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Abstract 

A framework of granular computing clustering algorithms is proposed in the paper. 

Firstly, granules are represented as the normal forms, such the diamond granule in 2-

domensional space and hyperdiamond granule in N-dimensional space, sphere granule 

in 2-dimensional space and hypersphere granule in N-dimensional space. Secondly, 

operations between two granules are designed to realize the transformation between two 

spaces with different granularities. Thirdly, the threshold of granularity is used to control 

the join process between two granules. The performance of granular computing 

algorithms is evaluated by the experimental results on the data sets selected from 

machine learning repository. 
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1. Introduction 

Granular computing (GrC) concerns the processing of complex information 

entities called information granules, which arise in the process of data abstraction 

and derivation of knowledge from information or data [1, 2]. In the philosophical 

sense, granular computing can describe a way of thinking that relies on the human 

ability to recognize the real world under various levels of granularity in order to 

abstract and consider only those things that serve a specific interest and to switch 

among different granularities. By focusing on different levels of granularity, one 

can obtain different levels of knowledge, as well as a greater understanding of the 

inherent knowledge structure. Granular computing is thus essential in human 

problem solving and hence has a very significant impact on the design and 

implementation of intelligent systems, such as classification problems [3-7]. 

In this paper, we present a framework of granular computing clustering 

algorithms (GrCC). Firstly, the granule is represented as the normal form. 

Secondly, the operations  and  are introduced to realize the transformation 

between two granule spaces with different granularities. Thirdly, the threshold of 

granularity is used to control the operation between two granules. Finally, a 

framework of granular computing clustering is formed by operation between two 

granules and the user-defined threshold . 

 

2. A Framework of GrCC 

For the data set S={xi|i=1,2,...,n} in N-dimensional space, GrC algorithm is formed in 

terms of the following steps. Firstly, the representation method of granule is proposed. 

Secondly, operations between two granules are designed. Thirdly, the fuzzy inclusion 

relation between two granules is measured by fuzzy inclusion measure. Finally, the GrC 

algorithms are designed by operations between two granules. 
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2.1. Representation of Granules 

A granule is represented as a subset of S which is composed by the data with the 

similar features, and the size of granule is measured by the granularity induced by the 

maximal distance between data belonging to the same granule. In order to facilitate the 

study of granular computing, such as the operations between two granules, the 

granules are represented as the standard form, for example, the granule with the 

shape of diamond in 2-dimensional space and the shape of hyperdiamond in N-

dimensional space. 

A granule is represented as the hyperdiamond G=(C,R), where C is the center of 

granule, R is radii of granule, and refers to the granularity of granule G which is 

measured by the maximal distance between center and the data included in granule. 

Particularly, a point x is represented by a atomic granule with the center x and granularity 

0 in N-dimensional space. The distance between center C=(c1,c2,...,cN) and datum 

x=(x1,x2,...,xN) can be defined as follows 

d1(x,C)=|x1-c1|+|x2-c2|+...+|xN-cN| 

 

2.2. Operations between Two Granules 

The operations between two granules reflect the transformation between 

macroscopic and microcosmic of human cognitions. When a person want to observe 

the object more carefully, the object is partitioned into some suitable sub-objects, 

namely the universe is transformed into some parts in order to study the object in 

detail in the view of microscopic. Conversely, there is the same attributes of some 

objects, we regard the objects as a universe to simple the process in the view of 

macroscopic. The operations between two granules are designed to realize the 

transformation between macroscopic and microscopic. Set-based models of granular 

structures are special cases of lattice-based models, where the lattice join operation 

∨ coincides with set union operation ∪  and lattice meet operation ∧ coincides 

with set intersection operation ∩. 

Join operation ∨ and meet operation ∧ are used to realize the transformation 

between macroscopic and microcosmic. Operation  unites the granules with small 

granularities to the granules with the large granularities. Inversely, Operation ∧ 

divides the granules with large granularities into the granules with small 

granularities. Join operation ∨ and meet operation ∧ are designed as follows. 

