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Abstract 

The estimation of probability density function (pdf) by the nonparametric kernel 

methods requires a reliable estimate of the bandwidth. There have been several studies on 

how to efficiently estimate this parameter. In this work, we propose a new optimization 

method of the smoothing parameter of the variable kernel estimator (VKE) based on the 

statistical properties of the probability distributions of random variables. In this setting, 

we show how to use the maximum entropy principle for estimating the smoothing 

parameter. The optimized estimator is after used in building the Bayesian classifier. In 

the same setting, the estimated probability density function is called optimal in the sense 

of having a minimum error rate of classifying data. Finally, a practical implementation 

with the aid of a dataset of DNA microarray is used to illustrate the behavior of the 

optimization technique. 

 

Keywords: variable kernel estimator, smoothing parameter, probability density 

function, maximum entropy principle, microarray data, bayes classifier 

 

1. Introduction 

Data classification is intended to form groups or classes of homogeneous objects in 

order to structure a set of data. The development of methods that attempt to classify the 

data has led to distinguish two types of classification strategies: supervised and 

unsupervised. Supervised classification seeks to classify a new data, based on the 

characteristics of a set of pre-classified data in the classes known in advance while the 

clustering has been designed to group that data without a priori knowledge of the group 

structure [1-4]. In this work, we are interested in learning methods based on statistical 

techniques that introduce the concept of non-parametric estimation of the probability 

density function (pdf). We concentrate on the nonparametric kernel estimator particularly 

the variable kernel estimator (VKE). This exploratory statistical approach consists to 

structure the information contained in the data. However, many problems affect the 

quality of these methods such as the optimal choice of the bandwidth of the estimator. 

While it is advantageous to apply small bandwidth to densely populated region of the data 

space, larger bandwidths may be appropriate for sparsely populated regions. As a result, 

many studies have proposed techniques for selecting the smoothing parameter such as the 

family of cross validation methods and the family of plug-in methods. In this sense, this 

paper presents a method for optimizing the smoothing parameter of the variable kernel 

estimator using the maximum entropy principle [5-8]. The optimized estimator is after 

used to construct the Bayes classifier. In the proposed criterion, the estimated pdf is called 

optimal in the sense of having maximal classification accuracy. 
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Cancer classification is one of the challenging studies for research in the last century. 

In the literature, several researchers have attempted to provide detailed technical on the 

classification of different tumor types. These techniques have limitations in their analysis. 

In recent years, research studies have attempted to address these limitations. 

The statistical and machine learning area is not new to cancer research. Today different 

classification approaches based on gene expression analysis have been proposed [9, 10]. 

We note that some researchers believe that the genes selection is an important step 

which must be applied before the classification step. Also, for most of those proposed 

methods on gene classification, the authors are only concerned with the accuracy of the 

classification and did not pay much attention to the running time. However, there are 

major challenges regarding the nature and the structure of the gene expression which we 

should note the highly large size of the data (thousands to tens of thousands of genes) 

versus the small number of patients. It is noteworthy that we have evaluated the 

performance of our cancer classification method in one aspect which is the classification 

accuracy. 

The paper is organized as follows. In the second section, we review the variable kernel 

estimation method which combines the properties of both techniques; the k-nearest 

neighbor approach and the Parzen approach to obtain a method that works well in various 

situations. In the third section, we present a new approach to optimize the smoothing 

parameter of the variable kernel estimator, based on the maximum entropy principle 

(MEP). Then, we describe the use of the variable kernel estimator in the construction of 

the Bayes classifier. In the fourth and last section, we illustrate the efficiency of our 

algorithm to optimize the bandwidth of variable kernel estimator using a set of DNA 

microarray gene expression patterns for a certain number of patients. Finally, we provide 

a conclusion and future prospects. 

 

2. Variable Kernel Estimator 

The mathematical expression of the Bayes classifier takes into consideration the 

probability densities that are not precisely known. This explains why it is necessary to 

estimate these densities from the available data. In this section, we review the variable 

kernel estimator (VKE) of the probability density function from a data set of size n in an 

Euclidean space of dimension d. 

The variable kernel estimator is an estimator which combines the k-nearest neighbors 

estimator and the Parzen estimator where the scale parameter of the bumps placed on the 

data points are allowed to vary from data point to the other [11-13]. 

The k-nearest neighbors (kNN) estimator is defined as follows [13]: 

f̂knn(x) =
k

n⁄

Vk(x)
=

k
n⁄

cd rk(x)
                  (1) 

Let k be a positive integer, rk(x) is the distance from x to the kth nearest point and 

Vk(x) is the volume of a sphere of radius rk(x)  and cd  is the volume of the unit sphere in 

d dimensions. 

