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Abstract 

Performance analysis of process plays a significant role in improving the overall 

efficiency of any system. Usually, this task is accomplished either by system level 

commands or user space applications, based on procfs or sysfs file system. There are 

many creative techniques and popular commercial applications available to perform this 

management and fine tuning of process. But, these existing user space based mechanisms 

are limited in scope and often fail to provide the required process specific data to user. In 

order to avoid this limitation, we have proposed a new linux kernel module (LKM) based 

approach, which can be potentially used to track any process specific data in real time. In 

this approach, the user does not require any separate tool but the kernel module to gather 

all essential information. Further, the competence of this module based technique can be 

enhanced by incorporating additional functionalities and thereby making it a full-fledged 

multi process abstraction layer to cater the needs of any high performance embedded 

platform. 

 

Index Terms: Performance Analysis, Kernel Module, System Security, Process, Device 

Driver 
 

1. INTRODUCTION 

LINUX is a multiuser, multitasking and multiprocessing operating system. It is fast, 

consistent, reliable and protects the users from problems related to viruses and other 

malwares. This OS is ubiquitous in almost all hardware platforms and architectures, 

ranging from small embedded boards, mobile handsets to sophisticated mainframes and 

Mars rovers [13]. Being an open-source [1], it has become the default platform for many 

developers and researchers. Linux has no license fees for most softwares unlike other 

operating systems. It provides support for all major file systems. It’s ease of installation, 

upgradation, and facility of accessing different software components through central 

repositories makes this popular and user friendly. Major proprietary Windows softwares 

can also be used in Linux using the softwares like wine and virtualbox. Moreover there 

are many global developer communities, providing instant support for any Linux related 

issues. 

With the increase in popularity [2] across different segments of society, it is crucial and 

challenging task to know the various system parameters of interest. There are various 

commands or applications available to know the system statistics of a process, some of 

them are mentioned in Table 1. The common idea behind these commands is that they 

read the existing procfs or sysfs to collect the required statistics and then present them in a 

user friendly way. 
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Table 1. Linux Performance Analysis Commands 

Sl. NO COMMAND  USAGE  

1 top  cpu, memory usage of processes.  

2 vmstat virtual memory statistics of process.  

3 lsof list of open files by process.  

4 tcpdump  network statistics  

5 iptraf real-time network statistics  

6 netstat list of open ports  

7 strace system call used by process  

8 ps process statistics  

9 pmap  process memory usage  

10 sar collect system activities  

11 wireshark analyze network packets captured  

12 ethereal shows live network statistics  

 
We observed several applications for process monitoring [3, 4, 7-9], and various 

methodologies for measuring process performance [10-12]. Some of those applications 

are good for network monitoring, some are for memory monitoring and some good for 

others. But hardly any single application was found, giving all real time process 

information needed by user on request. To overcome this limitation, we have proposed a 

generalized LKM based framework, which provides all process related information to 

user on the fly. This approach is potentially self-sufficient to give all process statistics, 

under a common kernel module interface. Moreover it facilitates to incorporate more 

features based on user and industry requirements. 

The rest of the paper is organized as follows: First we give a short introduction to 

device driver and kernel in linux. Then we introduce our LKM based process monitoring 

architecture with results. Finally we conclude with future work and references. 

 

2.  DEVICE DRIVERS IN LINUX 

In a linux machine, kernel is the heart of the whole system. It is a monolithic [5] type, 

with a very large and complex body of code, consisting of many device drivers, making 

a particular piece of hardware respond to a well defined internal programming interface, 

hiding the details of how the device works [6]. User space application talks to kernel 

through a set of system calls, which are mapped to device specific operations to act on 

the real hardware.  