Any points are regarded as atomic granules which are indivisible, the join 

process is the key to obtain the larger granules compared with atomic granules. 

Likewise, the whole space is a granule with the maximal granularity, the meet 

process produces the smaller granules compared with original granules. 

For two hyperdiamond granules G1=(C1, R1) and G2=(C2, R2) in N-dimensional space, 

the join hyperdiamond granule is  

                            G=G1G2=(C, R) 

The center C and the granularity R of G are computed as follows. 

Firstly, the vector from C1 to C2 and vector from C2 to C1 are computed. If C1=C2, then 

C12=0 and C21=0. If C1C2, then C12=(C2-C1)/d(C1,C2) and C21=(C1-C2)/d(C2,C1).  

Secondly, the crosspoints of G and G1 are P1=C1-C12R1 and P2 = C1+C12R1. The 

crosspoints of G and G2 are Q1 = C2-R2C21 and Q2 = C2+R2C21. 

Thirdly, the center C and granularity R of the join hypersphere granule G is computed 

by algorithm1. 
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Algorithm1. computing C and R of join hypersphere granule G 

between G1 and G2 

Input: G1=(C1,R1) and G2=(C2,R2) 

Output: G=(C,R) 

if R1>=R2 

    if d(C1,C2)<=R1-R2       C=C1                   R=R1 

    else                               C=(P1+Q1)/2       R=d(P1,Q1)/2 

    end 

else 

    if d(C1,C2)<=R2-R1       C=C2                   R=R2 

    else                              C=(P1+Q1)/2        R=d(P1,Q1)/2 

    end 

end 

 

Figure 1 shows the join process of the hyperdiamond granule G1 = [0.2 0.15 0.1] 

and the hyperdiamond granule G2 = [0.1 0.2 0.1]. The crosspoints of hyperdiamond 

granule G1 and the line crossing vector C12=[-0.6667,0.3333] are P1=[0.2667, 

0.1167] and P2=[0.1333,0.1833]. The crosspoints of hyperdiamond granule G2 and 

the line crossing vector C21=[0.3333 -0.6667] are Q1=[0.0333,0.23333] and 

Q2=[0.1667,0.1667]. According to algorithm1, the central vector and granularity of 

the join hyperdiamond granule G are C=[0.15,0.175] and R=0.175, namely G=[0.15 

0.175 0.175]. 

 

 

Figure 1. The Join Hyperdiamond Granule of Two Hyperdiamond 
Granules 

2.3. The Framework of GrCC 

For data set S, the granular computing clustering algorithms are proposed by the 

following steps. Firstly, the samples are used to form the atomic granule. Secondly, 

the threshold of granularity is introduced to conditionally union the atomic granules 

by the aforementioned join operation, and the granule set is composed of all the join 

granules. Thirdly, if all atomic granules are included in the granules of GS, the join 

process is terminated, otherwise, the second process is continued. The GrC 

clustering algorithms are described as follows. 
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Suppose the atomic hyperdiamond granules induced by S are g1, g2, g3, g4, g5. The 

training process can be described as the following tree structure shown in Figure6, leafs 

denote the atomic hyperdiamond granules, root denotes GS including its child nodes G1, 

G2, and g3. G1 is induced by join operation of child nodes g1 and g2, G2 is the join 

hyperdiamond granule of g4 and g5, g3 is the atomic hyperdiamond granule. The whole 

process of obtaining GS is the bottle up process. 

 

GS

G1 G2

g1 g2 g4 g5

g3

 

Figure 2. The Framework of GrCC 

The GrCC framework is described as algorithm2. 

Algorithm2. GrC clustering process 

Input: Data set S, threshold  of granularity 

Output: Granule set GS 

S1. initialize the granule set GS= 

S2. i=1 

S3. for the ith sample xi in S, form the corresponding atomic granule Gi 

S4. j=1 

S5. form the join granule GiGj of Gi and GjGS, if the granularity of GiGj is 

less than or equal to , then Gj=GiGj, else  

S6. j=j+1 

S7. if all the granularities of GiGj are greater than , then GS=GS{Gi} 

S8. remove xi until S is empty. 