The degree of smoothing of this estimator is controlled by the parameter k, chosen to 

be very smaller than the sample size. 

The Parzen-Rosenblatt estimator with kernel Kd   is defined by the following 

expression [14, 15]: 

f̂(x) =
1

nhd
∑ Kd (

D(x,Xi)

h
)n

i=1                   (2) 

where h is the smoothing parameter also called Bandwidth and D(x, Xi) is the distance 

between sample x and Xi. 

The VKE is constructed similary to the classical kernel estimator. It is defined by [13]: 

f̂(x) =
1

nhd
∑

1

(ri,k)d Kd (
D(x,Xi)

hri,k
)n

i=1                  (3) 
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with ri,k is a distance between a data point Xi and the kth nearest point of the other 

n − 1 data points. 

We note that: 

  if we fix 𝑘, the overall degree of smoothing depends on the discretization step ℎ; 

  the window width does not depend on the point x where we want to estimate the 

density but depends only on the distances between the data points. 

It is worth noting that in this manuscript we used the Euclidean and the Mahalanobis 

distances. 

 

3. Bandwidth Selection Method 

In this work, we optimize the smoothing parameter of the variable kernel estimator by 

a criterion introduced by Jayens Edwin called the maximum entropy principle [6, 7]. 

 

3.1. Entropy 

Claude Shannon introduced the concept of the entropy associated with a discrete 

random variable 𝑋  as a basic concept in information theory [8]. In fact, Shannon 

introduced the quantity −log(p(Xi)) as a measure of the information brought by the 

realization xi knowing the probability distribution p. Shannon entropy S(p), thus, appears 

as the average missing information which is the weighted sum of the quantity of 

information provided by the realization of this random variable. 

Let the distribution of probabilities p = {p1, p2, … pn} associated with the realizations 

of 𝑋. The Shannon entropy is calculated using formula: 

S(p) = − ∑ p(Xi) log(p(Xi))n
i=1                  (4) 

Entropy measures the uncertainty associated with a random variable. Therefore the 

realization of a rare event provides more information about the phenomenon that the 

realization of a frequent event. 

 

3.2. Maximum Entropy Principle 

The maximum entropy principle (MEP) means that the probability to choose among a 

set of possible laws in statistical modeling should be one that maximizes the Shannon 

entropy. Therefore, the best estimate of the probability density function is one that has a 

maximal entropy [5-7, 16, 17]. The optimal probability density function can be defined as 

following: 

S(f̂ ∗) = max{S(f̂, h)}                        (5) 

with S(f̂, h) is the Shannon entropy defined as: 

S(f̂, h) = − ∑ f̂(Xi, h) log (f̂(Xi, h))n
i=1                  (6) 

subject to the constraints    ∑ f̂(Xi, h) = 1n
i=1  with n is the number of observations and f̂ is 

the estimated pdf. 

 

3.3. Criterion based on the Maximum Entropy Principle 

In this work, we propose a new approach to optimize the bandwidth of the variable 

kernel estimator, it is noteworthy that the choice of the bandwidth is critical while the 

type of the kernel has little effect on the result. For this we normalize the estimated values 

of the pdf and search the best estimate of the underlying pdf to the distribution of 

observations corresponding to the one that maximizes the entropy [5-7, 12, 16, 18-20]. 

The obtained estimator is called optimized variable kernel estimator (OVKE). The 

proposed algorithm is summarized as following: 

Input:  

X: The input data; 
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Parameters: k: Nearest neighbours, h: Smoothing Parameter; 

Initialization: Choose the initial value of bandwidth to zero (h = 0); 

Gene Selection 

While  (The entropy S is not maximum) 

Begin 

 Incrementation of h with a small step (step = 0.01); 

 Estimation of the pdf with the relation (3); 

 Normalization of the estimated density function f̂ which will be noted ĝ(Xi, h); 

 Calculation the entropy of the normalized density ĝ(Xi, h) with the relation (6); 

end While 

 

3.4. Choice of Parameter K of Variable Kernel Estimator 

Another major issue in our variable kernel estimator is how to choose the optimum 

value of the parameter 𝑘 (number of nearest neighbors). The choice of 𝑘 is critical in the 

estimation of the density and depends on data. A small value of 𝑘 increases the influence 

of noise on the classification result while a high value reduces the effect of noise. The 

best choice of 𝑘  may be selected by various techniques such as cross-validation 

techniques and heuristic techniques. In this article, the validation indices (CH and DB) 

[21, 22] are used as methods to determine the value of 𝑘. 

