runs that acceptable solutions are found. It is found from Table 2 that, 

the “suc%”, the minimum number of iterations, and the mean number of the iterations of 

the DMCS algorithm are better than those of the CS algorithm. The convergence history 

of the DMCS algorithm and CS algorithm are shown in Figure 1-Figure 4. 

Table 1. Experimental Comparison between OBDE, CLPSO, ALC-PSO, ABC, 
CS, ICS and DMCS 

function Algorithm Best Mean Dev 

F1 
CS -1.03162845348988 -1.03162845348988 0 

DMCS -1.03162845348988 -1.03162845348988 0 

F2 

OBDE[20] 3.05991167e-86 1.42671462e-6 7.810816693e-6 

CLPSO[21] 2.567e−29 1.390e−27 2.052e−27 

ALC-PSO [22] 1.135e−172 1.677e−161 8.206e−161 

ABC[23] N/A 4.69e-16 1.07e-16 

CS 6.71006692182639e-15 1.26130238689835e-14 3.697855e-15 

ICS [24] 2.9807e-22 9.5438e-21 1.1279e-20 

DMCS 0 0 0 

F3 

OBDE[20] 7.91516238 1.4083459e+1 4.46978243 

CLPSO[21] 0 2.440e−14 5.979e−14 

ALC-PSO [22] 7.105e−15 2.528e−14 1.376e−14 

ABC[23] N/A 4.80e-5 0.000243 

CS 7.6481865285416e-10 5.59051123172338e-08 1.25653487e-9 

ICS [24] 1.1939e+01 2.2296e+01 4.1242e+00 

DMCS 2.6683564222 e-25 8.5590435844 e-22 5.2290854372 e-28 

F4 

OBDE[20] 5.55111512e-16 5.16170306e-3 1.637476538e-2 

CLPSO[21] 0 2.007e−14 8.669e−14 

ALC-PSO [22] 0 1.221e−2 1.577e−2 

ABC[23] N/A 5.82e-6 3.13e-5 

CS 5.99674524890748 6.27549115481021e+1 20.45980263522 

ICS [24] 1.1102e-16 3.1173e-09 1.1340e-08 

DMCS 5.8933557546 e-32 7.893900369 e-28 3.768812901 e-31 

Table 2. Search Speed and Reliability Comparisons between CS and DMCS 

Function 
Number of 

Generation 

CS DMCS 

suc% 
best 

iterations 

mean 

iterations 

Running 

time(S) 
suc% 

best 

iterations 

mean 

iterations 

Running 

time(S) 

F1 500 100 402 451.25 3.160804 100 335 345.5 4.866809 

F2 3000 100 2576 2683.75 18.022565 100 489 496.25 20.95774 

F3 3000 80 2897 2962.5 16.835218 100 478 490.75 18.82253 

F4 3000 60 2606 2776.25 17.751657 100 443 457.05 20.01353 
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Figure 1. F1 Curves of the Objective Value 

 
 

Figure 2.  F2 Curves of the Objective Value 

 

Figure 3. F3 Curves of the Objective Value 
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Figure 4. F4 Curves of the Objective Value 

4.2. The Solution of the Nonlinear Equations 

Some standard systems are introduced to demonstrate the efficiency of the proposed 

algorithm for solving systems of nonlinear equations. The scale of the 

population 100size  , 
25.0ap

,
2.01 mp

,
03.02 mp

, 2 . The iteration number t of the 

other 3 functions is 1000. 

Case 1:  
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This problem has already been solved by many researchers. Wang, et al., [25] 

presented a new filled function method. Abdollahi, et al., [8] proposed an imperialist 

competitive algorithm. The best solutions obtained by the mentioned approaches are 

shown in Table 3. From Table 3, the optimal value of DMCS algorithm for Case 1 is 

superior to that of other two methods. In Figure 5, it is shown that DMCS algorithm can 

quickly converge to the optimal value by the convergence curves. 

