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Abstract 

Design a robust artificial intelligent nonlinear controller for second order nonlinear 

uncertain dynamical systems is one of the most important challenging works. This paper 

focuses on the design of a robust chattering free mathematical model-base artificial 

intelligence (fuzzy inference system) variable structure controller (MFVSC) for highly 

nonlinear dynamic continuum robot manipulator, in presence of uncertainties. In order to 

provide high performance nonlinear methodology, variable structure controller is 

selected. Pure variable structure controller can be used to control of partly known 

nonlinear dynamic parameters of continuum robot manipulator.  In order to 

reduce/eliminate the chattering, this research is used the artificial intelligence (fuzzy 

logic) theory. The results demonstrate that the model base fuzzy variable structure 

controller with switching function is a model-based controllers which works well in 

certain and partly uncertain system. Lyapunov stability is proved in mathematical model-

based fuzzy variable structure controller with switching (sign) function. This controller 

has acceptable performance in presence of uncertainty (e.g., overshoot=1%, rise 

time=0.9 second, steady state error = 1.6e-8 and RMS error=4.8e-8). 

Keywords: Variable structure control, fuzzy logic methodology, robust controller, 

hyper-redundant, continuum robot manipulator 

1. Introduction 

Continuum robots represent a class of robots that have a biologically inspired form 

characterized by flexible backbones and high degrees-of-freedom structures [1]. The idea 

of creating “trunk and tentacle” robots, (in recent years termed continuum robots [1]), is 

not new [2]. Inspired by the bodies of animals such as snakes [3], the arms of octopi [4], 

and the trunks of elephants [5-6], researchers have been building prototypes for many 

years. A key motivation in this research has been to reproduce in robots some of the 

special qualities of the biological counterparts. This includes the ability to “slither” into 

tight and congested spaces, and (of particular interest in this work) the ability to grasp and 

manipulate a wide range of objects, via the use of “whole arm manipulation” i.e. 

wrapping their bodies around objects, conforming to their shape profiles. Hence, these 

robots have potential applications in whole arm grasping and manipulation in unstructured 

environments such as rescue operations. Theoretically, the compliant nature of a 

continuum robot provides infinite degrees of freedom to these devices. However, there is 

a limitation set by the practical inability to incorporate infinite actuators in the device. 

Most of these robots are consequently underactuated (in terms of numbers of independent 

actuators) with respect to their anticipated tasks. In other words they must achieve a wide 

range of configurations with relatively few control inputs. This is partly due to the desire 

to keep the body structures (which, unlike in conventional rigid-link manipulators or 
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fingers, are required to directly contact the environment) “clean and soft”, but also to 

exploit the extra control authority available due to the continuum contact conditions with 

a minimum number of actuators. For example, the Octarm VI continuum manipulator, 

discussed frequently in this paper, has nine independent actuated degrees-of-freedom with 

only three sections. Continuum manipulators differ fundamentally from rigid-link and 

hyper-redundant robots by having an unconventional structure that lacks links and joints. 

Hence, standard techniques like the Denavit-Hartenberg (D-H) algorithm cannot be 

directly applied for developing continuum arm kinematics. Moreover, the design of each 

continuum arm varies with respect to the flexible backbone present in the system, the 

positioning, type and number of actuators. The constraints imposed by these factors make 

the set of reachable configurations and nature of movements unique to every continuum 

robot. This makes it difficult to formulate generalized kinematic or dynamic models for 

continuum robot hardware. Chirikjian and Burdick were the first to introduce a method 

for modeling the kinematics of a continuum structure by representing the curve-shaping 

function using modal functions [6]. Mochiyama used the Serret- Frenet formulae to 

develop kinematics of hyper-degrees of freedom continuum manipulators [5]. For details 

on the previously developed and more manipulator-specific kinematics of the 

Rice/Clemson “Elephant trunk” manipulator, see [1-2, 5]. For the Air Octor and Octarm 

continuum robots, more general forward and inverse kinematics have been developed by 

incorporating the transformations of each section of the manipulator (using D-H 

parameters of an equivalent virtual rigid link robot) and expressing those in terms of the 

continuum manipulator section parameters [4]. The net result of the work in [6, 3-5] is the 

establishment of a general set of kinematic algorithms for continuum robots. Thus, the 

kinematics (i.e. geometry based modeling) of a quite general set of prototypes of 

continuum manipulators has been developed and basic control strategies now exist based 

on these. The development of analytical models to analyze continuum arm dynamics (i.e. 