To a programmer, system calls are like other ordinary functions, but in reality this 

involves switching from user space to kernel space. These system calls behave as 

function level abstraction for the underlying hardware, hiding the detail level control 

flow. Everything in linux is a file, so the users just need to call the same API, no matter 

whether to access some hardware component or some normal text file. For detail 

understanding, one has to refer linux virtual file system(VFS) layer design and data 

structures in kernel. The VFS layer presents hardware as a collection file systems types 

in a hierarchical manner. The actual hardware elements are presented to user space 

through some device nodes under /dev with major and minor numbers included. 

Basically kernel works in two modes called the process context and the interrupt 

context. Applications running in the system, use application specific APIs to accomplish 

the task. These APIs in turn call a set of system calls which uses the kernel on behalf of 

application process. In this mode, the kernel is said to be run in process context.  Kernel 

also manages all the system hardware. When any part of hardware needs kernel 
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attention, it raises some hardware interrupts. These hardware interrupts in turn interrupts 

the kernel. In this mode kernel is said to be run in interrupt context. To provide 

synchronization across the whole system, kernel may disable some or all interrupts, till 

the actual interrupt processing gets completed. All the interrupts are mapped to some 

predefined interrupt number inside the interrupt Table. Entries in this table map to 

interrupt servicing routine (ISR), which performs the real operation on behalf of process 

or hardware. 

Each process running in user space is represented in kernel by struct task_struct, which 

contains all information relevant to the process. Process often run with multiple threads in 

a multithreaded program.  But in kernel all these threads are represented as independent 

task struct. Each of these threads include unique program counter, process stack and set of 

processor registers.  

Life of a process starts with system call fork(), which creates a child process. The new 

child process is an exact copy of the parent process, but with unique child PID (process 

identifier). Often, after a fork() we require to run a new program. The exec() series of 

system calls are used for this purpose. In kernel, fork() is implemented using system call 

clone(). The program life cycle ends with system call exit(). The parent process can 

enquire the status of the terminated child process using wait() system call. 

The kernel stores the list of all processes in a single circular liked list called the task 

list. Each element of this task list is a process specific descriptor of type struct 

task_struct. This struct is a very complex data structure having all OS parameters and 

data, kept under clean, well defined structure boundary. Our process monitoring system 

uses this kernel data structure to obtain the required data needed in monitoring the 

process. 

 

3. LINUX REAL-TIME PROCESS MONITOR IMPLEMENTATION 

Our process monitoring is broadly classified into two sections, the user space data 

collection and the kernel space module. A character device node (/dev/myNode) is used to 

communicate between these two units. The user space application opens the character 

node and passes appropriate request string to get the required information for the process. 

 

3.1 User space Data Collection System 

Several process parameters can be collected by our design, but for the simplicity and 

ease of illustration, we restrict to following list of process statistics in this work and 

depicted the procedure to retrieve them.  

 

void show_opt ( )  { 

        printf ( ” 1 . process name 

                       2 . group id 

                       3 . parent process 

                       4 . process group leader 

                       5 . child processes created 

                       6 . process memory segments 

                       7 . virtual memory mapping 

                       8 . process priority 

                       9 . process state 

                      10 . cpu used by process 

                      11 . total fault count of process 

                      12 . process start time 

                      13 . process link count  \n ” ) ; 

       printf (” Enter Option : ” ) ; 
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} 

 
Our user space code is based on C. As discussed before, the main body of the source 

code requests the LKM to get data through the character device node /dev/myNode. We 

pass process id (PID) and request token as character string to module. This module checks 

our passed token and passes the result to user space application through the same buffer 

buf passed. Here we are not using any separate read system call after write to make it 

simple and faster. 

 

int main ( )  { 

    char buf [700] , opt [50] ; 

    int  rt ; 

 

    //open device node of LKM  

    int fd=open(”/dev/myNode” ,O_RDWR) ; 

    printf (”Enter Process PID : ” ) ; 

    scanf (”%s”, buf ) ; 

 

    //get option 

    show_opt( ) ; scanf (”%s ”, opt ) ; 

 

    //pass message string to LKM 

    sprintf (buf ,”%s %s ”, buf , opt) ; 

    rt = write (fd , buf , strlen(buf) ) ; 

 

    //print result 

    if ( rt ==1) 

        printf (”%s ”, buf ) ; 

 

    close(fd) ; 

    return 0 ; 

} 

 
3.2 Kernel Module Code  
 

3.2.1 Registering Char Driver  

In our kernel code, first we register a dynamic character device driver and create the 
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device node /dev/myNode in user space, through which user space application talks to 

module. 

