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Abstract 

Most traditional code clone detections have less accurate results because they ignore 

the structure of the program itself, and some of them really think about it by creating a 

complex syntax tree but leading to a high time complexity. Confronting such situation, 

this paper proposes an efficient metric vector-based code clone detection method using 

function-calling tree. Considering the two program code to be detected, feature vectors in 

all defined functions of the two different code are extracted first. Then, two function-

calling trees are created according to the function-calling process and node matches each 

other between two trees, at the same time, the matching similarities are calculated. 

Finally, by using the bottom-up approach and combining similarity values of all child 

nodes, the detection can get the similarity of the two program code to be detected. Our 

experiment selects a set of typical code sample to measure and the results demonstrate 

that, compared the famous JPlag system, it shows better detection effect. 
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1. Introduction 

Code clone is a serious phenomenon in higher education at home and abroad at 

present, especially in programming courses of computer specialty, whose homework 

is mostly handed in the form of electronic version. Because of that, clone costs 

little, and people who copy often just slightly modify other people’s code, instead of 

thorough understanding. As a result, it influences the normal teaching to some 

extent. Therefore, code clone detections have important significance to improving 

teaching effect, the protection for intellectual property rights and so on. At present, 

the authoritative definition of code clone has not been recognized.  An idea is 

proposed in [1] that code clone is a code portion of source files that are identical or 

similar to another. Another is proposed in [2] that two programs are considered 

similar to each other if they satisfy some clone transform approaches. In general, 

code clone approaches [3] can be classified from three aspects, which are the 

equivalent transformation of code layout, syntax and the semantic. Jones [4] and 

Zhao[5] summarizes eleven kinds of clone approaches that often appear in similar 

code. According to the efforts people pay, they are listed as follows from easy to 

difficult: ① complete copy. ② recomposition. ③ modify annotations. ④ constant 

replacement. ⑤ identifier renaming. ⑥ redefine data type. ⑦ statement reordering 

in program block. ⑧ change the sequence of operator or operand in the expression. 

⑨ increase redundancy variables. ⑩ replace control structure for equivalent control 

structure. ⑪ reorder program blocks. 
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These clone approaches are simple and easy to achieve, making no change in the 

structure and function of program, thus providing an important basis for the 

detection method of this paper. 

Using C language as an example, this paper proposes an efficient code clone 

detection method based on feature vector and function-calling tree. The method 

takes function as a unit, and computes the similarity of functions from three aspects. 

Then according to function-calling relations and the similarity between functions, 

the similarity between programs can be calculated. On this basis, this paper 

develops a code clone detection tool based on feature vector and function-calling 

tree aiming at C language. By testing a certain number of typical clone sample set, 

the results demonstrate that the method proposed in this paper can effectively 

identify the eleven kinds of clone approaches, and comparing to the famous JPlag 

system, it shows better detection effect and has practical value in use. 

 

2. Related Work 

Code clone detection originates from foreign countries, mainly experiencing the 

development of two phases: detection method based on attribute counting and 

detection method based on structure measurement. 

Detection method based on attribute counting [6-8] mainly extracts various 

attributes in the program, regardless of program’s internal structure. In 1976, 

Ottenstein [9] proposes a method that detects code clone using attribute counting for 

the first time, as well as uses Halstead metrics to detect the code clone of Fortran 

program. Later, Grier [10] and Faidhi [11] increase the number of statistical 

attributes, and design accuse system. The technique of attribute counting has the 

advantage of high efficiency, but its drawback is obvious, that is, it can cause the 

loss of program’s structure information, and it can’t be able to accurately detect the 

changes in the structure of program. Besides, detection accuracy can’t be improved 

simply by increasing the number of attributes. 

