
International Journal of Hybrid Information Technology

Vol.8, No.10 (2015), pp.319-330

http://dx.doi.org/10.14257/ijhit.2015.8.10.29

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Design of a Loadable Kernel Module based Process Performance

Analyzer

Barun Kumar Parichha

Juniper Networks India R&D Lab,

Bangalore, INDIA 560 075

barun.parichha@gmail.com

Abstract

Performance analysis of process plays a significant role in improving the overall

efficiency of any system. Usually, this task is accomplished either by system level

commands or user space applications, based on procfs or sysfs file system. There are

many creative techniques and popular commercial applications available to perform this

management and fine tuning of process. But, these existing user space based mechanisms

are limited in scope and often fail to provide the required process specific data to user. In

order to avoid this limitation, we have proposed a new linux kernel module (LKM) based

approach, which can be potentially used to track any process specific data in real time. In

this approach, the user does not require any separate tool but the kernel module to gather

all essential information. Further, the competence of this module based technique can be

enhanced by incorporating additional functionalities and thereby making it a full-fledged

multi process abstraction layer to cater the needs of any high performance embedded

platform.

Index Terms: Performance Analysis, Kernel Module, System Security, Process, Device

Driver

1. INTRODUCTION

LINUX is a multiuser, multitasking and multiprocessing operating system. It is fast,

consistent, reliable and protects the users from problems related to viruses and other

malwares. This OS is ubiquitous in almost all hardware platforms and architectures,

ranging from small embedded boards, mobile handsets to sophisticated mainframes and

Mars rovers [13]. Being an open-source [1], it has become the default platform for many

developers and researchers. Linux has no license fees for most softwares unlike other

operating systems. It provides support for all major file systems. It’s ease of installation,

upgradation, and facility of accessing different software components through central

repositories makes this popular and user friendly. Major proprietary Windows softwares

can also be used in Linux using the softwares like wine and virtualbox. Moreover there

are many global developer communities, providing instant support for any Linux related

issues.

With the increase in popularity [2] across different segments of society, it is crucial and

challenging task to know the various system parameters of interest. There are various

commands or applications available to know the system statistics of a process, some of

them are mentioned in Table 1. The common idea behind these commands is that they

read the existing procfs or sysfs to collect the required statistics and then present them in a

user friendly way.

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

320 Copyright ⓒ 2015 SERSC

Table 1. Linux Performance Analysis Commands

Sl. NO COMMAND USAGE

1 top cpu, memory usage of processes.

2 vmstat virtual memory statistics of process.

3 lsof list of open files by process.

4 tcpdump network statistics

5 iptraf real-time network statistics

6 netstat list of open ports

7 strace system call used by process

8 ps process statistics

9 pmap process memory usage

10 sar collect system activities

11 wireshark analyze network packets captured

12 ethereal shows live network statistics

We observed several applications for process monitoring [3, 4, 7-9], and various

methodologies for measuring process performance [10-12]. Some of those applications

are good for network monitoring, some are for memory monitoring and some good for

others. But hardly any single application was found, giving all real time process

information needed by user on request. To overcome this limitation, we have proposed a

generalized LKM based framework, which provides all process related information to

user on the fly. This approach is potentially self-sufficient to give all process statistics,

under a common kernel module interface. Moreover it facilitates to incorporate more

features based on user and industry requirements.

The rest of the paper is organized as follows: First we give a short introduction to

device driver and kernel in linux. Then we introduce our LKM based process monitoring

architecture with results. Finally we conclude with future work and references.

2. DEVICE DRIVERS IN LINUX

In a linux machine, kernel is the heart of the whole system. It is a monolithic [5] type,

with a very large and complex body of code, consisting of many device drivers, making

a particular piece of hardware respond to a well defined internal programming interface,

hiding the details of how the device works [6]. User space application talks to kernel

through a set of system calls, which are mapped to device specific operations to act on

the real hardware.

To a programmer, system calls are like other ordinary functions, but in reality this

involves switching from user space to kernel space. These system calls behave as

function level abstraction for the underlying hardware, hiding the detail level control

flow. Everything in linux is a file, so the users just need to call the same API, no matter

whether to access some hardware component or some normal text file. For detail

understanding, one has to refer linux virtual file system(VFS) layer design and data

structures in kernel. The VFS layer presents hardware as a collection file systems types

in a hierarchical manner. The actual hardware elements are presented to user space

through some device nodes under /dev with major and minor numbers included.