 

static struct class  * cl ; 

static struct cdev  * cdev ; 

dev_t dev ; 

struct semaphore mysem; 

static int start( ) 

{ 

     printk (KERN_ALERT  ”Initializing Module ” ) ; 

 

    //get major no 

    alloc_chrdev_region (&dev ,0 ,1 ,”myNode” ) ; 

 

    //regisiter device 

    cdev = cdev_alloc ( ) ; 

    cdevops = &fops ; 

    cdev owner = THIS_MODULE; 

    cdev_add (cdev ,dev ,1) ; 

 

    //creating device node 

    cl = class_create (THIS_MODULE, ”myNode ” ) ; 

    device_create (cl , NULL, cdevdev , NULL, ”myNode ” ) ; 

 

    //initialize semaphore 

    sema_init (&mysem, 1) ; 

    return 0 ; 

} 
 

Semaphore mysem is used here for synchronization from simultaneous access to 

module. As per the design, the module services single request at a time, while other 

requests have to wait before getting access. However this singleton approach can be 

changed easily with minor code changes for simultaneous access from multiple user 

applications. 

 

static void leave( ) 

{ 

    printk (KERN_ALERT, ”Leaving Module ” ) ; 

    device_destroy (cl, dev) ; 

    class_destroy (cl) ; 

    cdev_del (cdev) ; 

    unregister_chrdev_region (cdevdev , 1) ; 

} 

module init ( s t a r t ) ; 

module exit ( leave ) ; 

 
3.2.2 Driver Interface for User Space  

All access to driver module like open, write, close to /dev/myNode occurs through 

kernel interface struct file_operations. Semaphore mysem is used for singleton access to 

module. 
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struct file_operations fops = { 

     . owner = THIS_MODULE, 

     . open = myopen , 

     . release = myrelease , 

     . write = mywrite , 

}; 

int myopen (struct inode  * inode ,  struct file  * file ) 

{ 

    //block from simultaneous access 

    down_interruptible (&mysem) ; 

    return 0 ; 

} 

  

int myrelease (struct inode * inode , struct file   * file ) 

{ 

    //release semaphore 

    up(&mysem) ; 

    return 0 ; 

} 

#define MAX 700 

static char mybuff [MAX] = { 0 } ; 

  

int mywrite (struct  file  * file , char * buff, size_t count, loff_t  * pos) 

{ 

    int val , rpid ; 

    char *  to, * val ; 

 

    //copy buffer received 

    memset (mybuff, 0, 100) ; 

    strncpy (mybuff , buff , count ) ; 

 

    //get PID and OPTION passed 

    to = &mybuff [0] ; 

    val = strsep (&to , ” ” ) ; 

    rpid = simple_strtol (val, NULL, 10) ; 

    val = strsep (&to, ” ”) ; 

    opt = simple_strtol (val ,NULL, 10) ; 

 

    return ret ; 

} 

 

3.2.3 Main logic to process query  

Inside kernel handler mywrite we find task_struct of process, whose PID is passed. For 

more detail and implementation of task_struct refer linux documentation [1, 5, 6]. 

 

//find the task_struct 

for_each_process(task) { 

    //compare process pid 
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    if (rpid == task->pid) { 

         ret =1; 

         break; 

    } 

} 
 

Then we find out the information needed based on the option value received from user 

space. The kernel logic to evaluate various process information is shown below, but for 

simplicity detail code snapshot is omitted in this literature. 