It should be noted that we will estimate the probability density function for each class 

using the optimized variable kernel estimator. Therefore, we will require to choose two 

values of 𝑘, kc1
and kc2

,  because the datasets used in our article are divided into two 

classes. 

 

4. Experimental Results 

We illustrate our optimization approach of smoothing parameter of the variable kernel 

estimator using two real datasets both of which are composed of a matrix of gene 

expression obtained from the DNA microarrays: Leukemia and Colon datasets. Both 

distributions are divided into two classes. The leukemia dataset is divided into two subsets, 

acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). We use these 

72 data samples in order to compare our approach with previously published results. This 

distribution of data is divided into two subsets, the training set and the test set. All 

training data consists of 38 bone marrow samples with 27 patients with ALL and 11 

patients with AML. In addition to this, 34 test samples are provided with 20 cases of ALL 

and 14 cases of AML. All data samples have 7129 genes, corresponding to some gene 

expression values extracted from the microarray image [23]. The Colon dataset consists 

of 62 tissues which include 22 normal and 40 colon cancer tissues. Each sample contains 

2000 gene expression levels, some genes are non-human genes. We split randomly the 

data into 31 tissues for training and 31 tissues for testing. 

We note that the OVKE is used to construct the Bayes classifier which is defined as 

following [24]: 

P(C = Ci|X = Xj) = (f̃Ci
(Xj)p̃Ci

) ∑ f̃Ci
(Xj)p̃Ci

m
i=1⁄                (7) 

where p̃Ci
 is the prior probability of the class Ci and f̃Ci

(Xj) is the estimated probability 

using the optimized variable kernel estimator at the point Xj.  

The most probable class is assigned to Xj  using the assumption of the maximum a 

posteriori (MAP): 

Caff = CMAP = argmaxCi∈C P(C = Ci|X = Xj)                           (8) 

It should be noted that our methodology consists of two phases. The first phase uses 

variable selection techniques because the microarray data are characterized by high 

dimensionality and small sample size, the number of genes may range from 2000 to 
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60,000 per respect to a limited number of patients. However, the expression data is highly 

redundant and most genes are considered less significant; it requires providing innovative 

pre-processing techniques to reduce the dimension of the microarray data and select the 

most relevant and most informative genes for improving the efficiency of the 

classification process. The hybrid selection filters used are the information gain (IG), the 

reliefF filter and the minimum redundancy maximum relevance filter (mRMR) [25, 26]. 

The result of this pretreatment process is used in the second phase to find the optimal 

value of the smoothing parameter hopt of the variable kernel estimator. 

 

4.1. Leukemia Dataset 

The results of selected genes through our pre-treatment process are presented in table 1. 

For each gene is given its place in our initial phase of selection, its identification number 

(ID) in the leukemia dataset, and its index [23, 27-36]. 

Table 1. Genes Ranked for Leukemia Dataset 

Rank Gene ID Index 

1 X95735 4847 

2 X17042 4196 

3 M23197 1834 

4 L09209s 6041 

5 U46499 3252 

6 M27891 1882 

7 M16038 1745 

8 M22960 1829 

9 M63138 2121 

10 M55150 2020 

11 M62762 2111 

12 U50136 3320 

13 X61587 4366 

14 M32304 6005 

15 X52056 4229 

16 D49950 461 

17 X59417 4328 

18 M31211 6281 

19 M92287 2354 

20 X64072 6185 

21 L09717 1260 

22 M31523 6855 

 

The representation of 1882 and 6855 genes is shown in Figure 1, The optimal values of 

the bandwidth for our genes 1882 and 6855 are hopt = 15.59 for f̃C1
and hopt =  1.12  for 

f̃C2
, see Figures 2 and 3. 
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Figure 1. The Data Sample with the Two Genes 1882 and 6855 

 

Figure 2. The Evolution of Entropy with 𝐤𝐂𝟏
 = 3 using VKE 

 

Figure 3. The Evolution of Entropy with 𝐤𝐂𝟐
 = 8 using VKE 

They show the evolution of the entropy of the estimated density function by the 

variable kernel estimator (VKE) which is a function of the smoothing parameter h. The 

entropy is calculated after applying the normalization technique of the estimated values 

from the probability density function. It is noted by using with the normalization that the 

value of the entropy increases regularly and it then remained stable. Indeed, from a certain 

parameter  h , hopt = 15.59  for f̃C1
and hopt =  1.12  for f̃C2

 , called optimal smoothing 

parameter, all relevant information is extracted. 

