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Abstract

In this paper, a six-dimensional Lie algebra is first introduced, whose corresponding
loop algebra is constructed, for which an isospectral problem is established. By zero
curvature equations, we obtain the nonlinear integrable couplings of the Kaup-Newell
(KN) hierarchy.
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1. Introduction

In 1989, Tu [1-2] presented a simple method to obtain the integrable soliton hierarchy
and its Hamiltonian structures. This approach is called Tu’s scheme and it has been
applied to find a lot of interesting Hamiltonian integrable systems of soliton equations
[3-17]. In Refs. [18, 19], we further found that some soliton hierarchies also can be
obtained by the vector-form Lie algebra and their Hamiltonian structures can be
constructed by the quadratic-form identity. In 2006, the trace identity was been
generalized to zero curvature equations associated with non-semi-simple Lie algebra. The
study of integrable couplings has attracted much attention [20-31]. It originated from the
investigations into the symmetry problems and associated centerless Virasoro algebras.
Integrable couplings have much richer mathematical structure than scalar integrable
equations. The related theory generalizes the symmetry and helps us work towards
completely classifying integrable equations from an algebraic point of view. A few ways
to construct integrable couplings of soliton equations are presented by perturbation,
enlarging spectral problems, constructing new loop Lie algebra and creating semidirect
sums of Lie algebra [22-26]. Recently, Ma and Zhu [20] presented a scheme for
constructing nonlinear continuous and discrete integrable couplings using the block type
matrix algebra.

The notion on integrable couplings was proposed when Ma and Fuchsstiener
studied of Virasoro symmetric algebras. In detail, for a given integrable system of
evolution type

u, = K(u) @)
the following bigger integrable system:

[u = K(u,

%LVI =S(u v
is called an integrable couplings of the system (1). Especially, if the second equation in
the system (2) is nonlinear for v, then the system (2) is called a nonlinear integrable
couplings of the system (1). Constructing nonlinear integrable couplings is one of the
pretty interesting topics in the soliton theory. There are much richer mathematical
structures behind integrable couplings than scalar integrable equations. Moreover, the

@)

ISSN: 1738-9968 IJHIT
Copyright © 2015 SERSC



International Journal of Hybrid Information Technology
Vol.8, No.11 (2015)

study of integrable couplings generalizes the symmetry problem and provides clues
toward complete classification of integrable equations.

In this paper, we hope to construct nonlinear integrable couplings of soliton
equations through vector-form Lie algebras. Specifically, we would like to construct
vector-form Lie algebra G to obtain nonlinear integrable couplings of the
Kaup-Newell (KN) hierarchy.

2. The KN Hierarchy

We present a brief description of the zero-curvatrue representation for the
Kaup-Newell hierarchy associated with the following eigenvalue problem.

(¢, (¢,
| | =V ) | (3)
(9. ), (¢, )
(-2% aq)
U (u,/l)=L ZJ 4)
Ar A
Where u = (u,,u,)" = (q,r)". First, we solve the adjoint representation of (4).
V. =[U,V]=UV -VU, ®)

with

b - b
vz{a J:va,ﬂ”, vm(u)z(am(u) m(U)\|. (6)
c —-a m=0

(c,(u) —a (u)
Egs. (5) and (6) lead to

1
am,x = qu+1 - r-bm+1 = ;(qcmfl,x + rbm—l,x)‘ (7)

a b,,=¢,, =0,m=0,1,"",

2m+1” T2m

a,=1a, :—;qr,
1 2
bl:—q,cl:—r,bszz(q r+dq,)

1

c, = (qr2 -r),

N

3 ,, 1
a,=—qr +—(rq, -qr,),
8 4
which gives rise to
(C2m+1\ ((:Zrnfl\\|

\ [=L] , (8)
LIy byt
1(D -rD gD —rD 'rD )
L =—
2| —gD ‘gD -D - D’erJ
aD g q )

with
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0 1 -1
D=—,D'D=DD ‘=1,
0X
Set
. "*1(a2i/12n72i b2i+1/12n72|71\
\Y, (u,1) = Z L 2n-2i-1 2n-2i J (10)
i=o | €04 - a4
and
(4. . (4,
o :V()(u,/l)| I (11
k¢2 )tn K¢2)