Detection method based on structure measurement [12] measures similarity between 

two programs according to the structure of programs, which requires the analysis about 

internal structure of the program, such as control flow, nesting depth and data 

dependence relations, etc. Donaldson [13] early considers the sequence of statements in 

clone detection system, and characterizes the source program according to the 

appearance sequence of statements. In 1998, D. Baxter [14] proposes a code clone 

detection method based on abstract syntax tree, which conducts syntax parsing on codes 

using C language to generate complete syntax tree, and then compares the similarity 

degree of two syntax trees. Structure measurement technique has the advantage of high 

detection accuracy, but its drawback is obvious, that is, it is inefficient. For a syntax 

tree with N nodes, it needs a computation time of O(N
3
) to compare its subtrees one by 

one. In general, a line of program statements will averagely generate around ten nodes 

of abstract syntax tree, in that way the time complexity of subtree comparison is O(L
4
) 

(L represents the statement number of codes). 

After that, many methods and tools appeared, such as methods based on case 

reasoning [15], neural network [16], optimizing compiler and disassembly [5], IDE 

[17] and so on. Currently, more popular online detection tools are MOSS from 

Stanford university [18], JPlag from University of the State of Baden-Wuerttemberg 

[19] and YAP from university of Sydney [20-21], etc. 

Compared with previous methods [22], the detection method proposed in this 

paper is based on feature vector and function-calling tree. It focuses on various 

inside attributes of functions and function calling relations, which not only detects 

code clone from aspects of attribute counting and structure measurement, but also 

combines the information contained in both methods and generates two 



International Journal of Hybrid Information Technology 

Vol.8, No.11 (2015) 

 

 

Copyright ⓒ 2015 SERSC  141 

corresponding smaller function-calling trees aimed at two pieces of program code to 

be detected. Finally, we traverse the two trees using the bottom-up approach to map 

nodes, and then calculate the similarity of two pieces of code. 

 

3. Method Overview 

Currently, many measurement methods divide detection process into two stages: 

program format conversion and similarity determination [23]. This paper divides the 

whole code clone detection process into four parts: code standardization, generation 

of comparison units, node mapping and similarity calculation. First of all, input 

program segment should be standardized, which can slit code’s word segmentation 

results according to the definition of function. Secondly, attribute information of 

functions and function-calling relations are extracted from segmentation results of 

function definition to generate function-calling tree. Then, taking the node of 

function-calling tree as comparison unit, this paper can establish corresponding 

relations between the nodes of two trees through node mapping, which means for 

each function calling in a program, the method will find the most similar function 

calling to it from programs to be compared and record its similarity. Finally, by 

using the bottom-up approach and combining similarity values of all child nodes, 

the detection can get the similarity of two pieces of programs. Specific code clone 

detection process is shown in Figure 1. 

 

 

Figure 1. The Process of Code Clone Detection 

4. Metric Vector-Based Code Clone Detection Using Function-calling 

Tree 
 

4.1. Code Standardization 

Code standardization can remove useless and interference information, improve the 

efficiency of the follow-up process and make code processing more accurate. Four rules 

are defined here for code standardization: 

Rule 1: Remove the comments and white spaces not belonging to the output. 

Rule2: Restore macro definition and redefine, such as that types defined by typedef 

will be restored to the original type. 
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Rule3: Replace constants types, such as that the const type constants will be replaced 

by constant values. 

Rule4: Convert all the control structures like: 

for (sentence1; sentence2; sentence3) sentence4 

to control structures like: 

{sentence1; while (sentence2){{ sentence4} sentence3;}} 

Some clone based on text level clone could be filtered out via code standardization, 

while some common clone are not only based on text level, but also deep into the inner 

structure of codes. 

 

4.2. Generation of Comparison Units 

Different from those code clone detection based on syntax tree [14, 24], we use a kind 

of special function-calling tree as the middle program of code clone detection, in which 

the nodes of the tree are treated as the comparison units. In order to describe the 

generation of function-calling trees, related definitions are proposed firstly. 

Definition 1(Function sets) Suppose F  represents a function set. F is the sets of all 

the functions f  defined in code P . 