Table 3. Comparing Results of DMCS and CS for Case 1 with those by 
Wang, et al., [25] and Abdollahi, et al., [8]  

Algorithm Solutions Functions values 

Wang et al.[25] 
1x  0.50043285 )(1 xf  -2.3851e-004 

2x  3.14186317 )(2 xf  4.7741e-005 

Abdollahi  et al.[8] 
1x  0.299448692495720 )(1 xf  2.3267e-012 

2x  2.836927770471037 )(2 xf  4.6696e-013 

CS 
1x  0.500000000000745 )(1 xf  -3.86524146023248E-13 

2x  3.14159265358997 )(2 xf  -1.70086167372574E-13 

DMCS 
1x  0.500000000000006 )(1 xf  -1.16573417585641E-15 

2x  3.14159265358977 )(2 xf  -2.26485497023531E-14 
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Case 2:  
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This problem involves three variables and three nonlinear equations. Mo, et al., [6] 

and Zhang, et al., [26] solved the system. The best solutions obtained by the DMCS and 

other algorithms are listed in Table 4. 

Table 4. Comparsion Results of Case 2 by DMCS, CS, Zhang, et al., [26] and 
Mo, et al., [6] 

Algorithm Solutions Functions values 

Mo et al.[6] 

1x  4 )(1 xf  0 

2x  3 )(2 xf  0 

3x  1 )(3 xf  0 

Zhang et al.[26] 

1x  4.00118 )(1 xf  -0.0640 

2x  3.00013 )(2 xf  0.0322 

3x  1.00385 )(3 xf  0.0380 

CS 

1x  4.00000000000101 )(1 xf  -1.49640300151077E-11 

2x  3.00000000000005 )(2 xf  3.28341798194742E-11 

3x  1.00000000000247 )(3 xf  2.45665709996956E-11 

DMCS 

1x  4 )(1 xf  0 

2x  3 )(2 xf  0 

3x  1 )(3 xf  0 

 

It is shown that the best solutions obtained by DMCS can achieve exact solution, and 

the solution accuracy is far better than that by CS and Zhang, et al., [26]. So DMCS is 

efficient for solving the systems of nonlinear equations. 

 

Case 3:  

61,1010
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The system of nonlinear equations of Case 3 involves six variables and six nonlinear 

equations. Table 5 listed the results by Grosan, et al., [9] and the best results of DMCS 

and CS. From Table 5, it is observed that DMCS algorithm can obtain the approximate 

roots of the system of nonlinear equations, and the calculation accuracy achieves 10e-05. 

Compared with the results of Grosan, et al., [9], the optimal solution by DMCS algorithm 

has small errors. 
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Table 5. Comparison Results of Case 3 

The best results of [9] The best results of CS The best results of DMCS 

Variables 

values 

Functions 

values 
Variables values 

Functions 

values 
Variables values 

Functions 

values 

-0.8078668904 -0.0050 0.997077606024159 6.253476E-05 1 6.060615E-06 

-0.9560562726 -0.0367 0.997035297339922 2.544754E-05 1 5.971777E-06 

0.5850998782 0.0125 0.076803530685376 1.397927E-06 0.002461831574518 -3.385235E-11 

-0.2219439027 -0.0276 0.077110721652628 -1.314747E-05 0.002443721874666 2.611694E-05 

0.0620152964 -0.0169 -0.254520085156639 1.204824E-05 -0.104737114527382 -9.148682E-09 

-0.0057942792 0.0249 0.25453922272324 7.754110E-05 0.104763231468994 -1.832935E-06 
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This system has six variables and six nonlinear equations. Mo, et al., [6] presented a 

Conjugate direction particle swarm optimization for solved the system, and Jaberipour, et 

al., [5] solved it using a particle swarm optimization. Table 6 lists the best solution by 

DMCS algorithm and other methods. From Table 6, it is observed that the DMCS results 

are very close to the theoretical solution which obtained by Mo, et al., [6] and the 

solution accuracy is better than the solution of the CS algorithm. 