 

Case 1: Finding Process Name  

strncpy(buff,task->comm, strlen(task->comm));  

 

Case 2: Finding Group Id 

snprintf(buff,sizeof(buff), "%d ",task->tgid);  

 

 

 

Case 3: Finding Parent Process  

snprintf(buff,MAX, "Process:%s with Pid=%d ", 

               task->parent->comm,  

               task->parent->pid); 

 

Case 4: Finding Group Leader  

snprintf(buff,MAX, "Process:%s with Pid=%d ", 

               task->group_leader->comm,  

               task->group_leader->pid); 

 

Case 5: Finding the List of Child Processes Created  

list_for_each(trav, &(task->children)){ 

    t = list_entry(trav, struct task_struct, sibling); 

    count = strlen(buff); 

    snprintf(buff+ count, MAX, "%d ", t->pid); 

} 

 

Case 6: Finding Process Memory Segments  

snprintf (buff,MAX,  

               "Code Segment: 0x%lx - 0x%lx \n 

                 Date Segment: 0x%lx - 0x%lx \n 

                 Heap Segment: 0x%lx \n 

                 Stack Segment: 0x%lx\n", 

                 task->mm->start_code,  

                 task->mm->end_code,  

                 task->mm->start_data,  

                 task->mm->end_data,  

                 task->mm->start_brk,  

                 task->mm->start_stack); 

 

Case 7: Finding Process Virtual Memory Mapping 
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snprintf(buff, MAX, "\nTotal no of vmas = %d\n", task->mm->map_count); 

for (vma = task->mm->mmap; vma; vma = vma->vm_next) { 

    count = strlen(buff); 

    snprintf(buff+ count, MAX, "0x%lx - 0x%lx\n", vma->vm_start, vma->vm_end); 

} 

 

Case 8: Finding Process Priority  

snprintf(buff,MAX, 

               "Static Priority(nice)=%d \n  

                 Dynamic Priority=%d \n  

                Normal Priority=%d \n",  

                task->prio,  

                task->static_prio,  

                task->normal_prio);  

 

Case 9: Finding Process Scheduling Policy  

if(task->policy == TASK_RUNNING) 

    snprintf(buff,MAX, "TASK_RUNNING"); 

else if(task->policy == TASK_INTERRUPTIBLE) 

    snprintf(buff,MAX, "TASK_INTERRUPTIBLE"); 

else if(task->policy == TASK_UNINTERRUPTIBLE) 

    snprintf(buff,MAX, "TASK_UNINTERRUPTIBLE"); 

else if(task->policy == TASK_STOPPED) 

    snprintf(buff,MAX, "TASK_STOPPED"); 

else if(task->policy == EXIT_ZOMBIE) 

    snprintf(buff,MAX, "TASK_ZOMBIE"); 

 

Case 10: Finding Cpu Used  

snprintf(buff,MAX,"\nCPU used = %d\n", task_cpu(task));  

 

Case 11: Finding Major and Minor Faults  

snprintf(buff,MAX, 

             "No of Major faults = %d \n 

              No of Minor faults = %d \n",  

              task->maj_flt,  

              task->min_flt); 

 

Case 12: Finding Process Start Time  

snprintf(buff,MAX,"TIME: %.2lu:%.2lu:%.2lu:%.6lu \r\n", 

                                   (task->start_time.tv_sec / 3600) % (24), 

                                   (task->start_time.tv_sec / 60) % (60), 

                                   task->start_time.tv_sec % 60, 

                                   task->start_time.tv_nsec / 1000);  

 

Case 13: Finding Process Link Count  

snprintf(buff,MAX,"\nLink count = %d \n", task->link_count);  

 

3.2.3 Kernel Makefile 

Given below the kernel makefile in it’s simplest form to build the loadable kernel 

module. This Makefile builds testLKM.c and generates module testLKM.ko. 
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obj-m += test.o 

all: 

        make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules 

 

clean: 

        make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean  

 

4.  RESULTS  

After the module gets inserted, the user is expected to get process information of any 

arbitrary process of interest, which is shown as an example for PID 16526. 