Definition 2(Function-calling sets) Suppose c a ll
f  represents function calling sets. c a ll

f  

is the function sets that are called by function f  and satisfying c a ll
f F . 

Definition 3(Feature vector) Suppose feature vector is represented by v  and every 

dimension in it is d . v  is a multidimensional vector, extracted from the definition of 

function f , consisting of some features of f . Information in v  includes key words, 

operators, identifier, constants, arrays, structs, selection structure and loop structure. Each 

function’s corresponding dimension of v  is the same. 

Definition 4(Tree node) Suppose tree nodes is N . N  represents each function-

calling in the program, including corresponding function f ’s feature vector v  and 

function-calling sets c a ll
f . 

We present the generation algorithm of functional-calling tree by using the above 

definitions, as it showed in Algorithm 1. 

Algorithm 1. Generation of function-calling tree 

Step 1 Determine the root nodes. Corresponding functions of root nodes is the entry 

function of code, which is usually called main, or functions specialized by others, using 

root nodes as current nodes. 

Step 2 Generate of child nodes. Check whether the function-calling tree of current 

nodes is void or not; if it is void, go to step 3, otherwise: 

 If there are still unread functions in the function-calling sets, call the next 

function, and use it as the current node. Then go to step 2;( Recursive calls are 

handled specially). 

 If all the function-calling sets have been read, go to step 3. 

Step 3 Finish generating current nodes. All the current nodes and its child nodes have 

been generated; return the results. 

For instance, function-calling tree’s structure generated by the codes in Figure 2(a) is 

showed in Figure 2(b). 
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Figure 2. Samples of Function-calling Tree Generation 

4.3. Node Mapping 

Node mapping is the core of clone detection discussed in this paper. Two program 

code which is going to be detected generate two function-calling tree by the former two 

steps. Node mapping builds a corresponding relationship in nodes of two trees, namely 

that every function calling in a code finds out the most similar function calling in 

programs which are going to be compared. 

Three factors, direction similarity, attribute similarity and depth similarity, are taken 

into consideration in calculation of node mapping. Suppose two nodes 
1 1

N T ,
2 2

N T , 

contain feature vector 

1 1 1 1 2 1
( , , , )

n
v d d d , 2 2 1 2 2 2

( , , , )
n

v d d d  

The detail calculations of the three factors, direction similarity, attribute similarity and 

depth similarity, are decribed as followed. 

 

4.3.1. Direction Similarity: Owing to the directional property of the vector, similarity 

can be judged according to the direction of multidimensional vectors in coordinate 

system. Suppose the similarity of feature vector 1
v , 2

v  is 1s , then: 

1 2

1 2

1 c o s
v v

s
v v




 


                                             (1) 

The smaller the angle between 1
v  and 2

v  is, the closer the direction is and the more 

similarity is; the lower the vice. Because that every value of dimension of 1
v  and 2

v is 

larger than or equal to 0, so  1 0 ,1s  . 

 

4.3.2. Attribute Similarity: Attribute similarity is improved by Manhattan Distance 

based on vector, recording the practical difference degree between two programs. 

Suppose the attribute similarity of feature vector 1
v , 2

v is 2s , and
 
the definition of 2s  is 

defined as followed: 
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1 2

1

1 2

1
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n
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i

n
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s
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





 





                                       (2) 

1 2i i
d d  is the distance of 1

v  and 2
v in dimension i . We use the absolute value of 

1 2i i
d d  as the total attribute difference of 1

v  and 2
v in all dimensions. 1 2

m a x ( , )
i i

d d  is the 

max attribute difference between 1
v  and 2

v  in dimension i . Calculate the sum of all the 

attribute difference of 1
v  and 2

v in all dimensions. Use the practical attribute difference 

divide the max attribute difference, getting difference proportion. The smaller the 

difference proportion is, the higher the similarity is, so use one minus the difference 

proportion, getting attribute similarity  2 0 ,1s  . 