physics based models involving forces in addition to geometry) is an active, ongoing 

research topic in this field. From a practical perspective, the modeling approaches 

currently available in the literature prove to be very complicated and a dynamic model 

which could be conveniently implemented in an actual device’s real-time controller has 

not been developed yet. The absence of a computationally tractable dynamic model for 

these robots also prevents the study of interaction of external forces and the impact of 

collisions on these continuum structures. This impedes the study and ultimate usage of 

continuum robots in various practical applications like grasping and manipulation, where 

impulsive dynamics [1, 4] are important factors. Although continuum robotics is an 

interesting subclass of robotics with promising applications for the future, from the 

current state of the literature, this field is still in its stages of inception. 

A controller is a device which can sense information from linear or nonlinear system 

(e.g., continuum robot) to improve the systems performance [7-15]. The main targets in 

designing control systems are stability, good disturbance rejection, and small tracking 

error[15]. Variable structure controller is an influential nonlinear controller to certain and 

uncertain systems which it is based on system’s dynamic model 14]. Variable structure 

controller is a powerful nonlinear robust controller under condition of partly uncertain 

dynamic parameters of system [7]. This controller is used to control of highly nonlinear 

systems especially for continuum robot. Chattering phenomenon and nonlinear equivalent 

dynamic formulation in uncertain dynamic parameter are two main drawbacks in pure 

variable structure controller [14-15]. The chattering phenomenon problem in pure variable 

structure controller is reduced by artificial intelligence in this research. 

In recent years, artificial intelligence theory has been used in variable structure control 

systems. Neural network, fuzzy logic and neuro-fuzzy are synergically combined with 

nonlinear classical controller and used in nonlinear, time variant and uncertain plant (e.g., 

robot manipulator).  Fuzzy logic controller (FLC) is one of the most important 

applications of fuzzy logic theory. This controller can be used to control nonlinear, 
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uncertain, and noisy systems. This method is free of some model techniques as in model-

based controllers. As mentioned that fuzzy logic application is not only limited to the 

modelling of nonlinear systems [10] but also this method can help engineers to design a 

model-free controller.  Control robot arm manipulators using model-based controllers are 

based on manipulator dynamic model. These controllers often have many problems for 

modelling. Conventional controllers require accurate information of dynamic model of 

robot manipulator, but most of time these models are MIMO, nonlinear and partly 

uncertain therefore calculate accurate dynamic model is complicated [11]. The main 

reasons to use fuzzy logic methodology are able to give approximate recommended 

solution for uncertain and also certain complicated systems to easy understanding and 

flexible. Fuzzy logic provides a method to design a model-free controller for nonlinear 

plant with a set of IF-THEN rules [12]. 

The main goal of this research is to use a robust model base fuzzy VSC to control of 

Octarm VI continuum manipulator. The research concentrated on the high performance 

control. An additional goal was to design a nonlinear stable and robust fuzzy based 

methodology that would control the uncertain manipulator and provide functionality to an 

Octarm VI. To control the continuum robotic system a model base fuzzy VSC control was 

created. 

This paper is organized as follows; Section 2, is served as an introduction to the 

variable structure controller formulation algorithm and its application to control of 

continuum robot, dynamic of continuum robot and proof of stability. Part 3, introduces 

and describes the methodology (gradient descent optimal variable structure controller) 

algorithm. Section 4 presents the simulation results and discussion of this algorithm 

applied to a continuum robot and the final section is describing the conclusion. 

