
International Journal of Hybrid Information Technology

Vol.8, No.11 (2015), pp.139-150

http://dx.doi.org/10.14257/ijhit.2015.8.11.11

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Efficient Metric Vector-Based Code Clone Detection Using

Function-calling Tree

Wei Li
1
, Dongmei Li

1*
, Chengjing Qiu

2
 and Jiajia Hou

3

1
School of Information Science and Technology, Beijing Forestry University,

Beijing 100083, China
2
School of Computer Science and Information Technology, Northeast Normal

University, Changchun 130000, China
3
School of Information, Renmin University of China, Beijing100872, China

lidongmei@bjfu.edu.cn

Abstract

Most traditional code clone detections have less accurate results because they ignore

the structure of the program itself, and some of them really think about it by creating a

complex syntax tree but leading to a high time complexity. Confronting such situation,

this paper proposes an efficient metric vector-based code clone detection method using

function-calling tree. Considering the two program code to be detected, feature vectors in

all defined functions of the two different code are extracted first. Then, two function-

calling trees are created according to the function-calling process and node matches each

other between two trees, at the same time, the matching similarities are calculated.

Finally, by using the bottom-up approach and combining similarity values of all child

nodes, the detection can get the similarity of the two program code to be detected. Our

experiment selects a set of typical code sample to measure and the results demonstrate

that, compared the famous JPlag system, it shows better detection effect.

Keywords: code clone, similarity calculating, feature vector, function-calling Tree

1. Introduction

Code clone is a serious phenomenon in higher education at home and abroad at

present, especially in programming courses of computer specialty, whose homework

is mostly handed in the form of electronic version. Because of that, clone costs

little, and people who copy often just slightly modify other people’s code, instead of

thorough understanding. As a result, it influences the normal teaching to some

extent. Therefore, code clone detections have important significance to improving

teaching effect, the protection for intellectual property rights and so on. At present,

the authoritative definition of code clone has not been recognized. An idea is

proposed in [1] that code clone is a code portion of source files that are identical or

similar to another. Another is proposed in [2] that two programs are considered

similar to each other if they satisfy some clone transform approaches. In general,

code clone approaches [3] can be classified from three aspects, which are the

equivalent transformation of code layout, syntax and the semantic. Jones [4] and

Zhao[5] summarizes eleven kinds of clone approaches that often appear in similar

code. According to the efforts people pay, they are listed as follows from easy to

difficult: ① complete copy. ② recomposition. ③ modify annotations. ④ constant

replacement. ⑤ identifier renaming. ⑥ redefine data type. ⑦ statement reordering

in program block. ⑧ change the sequence of operator or operand in the expression.

⑨ increase redundancy variables. ⑩ replace control structure for equivalent control

structure. ⑪ reorder program blocks.

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

140 Copyright ⓒ 2015 SERSC

These clone approaches are simple and easy to achieve, making no change in the

structure and function of program, thus providing an important basis for the

detection method of this paper.

Using C language as an example, this paper proposes an efficient code clone

detection method based on feature vector and function-calling tree. The method

takes function as a unit, and computes the similarity of functions from three aspects.

Then according to function-calling relations and the similarity between functions,

the similarity between programs can be calculated. On this basis, this paper

develops a code clone detection tool based on feature vector and function-calling

tree aiming at C language. By testing a certain number of typical clone sample set,

the results demonstrate that the method proposed in this paper can effectively

identify the eleven kinds of clone approaches, and comparing to the famous JPlag

system, it shows better detection effect and has practical value in use.

2. Related Work

Code clone detection originates from foreign countries, mainly experiencing the

development of two phases: detection method based on attribute counting and

detection method based on structure measurement.

Detection method based on attribute counting [6-8] mainly extracts various

attributes in the program, regardless of program’s internal structure. In 1976,

Ottenstein [9] proposes a method that detects code clone using attribute counting for

the first time, as well as uses Halstead metrics to detect the code clone of Fortran

program. Later, Grier [10] and Faidhi [11] increase the number of statistical

attributes, and design accuse system. The technique of attribute counting has the

advantage of high efficiency, but its drawback is obvious, that is, it can cause the

loss of program’s structure information, and it can’t be able to accurately detect the

changes in the structure of program. Besides, detection accuracy can’t be improved

simply by increasing the number of attributes.