Then the compatibility condition of (3) and (11) gives rise to a zero-curvature
representation for the KN hierarchy,

u -v,”+uv®1=0n=12" (12)
We have
(0 Ab, )
v _,v®= T ln=1,2," (13)
" Lﬂcm“ 0
So (12) and (13) yield the KN hierarchy,
. :(q\ :J(czn,l\:_JLn,l(r\ (14)
O OO U la)
where
(0 D)

J:LD OJ.

that (14) can be cast in the Hamiltonian form

(a) () SH
LJ =3 =g /22, (15)
r . (D,ny su
where

(c, ) &H SH (Copy )

|21|: 2m _ | 2m—2:L‘21| (16)

kb2m+1) 5“ §U Kmeflj

1
H,,=——(a,, ,-rb, ,-qc, ), H,=-ar,H, =0 (17)

2m

S S & o o
Here —= (—,—)" stands for the variational derivative
Su sq Sr
0 w0 0 u, 0

s K
— =% (-9) , =—Llao=—. (18)
ou. E:O 6ui(k) oX oX

3. A vector-form Lie Algebra
Let us consider a vector space,
R® = {a - (a, a,,a,,a,,a,,a,) ,a, e R} .
For a, b € R®, define an operation as follows:
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2 (ale - azbl)

|( azba - asbz \\
|
I 2 (a3b1 - a1b3)

|

|

|
|
|
[a,b] = | (19)
2(ab, —a,b, +ab, —ab +ab, —ab,)|
2(ab, —a,b, +ab —ab, +ab, —ahb,) |
a,b,-ahb,+a,b,-ab, +a,b, -a.b, J
It is easy to verify that R® is a Lie algebra if equipped with (19).
Denoted by
G =span{e,,e,.e,.e,.e e} (20)
where
;
ei = (e|1 e|2’ei3‘e|4 e|5 els) ,
[l,l = jx
e, =1 i=1,2,3,4,56.
CAENE
Define operation relations among e;(i = 1, 2, 3, 4, 5, 6) as follows:
[61,62]2262, [61’63]:_283’ [ez’ea]:el'
[61'84]=284' [93'84]:_e6' [el,e5]=—2e5, (21)
[64'e5]=ee’ [ez'es]zes’ [ez'ee]=_264'
[es‘ea] = 2e,, [e4’eﬁ] = -2e,, [es’es] = 2e,.
It is easy to see that the Lie algebra G is isomorphic to the Lie algebra R®.
Set
G, = span {e,,e,,e.}
G, = span {e,,e..,e.}
then we find that
G=G,®6,,[G,,G,]lcG,,
which satisfy the sufficient condition on generating integrable couplings.
Define a loop algebra corresponding to the Lie algebra G, denoted by
G = span{e,(n),e,(n),e,(n), e, (n), e (n),e (n)} (22)
where
e,(n)=¢e1""e,(n)=¢e,2""" e, (n)=¢e, 2",
e,(n)=¢e, 2" e, (n)=e 2" e, (n)=e1"",neZ.
The corresponding commutative relations are given as
[e,(n),e,(n)]=2e,(m +n), [e,(n),e,(n)]=-2¢e,(m + n),
[e,(n),e,(n)]=¢ (m+n+1), [e,(n),e,(n)]=2e,(m +n),
[e,(n),e,(nN)]=-e,(m+n+1), [e(n) e, (n)]=-2e,(m+n), 23)

[e,(n),e,(n)]=e,(m+n+1), [e,(n),e,(n)]=e,(m+n+1),
[e,(n), e, (n)]=-2e,(m +n), [e,(n),e,(n)]=2e,(m +n),

[e,(n), e, (n)]=-2e,(m +n), [e,(n),e,(n)]=2e,(m +n)
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4. Nonlinear Integrable Couplings of the KN Hierarchy