Basically kernel works in two modes called the process context and the interrupt

context. Applications running in the system, use application specific APIs to accomplish

the task. These APIs in turn call a set of system calls which uses the kernel on behalf of

application process. In this mode, the kernel is said to be run in process context. Kernel

also manages all the system hardware. When any part of hardware needs kernel

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

Copyright ⓒ 2015 SERSC 321

attention, it raises some hardware interrupts. These hardware interrupts in turn interrupts

the kernel. In this mode kernel is said to be run in interrupt context. To provide

synchronization across the whole system, kernel may disable some or all interrupts, till

the actual interrupt processing gets completed. All the interrupts are mapped to some

predefined interrupt number inside the interrupt Table. Entries in this table map to

interrupt servicing routine (ISR), which performs the real operation on behalf of process

or hardware.

Each process running in user space is represented in kernel by struct task_struct, which

contains all information relevant to the process. Process often run with multiple threads in

a multithreaded program. But in kernel all these threads are represented as independent

task struct. Each of these threads include unique program counter, process stack and set of

processor registers.

Life of a process starts with system call fork(), which creates a child process. The new

child process is an exact copy of the parent process, but with unique child PID (process

identifier). Often, after a fork() we require to run a new program. The exec() series of

system calls are used for this purpose. In kernel, fork() is implemented using system call

clone(). The program life cycle ends with system call exit(). The parent process can

enquire the status of the terminated child process using wait() system call.

The kernel stores the list of all processes in a single circular liked list called the task

list. Each element of this task list is a process specific descriptor of type struct

task_struct. This struct is a very complex data structure having all OS parameters and

data, kept under clean, well defined structure boundary. Our process monitoring system

uses this kernel data structure to obtain the required data needed in monitoring the

process.

3. LINUX REAL-TIME PROCESS MONITOR IMPLEMENTATION

Our process monitoring is broadly classified into two sections, the user space data

collection and the kernel space module. A character device node (/dev/myNode) is used to

communicate between these two units. The user space application opens the character

node and passes appropriate request string to get the required information for the process.

3.1 User space Data Collection System

Several process parameters can be collected by our design, but for the simplicity and

ease of illustration, we restrict to following list of process statistics in this work and

depicted the procedure to retrieve them.

void show_opt () {

 printf (” 1 . process name

 2 . group id

 3 . parent process

 4 . process group leader

 5 . child processes created

 6 . process memory segments

 7 . virtual memory mapping

 8 . process priority

 9 . process state

 10 . cpu used by process

 11 . total fault count of process

 12 . process start time

 13 . process link count \n ”) ;

 printf (” Enter Option : ”) ;

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

322 Copyright ⓒ 2015 SERSC

}

Our user space code is based on C. As discussed before, the main body of the source

code requests the LKM to get data through the character device node /dev/myNode. We

pass process id (PID) and request token as character string to module. This module checks

our passed token and passes the result to user space application through the same buffer

buf passed. Here we are not using any separate read system call after write to make it

simple and faster.

int main () {

 char buf [700] , opt [50] ;

 int rt ;

 //open device node of LKM

 int fd=open(”/dev/myNode” ,O_RDWR) ;

 printf (”Enter Process PID : ”) ;

 scanf (”%s”, buf) ;

 //get option

 show_opt() ; scanf (”%s ”, opt) ;

 //pass message string to LKM

 sprintf (buf ,”%s %s ”, buf , opt) ;

 rt = write (fd , buf , strlen(buf)) ;

 //print result

 if (rt ==1)

 printf (”%s ”, buf) ;

 close(fd) ;

 return 0 ;

}

3.2 Kernel Module Code

3.2.1 Registering Char Driver

In our kernel code, first we register a dynamic character device driver and create the

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

Copyright ⓒ 2015 SERSC 323

device node /dev/myNode in user space, through which user space application talks to

module.

static struct class * cl ;

static struct cdev * cdev ;

dev_t dev ;

struct semaphore mysem;

static int start()

{

 printk (KERN_ALERT ”Initializing Module ”) ;

 //get major no

 alloc_chrdev_region (&dev ,0 ,1 ,”myNode”) ;

 //regisiter device

 cdev = cdev_alloc () ;

 cdevops = &fops ;

 cdev owner = THIS_MODULE;

 cdev_add (cdev ,dev ,1) ;