Detection method based on structure measurement [12] measures similarity between

two programs according to the structure of programs, which requires the analysis about

internal structure of the program, such as control flow, nesting depth and data

dependence relations, etc. Donaldson [13] early considers the sequence of statements in

clone detection system, and characterizes the source program according to the

appearance sequence of statements. In 1998, D. Baxter [14] proposes a code clone

detection method based on abstract syntax tree, which conducts syntax parsing on codes

using C language to generate complete syntax tree, and then compares the similarity

degree of two syntax trees. Structure measurement technique has the advantage of high

detection accuracy, but its drawback is obvious, that is, it is inefficient. For a syntax

tree with N nodes, it needs a computation time of O(N
3
) to compare its subtrees one by

one. In general, a line of program statements will averagely generate around ten nodes

of abstract syntax tree, in that way the time complexity of subtree comparison is O(L
4
)

(L represents the statement number of codes).

After that, many methods and tools appeared, such as methods based on case

reasoning [15], neural network [16], optimizing compiler and disassembly [5], IDE

[17] and so on. Currently, more popular online detection tools are MOSS from

Stanford university [18], JPlag from University of the State of Baden-Wuerttemberg

[19] and YAP from university of Sydney [20-21], etc.

Compared with previous methods [22], the detection method proposed in this

paper is based on feature vector and function-calling tree. It focuses on various

inside attributes of functions and function calling relations, which not only detects

code clone from aspects of attribute counting and structure measurement, but also

combines the information contained in both methods and generates two

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

Copyright ⓒ 2015 SERSC 141

corresponding smaller function-calling trees aimed at two pieces of program code to

be detected. Finally, we traverse the two trees using the bottom-up approach to map

nodes, and then calculate the similarity of two pieces of code.

3. Method Overview

Currently, many measurement methods divide detection process into two stages:

program format conversion and similarity determination [23]. This paper divides the

whole code clone detection process into four parts: code standardization, generation

of comparison units, node mapping and similarity calculation. First of all, input

program segment should be standardized, which can slit code’s word segmentation

results according to the definition of function. Secondly, attribute information of

functions and function-calling relations are extracted from segmentation results of

function definition to generate function-calling tree. Then, taking the node of

function-calling tree as comparison unit, this paper can establish corresponding

relations between the nodes of two trees through node mapping, which means for

each function calling in a program, the method will find the most similar function

calling to it from programs to be compared and record its similarity. Finally, by

using the bottom-up approach and combining similarity values of all child nodes,

the detection can get the similarity of two pieces of programs. Specific code clone

detection process is shown in Figure 1.

Figure 1. The Process of Code Clone Detection

4. Metric Vector-Based Code Clone Detection Using Function-calling

Tree

4.1. Code Standardization

Code standardization can remove useless and interference information, improve the

efficiency of the follow-up process and make code processing more accurate. Four rules

are defined here for code standardization:

Rule 1: Remove the comments and white spaces not belonging to the output.

Rule2: Restore macro definition and redefine, such as that types defined by typedef

will be restored to the original type.

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

142 Copyright ⓒ 2015 SERSC

Rule3: Replace constants types, such as that the const type constants will be replaced

by constant values.

Rule4: Convert all the control structures like:

for (sentence1; sentence2; sentence3) sentence4

to control structures like:

{sentence1; while (sentence2){{ sentence4} sentence3;}}

Some clone based on text level clone could be filtered out via code standardization,

while some common clone are not only based on text level, but also deep into the inner

structure of codes.

4.2. Generation of Comparison Units

Different from those code clone detection based on syntax tree [14, 24], we use a kind

of special function-calling tree as the middle program of code clone detection, in which

the nodes of the tree are treated as the comparison units. In order to describe the

generation of function-calling trees, related definitions are proposed firstly.

Definition 1(Function sets) Suppose F represents a function set. F is the sets of all

the functions f defined in code P .

Definition 2(Function-calling sets) Suppose c a ll
f represents function calling sets. c a ll

f

is the function sets that are called by function f and satisfying c a ll
f F .

Definition 3(Feature vector) Suppose feature vector is represented by v and every

dimension in it is d . v is a multidimensional vector, extracted from the definition of

function f , consisting of some features of f . Information in v includes key words,

operators, identifier, constants, arrays, structs, selection structure and loop structure. Each

function’s corresponding dimension of v is the same.