 

2. Theory 

A. Dynamic Formulation of Continuum Robot 

The Continuum section analytical model developed here consists of three modules 

stacked together in series. In general, the model will be a more precise replication of the 

behavior of a continuum arm with a greater of modules included in series. However, we 

will show that three modules effectively represent the dynamic behavior of the hardware, 

so more complex models are not motivated. Thus, the constant curvature bend exhibited 

by the section is incorporated inherently within the model. The mass of the arm is 

modeled as being concentrated at three points whose co-ordinates referenced with respect 

to (see Figure 1); 
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Figure 1. Assumed Structure for Analytical Model of a Section of a 
Continuum Arm 

Where;  

𝑙 - Length of the rigid rod connecting the two struts, constant throughout the structure, 

𝑘1,𝑖 , 𝑖 = 1,2,3 - Spring constant of actuator 1 at module 𝑖, 

𝑘2,𝑖 , 𝑖 = 1,2,3  - Spring constant of actuator 2 at module 𝑖, 

𝐶1,𝑖 , 𝑖 = 1,2,3 - Damping coefficient of actuator 1 at module 𝑖, 

𝐶2,𝑖 , 𝑖 = 1,2,3 - Damping coefficient of actuator 2 at module 𝑖, 
𝑚𝑖 , 𝑖 = 1,2,3 - Mass in each module, 

𝐼𝑖 , 𝑖 = 1,2,3 -  Moment of inertia of the rigid rod in each module. 

 

A global inertial frame (N) located at the base of the arm are given below 

 

𝑷 = 𝑺𝟏.𝒎𝟏
𝑵 𝒏𝟑̂ (1) 

𝑷 = 𝑺𝟐.𝒎𝟐
𝑵  𝒔𝒊𝒏𝜽𝟏𝒏𝟏̂ + (𝑺𝟏 + 𝑺𝟐 𝐜𝐨𝐬 𝜽𝟏). 𝒏𝟑̂ (2) 

𝑷 = (𝑺𝟐.𝒎𝟑
𝑵  𝒔𝒊𝒏𝜽𝟏 + 𝑺𝟑. 𝐬𝐢𝐧( 𝜽𝟏 + 𝜽𝟐)) 𝒏𝟏̂ + (𝑺𝟏 + 𝑺𝟐 𝐜𝐨𝐬 𝜽𝟏 + 𝑺𝟑. 𝐜𝐨𝐬(𝜽𝟏 +

𝜽𝟐))). 𝒏𝟑̂  

(3) 

 

The position vector of each mass is initially defined in a frame local to the module in 

which it is present. These local frames are located at the base of each module and oriented 

along the direction of variation of coordinate ‘𝑠’ of that module. The positioning of each 

of these masses is at the centre of mass of the rigid rods connecting the two actuators. 

Differentiating the position vectors we obtain the linear velocities of the masses. The 

kinetic energy (T) of the system comprises the sum of linear kinetic energy terms 

(constructed using the above velocities) and rotational kinetic energy terms due to rotation 

of the rigid rod connecting the two actuators, and is given below as 
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𝑻 = (𝟎. 𝟓)𝒎𝟏𝒔̇𝟏
𝟐 + (𝟎. 𝟓)𝒎𝟐 ((𝒔̇𝟐𝒔𝒊𝒏𝜽𝟏 + 𝒔𝟐𝒄𝒐𝒔𝜽𝟏𝜽̇𝟏)

𝟐
+ (𝒔̇𝟏 + 𝒔̇𝟐𝒄𝒐𝒔𝜽𝟏 −

𝒔𝟐𝒔𝒊𝒏𝜽𝟏𝜽̇𝟏)
𝟐
) + (𝟎. 𝟓)𝒎𝟑 ((𝒔̇𝟐𝒔𝒊𝒏𝜽𝟏 + 𝒔𝟐𝒄𝒐𝒔𝜽𝟏𝜽̇𝟏 + 𝒔̇𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐) +

𝒔𝟑𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)𝜽̇𝟏 + 𝒔𝟑𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)𝜽̇𝟐)
𝟐
+ (𝒔̇𝟏 + 𝒔̇𝟐𝒄𝒐𝒔𝜽𝟏 − 𝒔𝟐𝒔𝒊𝒏𝜽𝟏𝜽̇𝟏 +

𝒔̇𝟑𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐) − 𝒔𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐)𝜽̇𝟏 − 𝒔𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐)𝜽̇𝟐)
𝟐
) + (𝟎. 𝟓)𝑰𝟏𝜽̇𝟏

𝟐
+

(𝟎. 𝟓)𝑰𝟐 (𝜽̇𝟏
𝟐
+ 𝜽̇𝟐

𝟐
) + (𝟎. 𝟓)𝑰𝟑 (𝜽̇𝟏

𝟐
+ 𝜽̇𝟐

𝟐
+ 𝜽̇𝟑

𝟐
).  