Table 6. Comparison Results of Case 4 

Algorithm x  Variables values )( xf  Functions values 

Mo et al.[6] 

1x  -1 )(1 xf  0 

2x  1 )(2 xf  0 

3x  -1 )(3 xf  0 

4x  1 )(4 xf  0 

5x  -1 )(5 xf  0 

6x  1 )(6 xf  0 

CS 

1x  -0.999639167 )(1 xf  1.588257E-04 

2x  0.999501109 )(2 xf  -1.506263E-04 

3x  -0.999747837 )(3 xf  1.573150E-04 

4x  1.000276522 )(4 xf  -2.863310E-05 

5x  -1.00028690 )(5 xf  5.922799E-06 

6x  0.999913197 )(6 xf  -1.276931E-05 

DMCS 

1x  -0.999999985 )(1 xf  2.958164E-09 

2x  0.999999991 )(2 xf  8.783643E-10 

3x  -1.000000018 )(3 xf  -2.005251E-09 

4x  0.999999977 )(4 xf  -1.096312E-09 

5x  -1.000000006 )(5 xf  2.527675E-09 

6x  0.999999991 )(6 xf  -7.837286E-11 
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Table 7. Comparison Results of DMCS with CS and Mo, et al., [6] 

Mo et al.[6] CS DMCS 

x  )( xf  
x  )( xf  

x  )( xf  
0.915551 -3.1680e-006 -0.382085114 -1.813716E-07 -0.382085089 1.554312E-15 

-0.222256 3.5232e-007 -0.438100165 9.731738E-08 -0.43810017 -2.664535E-15 

-0.414654 -1.6986-006 -0.445937127 -1.334805E-07 -0.445937108 1.221245E-15 

-0.439254 1.7710e-006 -0.447005346 -4.114950E-08 -0.447005339 2.997602E-15 

0.420892 -1.6836 -0.447073882 9.840950E-09 -0.447073887 -1.998401E-15 

-0.354588 2.5254 -0.446795796 6.933357E-08 -0.44679581 -1.887379E-15 

-0.135767 -0.8418 -0.445722995 1.289920E-07 -0.445723013 3.774758E-15 

0.427562 -3.9144e-007 -0.441859131 3.325555E-09 -0.441859125 -2.220446E-16 

0.752203 6.8078e-007 -0.428025929 -2.294208E-07 -0.428025896 -1.110223E-15 

-0.440697 2.3396e-007 -0.379124703 4.536877E-08 -0.3791247 -1.110223E-15 

 

In Table 7, it is observed that we can obtain the approximate roots of Case 5, and the 

calculation accuracy achieves 10e-15. Compared with the solutions of the Ref. [6], the 

DMCS results are the exact solution and outperform those by Mo, et al., [6]. From Figure 

5 to Figure 9, in terms of convergence speed, DMCS consumes smaller numbers of 

iteration than those of CS to reach acceptable results. Overall, DMCS is an efficient 

method for solving the systems of nonlinear equations in the comparison. 

 

 

Figure 5. Case 1 Curves of the Objective Value 
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Figure 6. Case 2 Curves of the Objective Value 

 

 

Figure 7. Case 3 Curves of the Objective Value 

 

Figure 8. Case 4 Curves of the objective value 
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Figure 9. Case 5 Curves of the Objective Value 

Conclusion 

This paper proposes a double mutation cuckoo search algorithm for systems of 

nonlinear equations. The systems of nonlinear equations can be converted to 

minimization problems. To avoid the sensitivity to initial values, the algorithm adopts 

double mutation method to enhance the abilities of local search and global optimization. 

Meanwhile, the boundary value handling strategy adds diversity to the population. The 

proposed algorithm does not rely on the selection of the initial values, and the equations 

do not need to be continuous and differentiable.  Some standard problems were solved by 

DMCS, and the proposed method is effective and has high accuracy for solving systems 

of nonlinear equations in comparison with other methods.  
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