Definition 4(Tree node) Suppose tree nodes is N . N represents each function-

calling in the program, including corresponding function f ’s feature vector v and

function-calling sets c a ll
f .

We present the generation algorithm of functional-calling tree by using the above

definitions, as it showed in Algorithm 1.

Algorithm 1. Generation of function-calling tree

Step 1 Determine the root nodes. Corresponding functions of root nodes is the entry

function of code, which is usually called main, or functions specialized by others, using

root nodes as current nodes.

Step 2 Generate of child nodes. Check whether the function-calling tree of current

nodes is void or not; if it is void, go to step 3, otherwise:

 If there are still unread functions in the function-calling sets, call the next

function, and use it as the current node. Then go to step 2;(Recursive calls are

handled specially).

 If all the function-calling sets have been read, go to step 3.

Step 3 Finish generating current nodes. All the current nodes and its child nodes have

been generated; return the results.

For instance, function-calling tree’s structure generated by the codes in Figure 2(a) is

showed in Figure 2(b).

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

Copyright ⓒ 2015 SERSC 143

Figure 2. Samples of Function-calling Tree Generation

4.3. Node Mapping

Node mapping is the core of clone detection discussed in this paper. Two program

code which is going to be detected generate two function-calling tree by the former two

steps. Node mapping builds a corresponding relationship in nodes of two trees, namely

that every function calling in a code finds out the most similar function calling in

programs which are going to be compared.

Three factors, direction similarity, attribute similarity and depth similarity, are taken

into consideration in calculation of node mapping. Suppose two nodes
1 1

N T ,
2 2

N T ,

contain feature vector

1 1 1 1 2 1
(, , ,)

n
v d d d , 2 2 1 2 2 2

(, , ,)
n

v d d d

The detail calculations of the three factors, direction similarity, attribute similarity and

depth similarity, are decribed as followed.

4.3.1. Direction Similarity: Owing to the directional property of the vector, similarity

can be judged according to the direction of multidimensional vectors in coordinate

system. Suppose the similarity of feature vector 1
v , 2

v is 1s , then:

1 2

1 2

1 c o s
v v

s
v v




 


 (1)

The smaller the angle between 1
v and 2

v is, the closer the direction is and the more

similarity is; the lower the vice. Because that every value of dimension of 1
v and 2

v is

larger than or equal to 0, so  1 0 ,1s  .

4.3.2. Attribute Similarity: Attribute similarity is improved by Manhattan Distance

based on vector, recording the practical difference degree between two programs.

Suppose the attribute similarity of feature vector 1
v , 2

v is 2s , and

the definition of 2s is

defined as followed:

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

144 Copyright ⓒ 2015 SERSC

1 2

1

1 2

1

2 1

m a x (,)

n

i i

i

n

i i

i

d d

s

d d







 





 (2)

1 2i i
d d is the distance of 1

v and 2
v in dimension i . We use the absolute value of

1 2i i
d d as the total attribute difference of 1

v and 2
v in all dimensions. 1 2

m a x (,)
i i

d d is the

max attribute difference between 1
v and 2

v in dimension i . Calculate the sum of all the

attribute difference of 1
v and 2

v in all dimensions. Use the practical attribute difference

divide the max attribute difference, getting difference proportion. The smaller the

difference proportion is, the higher the similarity is, so use one minus the difference

proportion, getting attribute similarity  2 0 ,1s  .

4.3.3. Depth Similarity: Depth similarity is the similarity between different depth

function callings. Generally speaking, the smaller the depth of function-calling tree nodes,

the more important the function calling of corresponding nodes in origin program is, and

with increasing in the depth of the nodes increasing, the importance would decrease

gradually.

Suppose depth similarity of
1

N (in
1

T) and
2

N (in
2

T ,) is
1

h and
2

h respectively, we

designate the depth similarity of
1

h and
2

h by 3s . Then the definition of 3s is:

1 2

1 2

1 2

1 2

ln ln
1- ,

3 m a x (ln , ln)

1,

h h
h h

s h h

h h

 


 






 (3)

When
1

h is not equal to
2

h , the natural logarithm of depth is used to calculate the

similarity; when
1

h is equal to
2

h , the depth similarity is 1. Thus,  3 0 ,1s  .

When
1

h and
2

h changes, the value of 3s is showed in Figure 3. It could be known

that when h is equal to 1 and any value except 1 have no similarity, which means depth

similarity of root nodes and other nodes is 0, and with the increasing of depth, the

influence of depth difference on depth similarity is decreasing, consistent with actual

situation.