 

3. Experiments 

We verified the feasibility of GrCC by data set selected from UCI benchmark data set. 

The data set in 2-dimensional space is used to show the data and the achieved granules, 

and the data sets in N-dimensional space are used to verify the extension of GrCC. We 

compare GrCC with the traditional clustering algorithms by objective function that is the 

sum of distances between data and their granule's centers, such as fuzzy c means (FCM) 

clustering and k-means clustering. All the experiments are performed with an 3.2GHz 

Intel(R) Core(TM) i5 CPU and 8GB RAM, running Microsoft Windows7 and 

Matlab2008. 

For the selection of parameter 𝜌 of GrCC, we used the stepwise refinement strategy, 

which made the same cluster number with the cluster number provided by references. 

Firstly, the data set named D31 including 31 clusters in [8] is used to verify the 

clustering feasibility of GrCC. The achieved granules, granule centers, and the cluster 

centers [8] are shown in Figure 3. We compared GrCC with FCM, Kmeans by objective 

value (Obj), the sum of squared errors (SSE)  and standard deviation (STD) between the 

achieved cluster center and the clustering provided by [8], the comparisons of GrCC, 

FCM, and Kmeans are listed in Table 1. From the table we can see, GrCC is better than 

FCM and Kmeans on the aspects of SSE and STD, we can draw the same conclusion by 

Figure 4. 

Secondly, data sets, such as iris, image, pendigit, optdigits, are selected from machine 

learning repository to verify the extension of GrCC shown in Table 2. For the data set 
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optdigits, GrCC is better than FCM because Obj, SSE, and STD of GrCC are less than 

FCM, GrCC is better than Kmeans in terms of Obj and SSE, and GrCC is worse than 

Kmeans in terms of STD. So GrCC, FCM, and Kmeans have their own advantages and 

disadvantages, and are comparative. GrCC, FCM, and Kmeans also are comparative for 

the data sets pendigits, iris, and image. 

Table 1. Comparisons of GrCC, FCM, and Kmeans on Data Set D31 

Algorithms Obj SSE STD 

GrCC 3169 13.4708 0.2755 

FCM 2293.5 13.9843 0.8338 

Kmeans 3444.5 14.0707 0.7155 
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Figure 3. The Granule Centers and Cluster Centers by GrCC for Data Set 
D31 
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Figure 4. The Cluster Centers of FCM, Kmeans, and GrCC 
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Table 2. Comparisons of GrCC, FCM, and Kmeans on Data Sets 

Data sets Algorithms Obj. SSE STD 

Optdigits GrCC 240 12066 4805.4 2.4815 

FCM 13718 5200.3 4.3909 

Kmeans 9549.5 834.2 5.7785 

Pendigits GrCC 485 746660 53331 10.4912 

FCM 637570 26075 23.5398 

Kmeans 494280 16833 26.1413 

Iris GrCC 2.7 101.57 0.1922 0.2033 

FCM 96.93 0.0697 0.0993 

Kmeans 97.32 0.1479 0.1709 

Image GrCC 307 17082 19436 24.3531 

FCM 13292 17216 32.1416 

Kmeans 12523 17218 25.7416 

 

4. Conclusions 

A framework of granular computing clustering algorithms is proposed in the paper. 

The granule was represented as the normal form, such as hyperdiamond, hypersphere, 

and hypercube in N-dimensional space, the join operation was used to generate the 

granule with larger granularity compared with the original granules, and the threshold of 

granularity was used to control the join process, the machine learning data sets were used 

to verify the performance and comparison of GrCC, FCM, and Kmeans. For the future 

work, the proposed framework of GrCC can be used for image segmentation, image 

reconstruction, etc. 
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