 

4.3.3. Depth Similarity: Depth similarity is the similarity between different depth 

function callings. Generally speaking, the smaller the depth of function-calling tree nodes, 

the more important the function calling of corresponding nodes in origin program is, and 

with increasing in the depth of the nodes increasing, the importance would decrease 

gradually. 

Suppose depth similarity of 
1

N (in 
1

T ) and 
2

N (in 
2

T ,) is 
1

h  and 
2

h  respectively, we 

designate the depth similarity of 
1

h  and 
2

h  by 3s . Then the definition of 3s  is: 

1 2

1 2

1 2

1 2

ln ln
1- ,

3 m a x (ln , ln )

1,

h h
h h

s h h

h h

 


 






                            (3) 

When 
1

h  is not equal to 
2

h , the natural logarithm of depth is used to calculate the 

similarity; when 
1

h  is equal to 
2

h , the depth similarity is 1. Thus,  3 0 ,1s  . 

When 
1

h  and 
2

h  changes, the value of 3s  is showed in Figure 3. It could be known 

that when h  is equal to 1 and any value except 1 have no similarity, which means depth 

similarity of root nodes and other nodes is 0, and with the increasing of depth, the 

influence of depth difference on depth similarity is decreasing, consistent with actual 

situation. 

 

 

Figure 3. Changing Curves of Similarity of Depth 
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Using formula(1), (2) and (3), 1s , 2s  and 3s  could be calculated. The formula of 

calculating similarity s  of 1
N  and 2

N  is: 

1 2 3s s s s                                                       (4) 

Using above calculating progress, the algorithm of tree 
1

T ’s node mapping is showed 

in Algorithm2 as followed, and it is the same with 
2

T . 

Algorithm 2. Node mapping 

Step 1 Traverse 1
T . If there are not-traverse nodes in 1

T , traverse the next node, and 

execute step2; otherwise, finish mapping; the end of the algorithm. 

Step 2 Traverse 2
T  .If there are not-traverse nodes in 2

T , traverse the next node, and 

execute step3; otherwise, go to step1. 

Step 3 Calculate similarity. Use formula(4) to calculate the similarity s   of 1
T  and 2

T  

in step2; if similarity s s  , then s s  , and record the serial number of nodes in 2
T . 

Return to step2. 

 

4.4. Similarity Calculating 

Similarity of nodes and mapping nodes have part and whole relationships with the two 

codes. Hence, the similarities of nodes and mapping nodes could be combined together to 

get the similarity of the whole tree. Method used in this paper is calculating from the 

leave nodes, adopting the method from the bottom to the top. Related similarity’s 

definition is proposed here. 

 

Definition 5 (Related similarity) Related similarity is the similarity of one code 

corresponds of another code, changing with the comparison code. 

Suppose there are codes 
1

P ,
2

P ,
3

P , generating function-calling trees 
1

T ,
2

T ,
3

T .  

Mapping results between 1
T  and 2

T  are different from mapping nodes that are between 

1
T  and 3

T . In the first situation, the results of similarity combination between nodes and 

mapping in 1
T  is noted as similarity of 1

T  corresponding to 2
T , the same with the second 

situation. 

Suppose T C  is the child tree, N
T C  is a tree whose root node is N and T C

S  is the 

relative similarity of T C . Then: 

1

( 0 .5 )
N N C

n

i

T C T C

i a

len tim es
S S s

len





                                      (5) 

where 
N C

T C
S  is the relative similarity of the child tree whose root nodes is from N ’s child 

nodes N C , which is the similarity of leave nodes and mapping nodes at the beginning. 

When N C  is leave nodes, the value of 
N C

T C
S  lies in  0 ,1 , so the value of 0 .5

N C
T C

S （ ） is 

in  -0 .5 , 0 .5 . At this time, 0 is the boundary point, and when 
N C

T C
S  is less than 0.5, it will 

bring negative gain, and in vice, it will bring positive gain for the whole. The value of 

N C
T C

S  is in  -0 .5 , + 0 .5 after calculating. Changing the range of 
N C

T C
S  into [0,1] by using 

formula(6) is needed every time after calculating 
N C

T C
S . 