Figure 3. Changing Curves of Similarity of Depth

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

Copyright ⓒ 2015 SERSC 145

Using formula(1), (2) and (3), 1s , 2s and 3s could be calculated. The formula of

calculating similarity s of 1
N and 2

N is:

1 2 3s s s s   (4)

Using above calculating progress, the algorithm of tree
1

T ’s node mapping is showed

in Algorithm2 as followed, and it is the same with
2

T .

Algorithm 2. Node mapping

Step 1 Traverse 1
T . If there are not-traverse nodes in 1

T , traverse the next node, and

execute step2; otherwise, finish mapping; the end of the algorithm.

Step 2 Traverse 2
T .If there are not-traverse nodes in 2

T , traverse the next node, and

execute step3; otherwise, go to step1.

Step 3 Calculate similarity. Use formula(4) to calculate the similarity s  of 1
T and 2

T

in step2; if similarity s s  , then s s  , and record the serial number of nodes in 2
T .

Return to step2.

4.4. Similarity Calculating

Similarity of nodes and mapping nodes have part and whole relationships with the two

codes. Hence, the similarities of nodes and mapping nodes could be combined together to

get the similarity of the whole tree. Method used in this paper is calculating from the

leave nodes, adopting the method from the bottom to the top. Related similarity’s

definition is proposed here.

Definition 5 (Related similarity) Related similarity is the similarity of one code

corresponds of another code, changing with the comparison code.

Suppose there are codes
1

P ,
2

P ,
3

P , generating function-calling trees
1

T ,
2

T ,
3

T .

Mapping results between 1
T and 2

T are different from mapping nodes that are between

1
T and 3

T . In the first situation, the results of similarity combination between nodes and

mapping in 1
T is noted as similarity of 1

T corresponding to 2
T , the same with the second

situation.

Suppose T C is the child tree, N
T C is a tree whose root node is N and T C

S is the

relative similarity of T C . Then:

1

(0 .5)
N N C

n

i

T C T C

i a

len tim es
S S s

len





    (5)

where
N C

T C
S is the relative similarity of the child tree whose root nodes is from N ’s child

nodes N C , which is the similarity of leave nodes and mapping nodes at the beginning.

When N C is leave nodes, the value of
N C

T C
S lies in  0 ,1 , so the value of 0 .5

N C
T C

S （ ） is

in  -0 .5 , 0 .5 . At this time, 0 is the boundary point, and when
N C

T C
S is less than 0.5, it will

bring negative gain, and in vice, it will bring positive gain for the whole. The value of

N C
T C

S is in  -0 .5 , + 0 .5 after calculating. Changing the range of
N C

T C
S into [0,1] by using

formula(6) is needed every time after calculating
N C

T C
S .

0 .5

1

N

N

T C

T C

S
S







 (6)

In formula (5), times is the tim es of nodes N calling the same child nodes N C .

When child nodes is recursive calling, through experiment testing, accurate results

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

146 Copyright ⓒ 2015 SERSC

can be get by supposing the value of times set as 2 could get accurate results. i
le n is

the length of words after child nodes’ participles. a
le n is the word length of the

origin program.  is the adjustment factor when multiple child trees combining with

the similarity of father nodes and s is the similarity of N and the mapping node of

N .

Calculation of relative similarity starts from leave nodes, from the bottom to the top

and repeat the above calculation progress, until T C T , getting relative similarity of T .

Finally, getting the similarity of 1
T and 2

T is get by using calculating the average:

1 2

1 2

2

T T

T T

S S
S


 (7)

5. Experiment

At present, more popular code clone detection tools include JPlag, MOSS, YAP3, etc.

JPlag is better than MOSS in the aspect of detection effect, and its performance is

superior to YAP3 at the same time [25]. Therefore, this paper selects JPlag as the

representation to compare detection results, including two groups of different conditions.

The first group is conducted in an ideal condition. We separate the eleven kinds of

clone approaches described above, and only use an approach for clone at a time. The

average length of programs is 180 lines, while the modified parts account for less than

25% of the original programs. The experimental results are shown in Figure 4.