 //creating device node

 cl = class_create (THIS_MODULE, ”myNode ”) ;

 device_create (cl , NULL, cdevdev , NULL, ”myNode ”) ;

 //initialize semaphore

 sema_init (&mysem, 1) ;

 return 0 ;

}

Semaphore mysem is used here for synchronization from simultaneous access to

module. As per the design, the module services single request at a time, while other

requests have to wait before getting access. However this singleton approach can be

changed easily with minor code changes for simultaneous access from multiple user

applications.

static void leave()

{

 printk (KERN_ALERT, ”Leaving Module ”) ;

 device_destroy (cl, dev) ;

 class_destroy (cl) ;

 cdev_del (cdev) ;

 unregister_chrdev_region (cdevdev , 1) ;

}

module init (s t a r t) ;

module exit (leave) ;

3.2.2 Driver Interface for User Space

All access to driver module like open, write, close to /dev/myNode occurs through

kernel interface struct file_operations. Semaphore mysem is used for singleton access to

module.

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

324 Copyright ⓒ 2015 SERSC

struct file_operations fops = {

 . owner = THIS_MODULE,

 . open = myopen ,

 . release = myrelease ,

 . write = mywrite ,

};

int myopen (struct inode * inode , struct file * file)

{

 //block from simultaneous access

 down_interruptible (&mysem) ;

 return 0 ;

}

int myrelease (struct inode * inode , struct file * file)

{

 //release semaphore

 up(&mysem) ;

 return 0 ;

}

#define MAX 700

static char mybuff [MAX] = { 0 } ;

int mywrite (struct file * file , char * buff, size_t count, loff_t * pos)

{

 int val , rpid ;

 char * to, * val ;

 //copy buffer received

 memset (mybuff, 0, 100) ;

 strncpy (mybuff , buff , count) ;

 //get PID and OPTION passed

 to = &mybuff [0] ;

 val = strsep (&to , ” ”) ;

 rpid = simple_strtol (val, NULL, 10) ;

 val = strsep (&to, ” ”) ;

 opt = simple_strtol (val ,NULL, 10) ;

 return ret ;

}

3.2.3 Main logic to process query

Inside kernel handler mywrite we find task_struct of process, whose PID is passed. For

more detail and implementation of task_struct refer linux documentation [1, 5, 6].

//find the task_struct

for_each_process(task) {

 //compare process pid

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

Copyright ⓒ 2015 SERSC 325

 if (rpid == task->pid) {

 ret =1;

 break;

 }

}

Then we find out the information needed based on the option value received from user

space. The kernel logic to evaluate various process information is shown below, but for

simplicity detail code snapshot is omitted in this literature.

Case 1: Finding Process Name

strncpy(buff,task->comm, strlen(task->comm));

Case 2: Finding Group Id

snprintf(buff,sizeof(buff), "%d ",task->tgid);

Case 3: Finding Parent Process

snprintf(buff,MAX, "Process:%s with Pid=%d ",

 task->parent->comm,

 task->parent->pid);

Case 4: Finding Group Leader

snprintf(buff,MAX, "Process:%s with Pid=%d ",

 task->group_leader->comm,

 task->group_leader->pid);

Case 5: Finding the List of Child Processes Created

list_for_each(trav, &(task->children)){

 t = list_entry(trav, struct task_struct, sibling);

 count = strlen(buff);

 snprintf(buff+ count, MAX, "%d ", t->pid);

}

Case 6: Finding Process Memory Segments

snprintf (buff,MAX,

 "Code Segment: 0x%lx - 0x%lx \n

 Date Segment: 0x%lx - 0x%lx \n

 Heap Segment: 0x%lx \n

 Stack Segment: 0x%lx\n",

 task->mm->start_code,

 task->mm->end_code,

 task->mm->start_data,

 task->mm->end_data,

 task->mm->start_brk,

 task->mm->start_stack);

Case 7: Finding Process Virtual Memory Mapping

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

326 Copyright ⓒ 2015 SERSC

snprintf(buff, MAX, "\nTotal no of vmas = %d\n", task->mm->map_count);

for (vma = task->mm->mmap; vma; vma = vma->vm_next) {

 count = strlen(buff);

 snprintf(buff+ count, MAX, "0x%lx - 0x%lx\n", vma->vm_start, vma->vm_end);

}

Case 8: Finding Process Priority

snprintf(buff,MAX,

 "Static Priority(nice)=%d \n

 Dynamic Priority=%d \n

 Normal Priority=%d \n",

 task->prio,

 task->static_prio,

 task->normal_prio);