(4) 

 

The potential energy (P) of the system comprises the sum of the gravitational potential 

energy and the spring potential energy. A small angle assumption is made throughout the 

derivation. This allows us to directly express the displacement of springs and the 

velocities associated with dampers in terms of system generalized coordinates. 

 

𝑷 = −𝒎𝟏𝒈𝒔𝟏 − 𝒎𝟐𝒈(𝒔𝟏 + 𝒔𝟐𝒄𝒐𝒔𝜽𝟏) − 𝒎𝟑𝒈(𝒔𝟏 + 𝒔𝟐𝒄𝒐𝒔𝜽𝟏 + 𝒔𝟑𝒄𝒐𝒔(𝜽𝟏 +

𝜽𝟏)) + (𝟎. 𝟓)𝒌𝟏𝟏(𝒔𝟏 + (𝟏/𝟐)𝜽𝟏 − 𝒔𝟎𝟏)
𝟐 + (𝟎. 𝟓)𝒌𝟐𝟏(𝒔𝟏 + (𝟏 𝟐⁄ )𝜽𝟏 − 𝒔𝟎𝟏)

𝟐 +

(𝟎. 𝟓)𝒌𝟏𝟐(𝒔𝟐 + (𝟏 𝟐⁄ )𝜽𝟐 − 𝒔𝟎𝟐)
𝟐 + (𝟎. 𝟓)𝒌𝟐𝟐(𝒔𝟐 + (𝟏 𝟐⁄ )𝜽𝟐 − 𝒔𝟎𝟐)

𝟐 +
(𝟎. 𝟓)𝒌𝟏𝟑(𝒔𝟑 + (𝟏 𝟐⁄ )𝜽𝟑 − 𝒔𝟎𝟑)

𝟐 + (𝟎. 𝟓)𝒌𝟐𝟑(𝒔𝟑 + (𝟏 𝟐⁄ )𝜽𝟑 − 𝒔𝟎𝟑)
𝟐  

(5) 

 

where,𝑆01, 𝑆02, 𝑆03 are the initial values of𝑆1, 𝑆2, 𝑆3 respectively. 

Due to viscous damping in the system, Rayliegh’s dissipation function [6] is used to 

give damping energy 

 

𝑫 = (𝟎. 𝟓)𝒄𝟏𝟏(𝒔̇𝟏 + (𝟏/𝟐)𝜽̇𝟏)
𝟐
+ (𝟎. 𝟓)𝒄𝟐𝟏(𝒔̇𝟏 + (𝟏/𝟐)𝜽̇𝟏)

𝟐
+ (𝟎. 𝟓)𝒄𝟏𝟐(𝒔̇𝟐 +

(𝟏/𝟐)𝜽̇𝟐)
𝟐
+ (𝟎. 𝟓)𝒄𝟐𝟐(𝒔̇𝟐 + (𝟏/𝟐)𝜽̇𝟐)

𝟐
+ (𝟎. 𝟓)𝒄𝟏𝟑(𝒔̇𝟑 + (𝟏/𝟐)𝜽̇𝟑)

𝟐
+

(𝟎. 𝟓)𝒄𝟐𝟑(𝒔̇𝟑 + (𝟏/𝟐)𝜽̇𝟑)
𝟐
.  

(6) 

 

The generalized forces in the system corresponding to the generalized co-ordinates are 

expressed as appropriately weighted combinations of the input forces. 