Experimental results of the first group indicate that the method described in this paper

and JPlag both get good detection effects using clone approaches labeled as ①②③④⑤

which only involve text level. However, for clone approaches labeled as ⑥⑦⑧⑨⑩⑪,

which deepen into program structure level, JPlag shows poor performance due to changes

in program structure to a certain extent, while our method is able to accurately identify the

clone approaches because our method deeply takes the internal structure of programs into

consideration.

Figure 4. Comparison between Eleven Clone Approaches

The second group uses benchmark provided by

http://www.sei.buaa.edu.cn/buaasim to detect code combining clone approaches.

The benchmark dataset is divided into three groups, and programs being cloned are

respectively cross-ref00.c, cross-ref10.c and cross-ref20.c. The first group’s

benchmark dataset is simulated according to eleven kinds of clone approaches in

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

Copyright ⓒ 2015 SERSC 147

this paper, while benchmark dataset of this group derives from the clones after

thoughtful thinking, using advanced clone approaches as far as possible, which has

practical significance. The comparison results as shown in Figure 5-7.

Figure 5. Comparison with Cross-ref00.c

Experimental results of the second group indicate that when the clones use

unknown and advanced clone approaches as much as possible, detection results of

the method described in this paper can always maintain a higher accuracy, while

JPlag gets larger errors in a few contrasts. This indicates our method shows

excellent performance in the practical application.

Figure 6. Comparison with Cross-ref10.c

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

148 Copyright ⓒ 2015 SERSC

Figure 7. Comparison with Cross-ref20.c

6. Conclusion

Compared with traditional methods, code clone detection method described in this

paper considers both properties and structure of programs, which makes clone detection

results more reliable. Without considering overall semantic of programs and syntax tree

established completely, detection accuracy is worse than that of detection methods based

on syntax tree in some cases, but traditional detection methods based on syntax tree are

not suitable for large-scale code clone detection because of high cost in detection.

Our method is only tested in C language, but it can be extended to C++, Java and other

advanced languages. In addition, due to much information stored in function definitions,

information contained in extracted feature vectors is not equal to that contained in original

function definitions. In the process of two function-calling trees node mapping, it is

critical to decide the value of  when adding parent node with child node. This paper

only gets optimal value from detection results, and we can future research how to decide

the value of  in detail in different tree structure in order to further improve the accuracy

of detection.

Acknowledgments

This work is supported by Beijing Higher Education Reform (No. 2013-ms047),

Beijing Forestry University Resources Sharing Course (Data Structure), Beijing

Undergraduate Training Programs for Innovation and Entrepreneurship(No.

S201410022070), and Beijing Forestry University Special Research of Campus

Informatization (Construction of the Teaching Resources Sharing Platform for Program

Design and Algorithms Courses).

References

[1] T. Kamiya, S. Kusumoto and K. Inoue, “CCFinder: A Multi-Linguistic Token Based Code Clone

Detection System for Large Scale Source Code”, IEEE Transactions on Software Engineering, vol. 44,

no. 8, (2002), pp. 654-670.

[2] L. Chao, C. Chen and H. Jia-Wei, “GPLAG: DetecTionof Software Plagiarism by Program Dependence

GraphAnalysis”, Proceedings of ACM SIGKDD, (2006), pp. 872-881.

[3] X. Hao, Y. Haihua and G. Tao, “Code Similarity Detection: A Survey”, Computer Science, vol. 37, no.

8, (2010), pp. 9-14.

[4] E. L. Jones, “Metrics based plagiarism monitoring”, Proceedings of the 6th Annual CCSC Northeastern

Conference on the Journal of Computing in SmallColleges, vol. 16, no. 4, (2001), pp. 253-261.

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

Copyright ⓒ 2015 SERSC 149

[5] Z. Changhai, Y. Haihua and J. Maozhong, “Approach based on compiling optimization and

disassembling to detect program similarity”, Journal of Beijing University of Aeronautics and

Astronautics, vol. 34, no. 6, (2008), pp. 711-715.

[6] K. J. Ottenstein, “An Algorithmic Approach to the Detection and Prevention of Plagiarism”,

SIGCSEBulletin, vol. 8, no. 4, (1976), pp. 30-41.

[7] H. M. Halstead, “Elements of Software Science”, Elsevier, (1977).

[8] H. L. Berghel and D. L. Sallaeh, “Measurements of program similarity in identical task environments”,

Sigplan Notices, vol. 19, (1984), pp. 65-76.

[9] K. J. Otixnstein, “An algorithmic approach to the detection and prevention of plagiarism”, ACM

SIGSCE Bulletin, vol. 8, no. 4, (1976), pp. 30-41.