By means of loop algebrag , let us consider the following isospectral problem
9, =[U. o] (24)
U =e()+qe,(0)+re, (0)+ pe,(0)+se (0)
Set
e, =[V.el (25)
V = m{JO(Amel(—m) +B,e,(-m)+C e (-m)+D_ e (-m)+E e (-m)+F e (-m))

then the stationary zero curvature equation

vV, =[U,V] (26)
gives
Amx = qu+1 - er+1’
Bmx = 2Bm+1 - 2qu‘
C, =-2C_, +2rA_,
(27)
D, =2D,.,-2qF -2pA_ -2pF_,
me = —2Em+1 + 2rFm + ZsAm + ZSFm,
me = (q + p)Em+1 - (r + s)Dm+1 + pCm+1 - SBerA'
Taking
AO:ﬁl’BO:COZ D,=E, F, =5,
then we can obtain
1
A = _;ﬁlqr’ B,=/4.0.C, = A1,
D, =B+ (B, +B,)p.E . =B,r+ (B, +B,)s
1 1
F, = —;ﬁzqr - ;(,/32 + B)(rp+ ps+0s), -«
Noting that
(n)
v, = mEjo(Amel(n -m)+AB _e,(n—-m)+ AC e, (n—m)
+AD_ e(n m+-A E.€-n 9m _F ¢ n
v =2 v ™,
a direct calculation gives
v +u,v"1=-A e (0)-2B, e, (0)+2C, e, (0)
_2Dn+1 64(0_B ‘En 185 (_O)In:x &
Taking
v®=v™_Ae/(0)-F.e,/(0),
we find that
v, +[u,v 1= (2qA, - 2B, )e,(0)+ (2C,,, — 2rA e,
+(2pA,+2(q+ p)F, -2D, ,)e,(0)+(2E, , —2sA —2(r+s)F )e (0).
Therefore, the zero curvature equation
u-v®iu,v™r=o (28)

admits the Lax integrable system
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(a) 2B ., - 2QA, Y (B, (2C +E_ )
R D S S o BN EC
“Ipl l2p, ,-2pA -2(q+p)F, | IDp | "l c +e I
|\th L—ZEM+25AH+2(r+s)Fn)| LEmXJ |an+Dn)|

is a Hamiltonian operation.
From Egs. (27), we obtain the recurrence operator L which satisfied that

(2C ., +E, ) (2C +E )
I28n+1+DMI :25 +DnI
I Cn+1+En+1 I I C +En I’
K Bn+1+ Dn+l) \ Bn+ Dn j
where
L =(L,,L,)
1
(——a——ra’lqa “ro'ro W
| 2 |
L _| - —qo 'qo —8—£q8’1r8|
L 2 |
I
\ 0 0 J
( 1 1 1 1 1
——ra pa——sa qa——sa pa -=so'ro-—ro’ —
|2 2 2 2 2 2
1 1 1 1 1 1
|——pa qo——qo 'po——pd 'pd -—pd ro-—qd ‘so-—
L I 2 2 2 2 2 2
1 1 1
| ——0-—(r+s)d (q+ p)o ——(r+s)o "(r+s)o
| 2 2 2
1 o 1
L - (@ P2 o —;a——(q+ p)o ' (r +5)0
As a result, the system (29) can be written as
|(q\| |((2ﬁ1+ﬂ2)r+(ﬁ1+ﬂ2)5\|
. o ] (2B, + B,)a+ (B, + 5,)0 |
t :pI (B B+ ) I
LpJ, L (B, + B,)(d+ p) )

(29)

(30)

-
|

(31)

When taking p=s=0, (31) reduces to the KN hierarchy. Therefore, the system (31)
is the integrable couplings of the KN hierarchy according to the definition of
integrable couplings. It is a nonlinear integrable couplings because the commutators

[e4, €5],[€4, €s]and [es, es]can generate nonlinear terms.
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5. Conclusion

In this paper, we introduced a kind of Lie algebra which allows us to construct
nonlinear integrable couplings of the KN hierarchy. The loop algebra presented in
this paper can be used to other known integrable hierarchies of soliton equations for
generating the nonlinear integrable couplings.
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