 

𝑸𝒔𝟏
= 𝑭𝟏𝟏 + 𝑭𝟐𝟏 + (𝑭𝟏𝟐 + 𝑭𝟐𝟐)𝒄𝒐𝒔𝜽𝟏 + (𝑭𝟏𝟑 + 𝑭𝟐𝟑)𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)  (7) 

𝑸𝒔𝟐
= 𝑭𝟏𝟐 + 𝑭𝟐𝟐 + (𝑭𝟏𝟑 + 𝑭𝟐𝟑)𝒄𝒐𝒔(𝜽𝟐) (8) 

𝑸𝒔𝟑
= 𝑭𝟏𝟑 + 𝑭𝟐𝟑 (9) 

𝑸𝜽𝟏
= (𝟏 𝟐⁄ )(𝑭𝟏𝟏 − 𝑭𝟐𝟏) + (𝟏 𝟐⁄ )(𝑭𝟏𝟐 − 𝑭𝟐𝟐) + (𝟏 𝟐⁄ )(𝑭𝟏𝟑 − 𝑭𝟐𝟑) +

𝒔𝟐𝒔𝒊𝒏𝜽𝟐(𝑭𝟏𝟑 + 𝑭𝟐𝟑)  

(10) 

𝑸𝜽𝟏
= (𝟏 𝟐⁄ )(𝑭𝟏𝟐 − 𝑭𝟐𝟐) + (𝟏 𝟐⁄ )(𝑭𝟏𝟑 − 𝑭𝟐𝟑) (11) 

𝑸𝜽𝟏
= (𝟏 𝟐⁄ )(𝑭𝟏𝟑 − 𝑭𝟐𝟑) (12) 

 

It can be evinced from the force expressions that the total input forces acting on each 

module can be resolved into an additive component along the direction of extension and a 
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subtractive component that results in a torque. For the first module, there is an additional 

torque produced by forces in the third module. 

The model resulting from the application of Lagrange’s equations of motion obtained 

for this system can be represented in the form 

 

𝑭𝒄𝒐𝒆𝒇𝒇 𝝉 = 𝑫(𝒒) 𝒒̈ + 𝑪 (𝒒) 𝒒̇ + 𝑮(𝒒)  (13) 

where 𝜏 is a vector of input forces and q is a vector of generalized co-ordinates. The force 

coefficient matrix 𝐹𝑐𝑜𝑒𝑓𝑓 transforms the input forces to the generalized forces and torques 

in the system. The inertia matrix, 𝐷  is composed of four block matrices. The block 

matrices that correspond to pure linear accelerations and pure angular accelerations in the 

system (on the top left and on the bottom right) are symmetric. The matrix 𝐶 contains 

coefficients of the first order derivatives of the generalized co-ordinates. Since the system 

is nonlinear, many elements of 𝐶 contain first order derivatives of the generalized co-

ordinates. The remaining terms in the dynamic equations resulting from gravitational 

potential energies and spring energies are collected in the matrix 𝐺 . The coefficient 

matrices of the dynamic equations are given below, 

 

𝑭𝒄𝒐𝒆𝒇𝒇 = 

[
 
 
 
 
 

𝟏 𝟏 𝒄𝒐𝒔(𝜽𝟏) 𝒄𝒐𝒔(𝜽𝟏) 𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐) 𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)

𝟎 𝟎 𝟏 𝟏 𝒄𝒐𝒔(𝜽𝟐) 𝒄𝒐𝒔(𝜽𝟐)
𝟎 𝟎 𝟎 𝟎 𝟏 𝟏

𝟏 𝟐⁄ −𝟏 𝟐⁄ 𝟏 𝟐⁄ −𝟏 𝟐⁄ 𝟏 𝟐⁄ + 𝒔𝟐𝒔𝒊𝒏(𝜽𝟐) −𝟏 𝟐⁄ + 𝒔𝟐𝒔𝒊𝒏(𝜽𝟐)

𝟎 𝟎 𝟏 𝟐⁄ −𝟏 𝟐⁄ 𝟏 𝟐⁄ −𝟏 𝟐⁄

𝟎 𝟎 𝟎 𝟎 𝟏 𝟐⁄ −𝟏 𝟐⁄ ]
 
 
 
 
 

  

(14) 

 

𝑫(𝒒) = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝒎𝟏 + 𝒎𝟐

+𝒎𝟑

𝒎𝟐𝒄𝒐𝒔(𝜽𝟏)

+𝒎𝟑𝒄𝒐𝒔(𝜽𝟏)
𝒎𝟑𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)