[10] S. Grier, “A tool that detects plagiarism in Pascal programs”, ACM SIGCSE Bulletin. ACM, vol. 13, no.

1, (1981), pp. 15-20.

[11] J. A. W. Faidhi and S. K. Robinson, “An empirical approach for detecting program similarity and

plagiarism within a university programming environment”, Computers & Education, vol. 11, no. 1,

(1987), pp. 11-19.

[12] D. McCabe, “Levels of Cheating and Plagiarism Remain High”, Center for Academic Integrity, Duke

University, (2005).

[13] J. L. Donaldson, M. Lancaster and P. H. Sposato, “A plagiarism detection system”, ACM SIGCSE

Bulletin. ACM, vol. 13, no. 1, (1981), pp. 21-25.

[14] I. D. Baxter, A. Yahin and L. Moura, “Clone detection using abstract syntax trees”, Software

Maintenance, Proceedings, International Conference on. IEEE, (1998), pp. 368-377.

[15] P. Clough, “Plagiarism in natural and programming languages: an overview of current tools and

technologies”, Research Memoranda: CS-00-05, Department of Computer Science, University of

Sheffield, UK, (2000), pp. 1-31.

[16] S. Engels, V. Lakshmanan and M. Craig, “Plagiarism detection using feature-based neural networks”,

ACM SIGCSE Bulletin. ACM, vol. 39, no. 1, (2007), pp. 4-38.

[17] M. F. Zibran and C. K. Roy, “Towards flexible code clone detection, management, and refactoring in

IDE”, Proceedings of the 5th International Workshop on Software Clones, ACM, (2011), pp. 75-76.

[18] A. Aiken, “Moss (measure of software similarity) plagiarism detection system”, (2000).

[19] L. Prechelt, G. Malpohl and M. Philippsen, “Finding plagiarisms among a set of programs with JPlag”,

Journal of Universal Computer Science, vol. 8, no. 11, (2002), pp. 1016-1038.

[20] M. J. Wise, “Detection of similarities in student program: YAP’ing may be preferable to Plague’ing”,

Proceedings of 23th SIGCSE Technical Symposium, Kansas City, USA, (1992), pp. 268-271.

[21] M. J. Wise, “YAP3: Improved Detection of Similarities in Computer Program and other Texts”, ACM

SIGCSE Bulletin. ACM, vol. 96, (l996), pp. 130-134.

[22] C. K. Roy, J. R. Cordy and R. Koschke, “Comparison and evaluation of code clone detection techniques

and tools: A qualitative approach”, Science of Computer Programming, vol. 74, no. 7, (2009), pp. 470-

495.

[23] G. Whale, “Plague: plagiarism detection using program structure”, Dept. of Computer Science

Technical Report 8805, University of NSW, Kensington, Australasian, (1988).

[24] H. Kikuchi, T. Goto and M. Wakatsuki, “A source code plagiarism detecting method using alignment

with abstract syntax tree elements”, Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), 15th IEEE/ACIS International Conference on. IEEE, (2014),

pp. 1-6.

[25] L. Precheh, G. Malpohl and M. Philippsen, “Finding plagiarisms a-monga set of programs with JPlag”,

Journal of Universal Computer Science, vol. 8, no. 11, (2002), pp. 1016—1038.

Authors

Wei Li, he is an undergraduate student in School of Information

and Technology, Beijing Forestry University. He joined Institute of

Artificial Intelligence in Beijing Forestry University in 2013 as a

research assistant. His main research interests include clone analysis

and software reconstruction.

International Journal of Hybrid Information Technology

Vol.8, No.11 (2015)

150 Copyright ⓒ 2015 SERSC

Dongmei Li, she received the M.S. degree from Institute of

Software, Chinese Academy of Sciences and the Ph.D. degree

from Beijing Jiaotong University. Currently she is an associate

professor in School of Information and Technology, Beijing

Forestry University. Her main research interests include artificial

intelligent, knowledge engineering and semantic web.

Chengjing Qiu, she received the B.S. degree from Northeast

Normal University. Her research interests include software

engineer and artificial intelligence.

Jiajia Hou, she received the bachelor degree from Beijing

forestry University. Currently she is a master student in School

of Information, Renmin University of China. Her main research

interests include intelligent information processing and semantic

web.