Case 9: Finding Process Scheduling Policy

if(task->policy == TASK_RUNNING)

 snprintf(buff,MAX, "TASK_RUNNING");

else if(task->policy == TASK_INTERRUPTIBLE)

 snprintf(buff,MAX, "TASK_INTERRUPTIBLE");

else if(task->policy == TASK_UNINTERRUPTIBLE)

 snprintf(buff,MAX, "TASK_UNINTERRUPTIBLE");

else if(task->policy == TASK_STOPPED)

 snprintf(buff,MAX, "TASK_STOPPED");

else if(task->policy == EXIT_ZOMBIE)

 snprintf(buff,MAX, "TASK_ZOMBIE");

Case 10: Finding Cpu Used

snprintf(buff,MAX,"\nCPU used = %d\n", task_cpu(task));

Case 11: Finding Major and Minor Faults

snprintf(buff,MAX,

 "No of Major faults = %d \n

 No of Minor faults = %d \n",

 task->maj_flt,

 task->min_flt);

Case 12: Finding Process Start Time

snprintf(buff,MAX,"TIME: %.2lu:%.2lu:%.2lu:%.6lu \r\n",

 (task->start_time.tv_sec / 3600) % (24),

 (task->start_time.tv_sec / 60) % (60),

 task->start_time.tv_sec % 60,

 task->start_time.tv_nsec / 1000);

Case 13: Finding Process Link Count

snprintf(buff,MAX,"\nLink count = %d \n", task->link_count);

3.2.3 Kernel Makefile

Given below the kernel makefile in it’s simplest form to build the loadable kernel

module. This Makefile builds testLKM.c and generates module testLKM.ko.

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

Copyright ⓒ 2015 SERSC 327

obj-m += test.o

all:

 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

 make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

4. RESULTS

After the module gets inserted, the user is expected to get process information of any

arbitrary process of interest, which is shown as an example for PID 16526.

narmada$ sudo insmod testLKM.ko

narmada$ sudo ./a.out

Enter Process PID : 16526

1. process name

2. group id

3. parent process

4. group leader

5. child processes

6. process memory segments

7. process virtual memory mapping

8. process priority

9. process state

10. cpu used

11. No. of major and minor faults

12. start time

13. link count

Enter Options : 1

 gnome-pty-helper

Enter Options : 6

 Code Segment : 0x400000 - 0x4027c4

 Date Segment : 0x602e18 - 0x603200

 Heap Segment : 0xb68000

 Stack Segment : 0x7fff9f6112e0

Enter Options : 7

 Total no of vmas = 5

 0x7f3ca70f9000 - 0x7f3ca7105000

 0x7f3ca7105000 - 0x7f3ca7304000

 0x7f3ca7304000 - 0x7f3ca7305000

 0x7f3ca7305000 - 0x7f3ca7306000

 0x7f3ca7306000 - 0x7f3ca74bb000

Enter Options : 11

 No of Major f a u l t s =0

 No of Minor f a u l t s =745

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

328 Copyright ⓒ 2015 SERSC

Being implemented entirely in kernel space, this approach is a simple and low-

overhead process for the performance evaluation of a system. In comparison with other

approaches, it takes less time to retrieve the data. Here, one just need to call a single

system-call from userspace application. Based on the requirement, further features of

interest can be added to this approach and hence can be incorporated in any high or

middle level languages.

5. EVALUATION

To validate our design, we selected a system having 2.5GHz, 64-bit, i5-processor with

4GB RAM, running Ubuntu12 Linux distribution with kernel version-3.13. We measured

the overall time required to capture the various process parameters and it’s contribution

towards the overall system load. The time was measured in microseconds, using libc call

gettimeofday. We called gettimeofday before passing the request string to kernel and again

immediately after retrieving the result. The difference between both time values, gives the

time required to capture the process parameters. Table 2 shows this final result in

microseconds for all the parameters collected.

Table 2. Time Taken to Get Various Process Parameters

Sl. No. Parameters Time(in microseconds)
1 process name 82

2 group id 120

3 parent process 71

4 group leader 101

5 child process 147

6 memory segments 110

7 process priority 92

8 process state 83

9 cpu used 83

10 major and minor faults 96

11 start time 94

12 link count 83

The time taken for most of the parameters was found to be less than 100 microseconds,

except for retrieving the list of child processes, because it involves lookup in multiple

process task entries. This approach’s contribution on system load was found to be

negligible as it’s entire logic is in kernel space. Hence, we did not include this data in this

paper.