−𝒎𝟐𝒔𝟐𝒔𝒊𝒏(𝜽𝟏)

−𝒎𝟑𝒔𝟐𝒔𝒊𝒏(𝜽𝟏)

−𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐)
−𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐) 𝟎

𝒎𝟐𝒄𝒐𝒔(𝜽𝟏)

+𝒎𝟑𝒄𝒐𝒔(𝜽𝟏)
𝒎𝟐 + 𝒎𝟑 𝒎𝟑𝒄𝒐𝒔(𝜽𝟐) −𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟐) −𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟐) 𝟎

𝒎𝟑𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐) 𝒎𝟑𝒄𝒐𝒔(𝜽𝟐) 𝒎𝟑 𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟐) 𝟎 𝟎

−𝒎𝟐𝒔𝟐𝒔𝒊𝒏(𝜽𝟏)

−𝒎𝟑𝒔𝟐𝒔𝒊𝒏(𝜽𝟏)

−𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐)
−𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟐) 𝒎𝟑𝒔𝟐𝒔𝒊𝒏(𝜽𝟐)

𝒎𝟐𝒔𝟐
𝟐 + 𝑰𝟏 + 𝑰𝟐

+𝑰𝟑 + 𝒎𝟑𝒔𝟐
𝟐 + 𝒎𝟑𝒔𝟑

𝟐

+𝟐𝒎𝟑𝒔𝟑𝒄𝒐𝒔(𝜽𝟐)𝒔𝟐

𝑰𝟐 + 𝒎𝟑𝒔𝟑
𝟐 + 𝑰𝟑

+𝒎𝟑𝒔𝟑𝒄𝒐𝒔(𝜽𝟐)𝒔𝟐

𝑰𝟑

−𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐) −𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟐) 𝟎
𝑰𝟐 + 𝒎𝟑𝒔𝟑

𝟐 + 𝑰𝟑

+𝒎𝟑𝒔𝟑𝒄𝒐𝒔(𝜽𝟐)𝒔𝟐𝑰
𝑰𝟐 + 𝒎𝟑𝒔𝟑

𝟐 + 𝑰𝟑 𝑰𝟑

𝟎 𝟎 𝟎 𝑰𝟑 𝑰𝟑 𝑰𝟑]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(15) 
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𝑪(𝒒) = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒄𝟏𝟏 + 𝒄𝟐𝟏

−𝟐𝒎𝟐𝒔𝒊𝒏(𝜽𝟏)𝜽̇𝟏

−𝟐𝒎𝟑𝒔𝒊𝒏(𝜽𝟏)𝜽̇𝟏

−𝟐𝒎𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐)

(𝜽̇𝟏 + 𝜽̇𝟐)

−𝒎𝟐𝒔𝟐

𝒄𝒐𝒔(𝜽𝟏)(𝜽̇𝟏)

+(𝟏 𝟐⁄ )(𝒄𝟏𝟏 + 𝒄𝟐𝟏)
−𝒎𝟑𝒔𝟐

𝒄𝒐𝒔(𝜽𝟏)(𝜽̇𝟏)
−𝒎𝟑𝒔𝟑

𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)(𝜽̇𝟏)

−𝒎𝟑𝒔𝟑𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐) 𝟎

𝟎 𝒄𝟏𝟐 + 𝒄𝟐𝟐

−𝟐𝒎𝟑𝒔𝒊𝒏(𝜽𝟐)

(𝜽̇𝟏 + 𝜽̇𝟐)

−𝒎𝟑𝒔𝟑(𝜽̇𝟏)

+(𝟏 𝟐⁄ )
(𝒄𝟏𝟐 + 𝒄𝟐𝟐)

−𝒎𝟑𝒔𝟐(𝜽̇𝟏)
−𝒎𝟑𝒔𝟑

𝒄𝒐𝒔(𝜽𝟐)(𝜽̇𝟏)

−𝟐𝒎𝟑𝒔𝟑

𝒄𝒐𝒔(𝜽𝟐)(𝜽̇𝟏)
−𝒎𝟑𝒔𝟑

𝒄𝒐𝒔(𝜽𝟐)(𝜽̇𝟐)