It is worth mentioning that we validate our classification results by the validation 

indices CH and DB for different values of parameter k since the choice of this parameter 

is crucial and it has an influence on the classification accuracy. The figures 4 and 5 show 
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the evolution of the CH and DB indices with the parameter k. It is also important to point 

out that we have chosen two values of k namely kC1
and kC2

because the datasets are 

distributed into two classes. Figure 6 illustrates the classification result with OVKE using 

Bayes classifier. 

 

 

Figure 4. The Evolution of the CH-index with the Parameter 𝐤𝐂𝟏
= 𝟑 using 

VKE 

 

Figure 5. The Evolution of the DB-index with the Parameter 𝐤𝐂𝟏
= 𝟑 using 

VKE 

The classification rates (CR) of our optimization process of the smoothing parameter 

determined by the maximum entropy principle (see tables 2 and 3), are compared with the 

classification rate obtained with the Parzen, k-NN, weighted voting method (WVM), 

associative artificial neural network (AANN) and other works [23, 27, 28, 31-35, 37]. 

The validation of the results by the CH and the DB indices gives the following results. 

For 6041 and 3252 genes, the application of B-OVKE algorithm with Euclidean and the 

Mahalanobis distances give the same classification rate, which is equal to 97.23%. The 

latter value may be considered the best relative to the other classification methods. 

However, the use of B-OParzen algorithm with the Euclidean distance give a good 

classification rate that is equal to 93.06%, while the B-Parzen and B-k-NN algorithms 

provide a similar result, which is equal to 91%. This value is lower than that found with 

other algorithms. In the case of 6855 and 4847 genes, we get 97.23% performance by 

applying the B-OVKE technique. The accuracy rate is better than the rate of B-k-NN 

classifiers and B-OParzen. The classification rate of genes 1882 and 6855 using a B-

OVKE is 91.67% with the Euclidean distance and 94.45% with the Mahalanobis distance 

respectively. These values are less efficient than B-OParzen method which is equal to 

97.23%. Likewise for 6041 and 6855 genes, we get a classification rate equal to 91.67% 
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by using the B-OVKE method with the Euclidean distance and 93.06% with the 

Mahalanobis distance. We conclude that the classification rate obtained by the OVKE 

varies between 91.67 % and 97.23% for the test samples. The achieved results, presented 

in Table 2 and 3, show the usefulness of the proposed methodology and we note that the 

classification performances are improved. 

Table 2. The Comparison of Classification Methods for the Leukemia Data 

 

Table 3. Comparative Results on the Data Sample 

G 1 G 2 Algorithms Dist 
CR 

(Test) 
in % 

CR 
(Training) 

in % 

1882 6855 

B-k-NN
a
 ED

c
 91 100 

B-OParzen
b
 ED 97.23 94.45 

B-OVKE 
ED 91.67 90.28 

MD
d
 94.45 94.45 

6041 3252 

B-k-NN
a
 ED 91 95 

B-Parzen
a
 ED 91 97 

B-OParzen
b
 ED 93.06 90.28 

B-OVKE 
ED 97.23 90.28 

MD 97.23 95.84 

6041 6855 

B-k-NN
a
 ED 94 97 

B-Parzen
a
 ED 91 100 

B-OParzen
b
 ED 91.67 90.28 

B-OVKE 
ED 91.67 91.67 

MD 93.06 91.67 

6855 4847 

B-k-NN
a
 ED 91 100 

B-Parzen
a
 ED 91 100 

B-OParzen
b
 ED 90.28 93.06 

B-OVKE 
ED 97.23 95.84 

MD 97.23 98.62 
a 

Peters and Valafar method [11], 
 
b 

The optimized Parzen Estimator by MEP, 
c 
Euclidean distance, 

d
 Mahalanobis distance. 
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4.2. Colon Dataset 

Tables 4, 5 and 6 present the filtered genes by the selection process using the 

information gain, the mRMR and the ReliefF filters respectively. 