 
narmada$ sudo insmod testLKM.ko 

narmada$ sudo ./a.out 

 

Enter Process PID : 16526 

 

1. process name 

2. group id 

3. parent process 

4. group leader 

5. child processes 

6. process memory segments 

7. process virtual memory mapping 

8. process priority 

9. process state 

10. cpu used 

11. No. of major and minor faults 

12. start time 

13. link count 

 

Enter Options : 1 

   gnome-pty-helper 

 

Enter Options : 6 

    Code Segment : 0x400000 -  0x4027c4 

    Date Segment : 0x602e18 -  0x603200 

    Heap Segment : 0xb68000 

    Stack Segment : 0x7fff9f6112e0 

 

Enter Options : 7 

    Total no of vmas = 5 

 

    0x7f3ca70f9000 -  0x7f3ca7105000 

    0x7f3ca7105000 -  0x7f3ca7304000 

    0x7f3ca7304000 - 0x7f3ca7305000 

    0x7f3ca7305000 -  0x7f3ca7306000 

    0x7f3ca7306000 -  0x7f3ca74bb000 

 

Enter Options : 11 

    No of Major f a u l t s =0 

    No of Minor f a u l t s =745 
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Being implemented entirely in kernel space, this approach is a simple and low-

overhead process for the performance evaluation of a system. In comparison with other 

approaches, it takes less time to retrieve the data. Here, one just need to call a single 

system-call from userspace application. Based on the requirement, further features of 

interest can be added to this approach and hence can be incorporated in any high or 

middle level languages. 

 

5. EVALUATION  

To validate our design, we selected a system having 2.5GHz, 64-bit, i5-processor with 

4GB RAM, running Ubuntu12 Linux distribution with kernel version-3.13. We measured 

the overall time required to capture the various process parameters and it’s contribution 

towards the overall system load. The time was measured in microseconds, using libc call 

gettimeofday. We called gettimeofday before passing the request string to kernel and again 

immediately after retrieving the result. The difference between both time values, gives the 

time required to capture the process parameters. Table 2 shows this final result in 

microseconds for all the parameters collected. 

 

 

 

 
Table 2. Time Taken to Get Various Process Parameters 

Sl. No. Parameters Time(in microseconds) 
1 process name  82 

2 group id  120 

3 parent process  71  

4 group leader  101 

5 child process  147 

6 memory segments  110 

7 process priority  92 

8 process state  83 

9 cpu used  83 

10 major and minor faults  96 

11 start time  94 

12 link count  83 

 

The time taken for most of the parameters was found to be less than 100 microseconds, 

except for retrieving the list of child processes, because it involves lookup in multiple 

process task entries. This approach’s contribution on system load was found to be 

negligible as it’s entire logic is in kernel space. Hence, we did not include this data in this 

paper. 

 

6. FUTURE WORK   

This paper depicts the procedure to collect some simple process specific data without 

depending on any user space application or file system. However, many advance features 

can be included in the later versions as a future work. Some of them are mentioned below. 

1. Client server based multisystem single server data collection approach to be added. 

2. Changing the process parameters through this kernel interface. 

3. System alarm implementation, when process parameters exceeds threshold. 

4. Finding of different benchmarks, such as top 10 processes thrashing and, occupying 

more memory etc. 

5. Including these new important process parameters to proc file system, so that some 
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script can process them in hourly, daily and monthly basis. 

 

7. CONCLUSION  

Our LKM based process monitoring system has the potential to provide user, the total 

health of any process, running in the system. Understanding of these real time system 

parameters, can effectively identify the processes, which are malfunctioning and need 

immediate user attention. It ensures the safety of the whole system, from the analysis of 

kernel level data collected. Further, it can be used as a potential solution for advance 

detection and poisoning of the machine from the applications running. Numerous features 

can be added to this procedure to extend it’s functionalities and there by making it more 

applicable for a full fledged monitoring tool. 
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