0 .5

1

N

N

T C

T C

S
S







                                                        (6) 

In formula (5), times is the tim es  of nodes N  calling the same child nodes N C . 

When child nodes is recursive calling, through experiment testing, accurate results 
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can be get by supposing the value of times set as 2 could get accurate results. i
le n  is 

the length of words after child nodes’ participles. a
le n  is the word length of the 

origin program.   is the adjustment factor when multiple child trees combining with 

the similarity of father nodes and s  is the similarity of N  and the mapping node of 

N . 

Calculation of relative similarity starts from leave nodes, from the bottom to the top 

and repeat the above calculation progress, until T C T , getting relative similarity of T . 

Finally, getting the similarity of 1
T  and 2

T  is get by using calculating the average: 

1 2

1 2

2

T T

T T

S S
S


                                                         (7) 

 

5. Experiment 

At present, more popular code clone detection tools include JPlag, MOSS, YAP3, etc. 

JPlag is better than MOSS in the aspect of detection effect, and its performance is 

superior to YAP3 at the same time [25]. Therefore, this paper selects JPlag as the 

representation to compare detection results, including two groups of different conditions. 

The first group is conducted in an ideal condition. We separate the eleven kinds of 

clone approaches described above, and only use an approach for clone at a time. The 

average length of programs is 180 lines, while the modified parts account for less than 

25% of the original programs. The experimental results are shown in Figure 4. 

Experimental results of the first group indicate that the method described in this paper 

and JPlag both get good detection effects using clone approaches labeled as ①②③④⑤ 

which only involve text level. However, for clone approaches labeled as ⑥⑦⑧⑨⑩⑪, 

which deepen into program structure level, JPlag shows poor performance due to changes 

in program structure to a certain extent, while our method is able to accurately identify the 

clone approaches because our method deeply takes the internal structure of programs into 

consideration. 

 

 

Figure 4. Comparison between Eleven Clone Approaches 

The second group uses benchmark provided by 

http://www.sei.buaa.edu.cn/buaasim to detect code combining clone approaches. 

The benchmark dataset is divided into three groups, and programs being cloned are 

respectively cross-ref00.c, cross-ref10.c and cross-ref20.c. The first group’s 

benchmark dataset is simulated according to eleven kinds of clone approaches in 
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this paper, while benchmark dataset of this group derives from the clones after 

thoughtful thinking, using advanced clone approaches as far as possible, which has 

practical significance. The comparison results as shown in Figure 5-7. 

 

 

Figure 5. Comparison with Cross-ref00.c 

Experimental results of the second group indicate that when the clones use 

unknown and advanced clone approaches as much as possible, detection results of 

the method described in this paper can always maintain a higher accuracy, while 

JPlag gets larger errors in a few contrasts. This indicates our method shows 

excellent performance in the practical application. 

 

 

Figure 6. Comparison with Cross-ref10.c 
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Figure 7. Comparison with Cross-ref20.c 

6. Conclusion 

Compared with traditional methods, code clone detection method described in this 

paper considers both properties and structure of programs, which makes clone detection 

results more reliable. Without considering overall semantic of programs and syntax tree 

established completely, detection accuracy is worse than that of detection methods based 

on syntax tree in some cases, but traditional detection methods based on syntax tree are 

not suitable for large-scale code clone detection because of high cost in detection. 

Our method is only tested in C language, but it can be extended to C++, Java and other 

advanced languages. In addition, due to much information stored in function definitions, 

information contained in extracted feature vectors is not equal to that contained in original 

function definitions. In the process of two function-calling trees node mapping, it is 

critical to decide the value of   when adding parent node with child node. This paper 

only gets optimal value from detection results, and we can future research how to decide 

the value of   in detail in different tree structure in order to further improve the accuracy 

of detection. 
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