6. FUTURE WORK

This paper depicts the procedure to collect some simple process specific data without

depending on any user space application or file system. However, many advance features

can be included in the later versions as a future work. Some of them are mentioned below.

1. Client server based multisystem single server data collection approach to be added.

2. Changing the process parameters through this kernel interface.

3. System alarm implementation, when process parameters exceeds threshold.

4. Finding of different benchmarks, such as top 10 processes thrashing and, occupying

more memory etc.

5. Including these new important process parameters to proc file system, so that some

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

Copyright ⓒ 2015 SERSC 329

script can process them in hourly, daily and monthly basis.

7. CONCLUSION

Our LKM based process monitoring system has the potential to provide user, the total

health of any process, running in the system. Understanding of these real time system

parameters, can effectively identify the processes, which are malfunctioning and need

immediate user attention. It ensures the safety of the whole system, from the analysis of

kernel level data collected. Further, it can be used as a potential solution for advance

detection and poisoning of the machine from the applications running. Numerous features

can be added to this procedure to extend it’s functionalities and there by making it more

applicable for a full fledged monitoring tool.

REFERENCES

[1] K. Source, “The Linux Kernel Archives“, https://www.kernel.org/.

[2] Wikipedia, “Usage share of operating systems”, (2014) August 25,

http://www.netmarketshare.com/operating-systemmarket-share.aspx.

[3] A. Kutlu and T. Aydogan, “Performance Analysis of MicroNet: A Higher Layer Protocol for Multiuser

Remote Laboratory”, IEEE Transactions on Industrial Electronics, vol. 56, (2009) December, pp. 4784-

4790.

[4] L. Bello, O. Mirabella and A. Raucea, “Design and Implementation of an Educational Testbed for

Experiencing With Industrial Communication Networks”, IEEE Transactions on Industrial Electronics,

vol. 54, (2007) December, pp. 3122-3133.

[5] R. Love, Linux Kernel Development, Novell Press, (2006).

[6] A. Rubini and J. Corbet, Linux Device Drivers, 3rd ed, O’Reilly Media, (2005).

[7] J. Zhang and K. Chen, “Performance analysis towards a KVM-Based embedded real-time virtualization

architecture”, IEEE Transactions on Computer Sciences and Convergence Information Technology,

(2010) November, pp. 421-426.

[8] R. Ranokphanuwat and S. Kittitornkun, “Performance analysis and improvement of SNPHAP on Multi-

core CPUs”, IEEE Transactions on Electrical Engineering/Electronics, Computer, Telecommunications

and Information Technology (ECTI-CON), (2013) May, pp. 1-6.

[9] A. Ansari, A. Chattopadhayay and S. Das, “A Kernel Level VFS Logger for Building Efficient File

System Intrusion Detection System”, IEEE Transactions on Computer and Network Technology

(ICCNT), (2010), pp. 273-279.

[10] V. V. Rubanov and E. A. Shatokhin, “Runtime Verification of Linux Kernel Modules Based on Call

Interception”, IEEE Transactions on Software Testing, Verification and Validation (ICST), (2011), pp.

180-189.

[11] M. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case Study”, IEEE Transaction on

Software Maintenance, (2000) October, pp. 131-142.

[12] M. M. Lehman, “Laws of Software Evolution Revisited”, Proceedings of the 5th European Workshop

on Software Process Technology, (1996), pp. 108-124.

[13] F. Hartman and S. Maxwell, “Driving the Mars Rovers”, http://www.linuxjournal.com/article/7570/.

Author

Barun Kumar Parichha, received his B.E. degree in computer

science and engineering in 2003 and the M.S. degree in computer

science and engineering from Indian Institute of Technolgy, Madras,

India, in 2010. He is currently working as a software engineer in

JunOS kernel team for Juniper Networks R&D center, Bangalore,

India. From 2011 to 2012, he was a Research Assistant in the Indian

Institute of Science, Bangalore, India. His research interest includes

high performance computing, OS customization, network

performance improvement and embedded engineering, using efficient

hardware and software modelling and reorganization.

The author can be contacted at his personal mail-id

International Journal of Hybrid Information Technology

Vol.8, No.10 (2015)

330 Copyright ⓒ 2015 SERSC

barun.parichha@gmail.com or his facebook account.