 

Table 4. Genes Ranked with 
IG for Colon Dataset 

Rank Gene 
ID 

Index 

1 H86060 12 

2 H80240 8 

3 R16255 248 

4 L11369 650 

5 H80240 25 

6 M96839 523 

7 U14973 5 

8 H80240 25 

9 L34774 551 

10 H55933 1 

11 M99626 146 

12 T63508 18 

13 H85596 97 
 

Table 5. Genes Ranked with 
mRMR for Colon Dataset 

Rank Gene 
ID 

Index 

1 T47377 1325 

2 X54942 1730 

3 M19045 317 

4 R36977 1042 

5 M22382 513 

6 M26383 1671 

7 H40095 780 

8 X63629 1582 

9 T86473 964 

10 U26312 1406 

11 R08183 1002 

12 U17899 1770 

13 X56597 1900 
 

 

Table 6. Genes Ranked with reliefF for Colon Dataset 

Rank Gene 
ID 

Index 

1 M80815 1058 

2 M63239 1985 

3 H71150 673 

4 M76378 765 

5 R80427 1644 

6 M76378 245 

7 M76378 267 

8 L07648 1873 

9 T55117 1087 

10 M63391 249 

11 R39209 1328 

12 Z50753 377 

13 H20543 1098 

 

The representation of 780 and 377 genes is shown in Figure 7, while Figures 8 and 9 

show the evolution of the entropy as a function of the bandwidth, we also remark that 

entropy increases progressively up to a maximum value that is equal to our genes 

hopt = 1.29 for f̃C1
 and hopt = 2.06  for f̃C2

 and it remains stable thereafter. Figure 12 

illustrates the classification results using the Bayes classifier with the optimized variable 

kernel estimator (OVKE). These results are obtained for kC1
= 11  and kC2

= 17  with 

OVKE. The figures 10 and 11 show the evolution of the CH and DB indices with the 

parameter k. 

The classification rates (CR) obtained with the OVKE are shown in Table 7. The 

application of Bayes classifier with optimized variable kernel estimator by the maximum 

entropy principle give better classification rate when compared with other research work. 

The Tables 7 and 8 show the following results using the validation indices.  
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Figure 7. The Data Sample with the Two Genes 780 and 377 

 

Figure 8. The Evolution of Entropy with 𝐤𝐂𝟏
 = 11 using VKE 

Table 7. Comparative Results on the Data Sample 

G 1 G 2 Algorithms Dist 
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(Test) 
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780 377 
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B-OVKE ED 90.33 88.71 

765 1582 
B-OParzen ED 88.71 93.55 

B-OVKE ED 85.49 93.55 

765 249 
B-OParzen ED 83.88 87.10 

B-OVKE ED 88.71 93.55 

249 1582 
B-OParzen ED 90.33 88.71 

B-OVKE ED 91.93 93.55 

780 1582 
B-OParzen ED 83.88 80.65 

B-OVKE ED 87.10 80.65 
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Table 8. The Comparison of Classification Methods for the Colon Data 

Work CR 
(Test)  

Hernandez [38] 84.6% 

Zhang [39] 90.3% 

Li [40] 83.5% 

Wang [41] 93.5% 

Li [42] 93.6% 

Cho & Won [29] 87.7% 

 

The classification rate obtained by implementation of the OVKE method to test data 

sets is ranging from 85.49% to 91.93%. In the case of 780 and 1582 genes we get 87.10% 

performance by applying the B-OVKE with the Euclidean distance, this rate is better than 

the rates obtained by B-OParzen method. The classification rate of genes 780 and 377 

using a B-OVKE is 90.33%. For 780 and 765 genes, we find that the application of both 

algorithms B-OVKE and the B-OParzen with Euclidean distance give the same 

classification rate equal to 85.49%. For 249 and 377 genes, the implementation of OVKE 

algorithm gives better classification rate equal to 91.94% by comparing it with the B-

OParzen algorithm which is equal to 90.33%. Likewise for 249 and 1582 genes, the B-

OVKE algorithms give a upper result equal to 91.94%. The same result is observed for 

765 and 249 genes, we find that the B-OVKE algorithm gives a better performance rate 

compared with B-OParzen method. The classification rate of genes 765 and 1582 using a 

B-OVKE method is less powerful than the B-OParzen method.  

 

5. Conclusion 

In this work, we proposed a new method for optimizing the smoothing parameter of the 

variable kernel estimator based on the maximum entropy principle. In the majority of 

cases, this technique gives a minimum error rate in the process of data classification. We 

evaluate the performance of our method on two datasets in the oncology area. We note 

that we have evaluated the performance of our classification method in one aspect which 

is the classification accuracy. The experimental results presented in this paper clearly 

demonstrate the interest and robustness of the maximum entropy principle. This criterion 

allows us to obtain optimal bandwidth of the variable kernel estimator. 
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