𝟎

𝟎 𝟐𝒎𝟑𝒔𝒊𝒏(𝜽𝟐)(𝜽̇𝟏) 𝒄𝟏𝟑 + 𝒄𝟐𝟑

−𝒎𝟑𝒔𝟑𝒔𝟐

𝒄𝒐𝒔(𝜽𝟐)(𝜽̇𝟏)

−𝒎𝟑𝒔𝟑(𝜽̇𝟏)

−𝟐𝒎𝟑𝒔𝟑(𝜽̇𝟏)

−𝒎𝟑𝒔𝟑(𝜽̇𝟐)

(𝟏 𝟐⁄ )
(𝒄𝟏𝟑 + 𝒄𝟐𝟑)

(𝟏 𝟐⁄ )
(𝒄𝟏𝟏 + 𝒄𝟐𝟏)

𝟐𝒎𝟑𝒔𝟑𝒄𝒐𝒔(𝜽𝟐)(𝜽̇𝟏)

−𝟐𝒎𝟑𝒔𝟐(𝜽̇𝟏)

+𝟐𝒎𝟐𝒔𝟐(𝜽̇𝟏)

𝟐𝒎𝟑𝒔𝟑(𝜽𝟏̇ + 𝜽𝟐̇)

−𝟐𝒎𝟑𝒔𝟐𝒄𝒐𝒔(𝜽𝟐)

(𝜽𝟏̇ + 𝜽𝟐̇)

𝟐𝒎𝟑𝒔𝟑𝒔𝟐

𝒔𝒊𝒏(𝜽𝟐)(𝜽̇𝟐)

+(𝟏𝟐 𝟒⁄ )
(𝒄𝟏𝟏 + 𝒄𝟐𝟏)

𝒎𝟑𝒔𝟑𝒔𝟐

𝒔𝒊𝒏(𝜽𝟐)(𝜽̇𝟐)
𝟎

𝟎
(𝟏 𝟐⁄ )(𝒄𝟏𝟐 + 𝒄𝟐𝟐) +

𝟐𝒎𝟑𝒔𝟑𝒄𝒐𝒔(𝜽𝟐)(𝜽̇𝟏)

𝟐𝒎𝟑𝒔𝟑

(𝜽𝟏̇ + 𝜽𝟐̇)

𝒎𝟑𝒔𝟑𝒔𝟐

𝒔𝒊𝒏(𝜽𝟐)(𝜽̇𝟏)
(𝟏𝟐 𝟒⁄ )

(𝒄𝟏𝟐 + 𝒄𝟐𝟐)
𝟎

𝟎 𝟎 (𝟏 𝟐⁄ )(𝒄𝟏𝟑 − 𝒄𝟐𝟑) 𝟎 𝟎
(𝟏𝟐 𝟒⁄ )

(𝒄𝟏𝟑 + 𝒄𝟐𝟑)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(16) 

 

𝑮(𝒒) = 

[
 
 
 
 
 
 
 
 
 
 
 
 

−𝒎𝟏𝒈 − 𝒎𝟐𝒈 + 𝒌𝟏𝟏(𝒔𝟏 + (𝟏 𝟐⁄ )𝜽𝟏 − 𝒔𝟎𝟏) + 𝒌𝟐𝟏(𝒔𝟏 − (𝟏 𝟐⁄ )𝜽𝟏 − 𝒔𝟎𝟏) − 𝒎𝟑𝒈

−𝒎𝟐𝒈𝒄𝒐𝒔(𝜽𝟏) + 𝒌𝟏𝟐(𝒔𝟐 + (𝟏 𝟐⁄ )𝜽𝟐 − 𝒔𝟎𝟐) + 𝒌𝟐𝟐(𝒔𝟐 − (𝟏 𝟐⁄ )𝜽𝟐 − 𝒔𝟎𝟐) − 𝒎𝟑𝒈𝒄𝒐𝒔(𝜽𝟏)

−𝒎𝟑𝒈𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐) + 𝒌𝟏𝟑(𝒔𝟑 + (𝟏 𝟐⁄ )𝜽𝟑 − 𝒔𝟎𝟑) + 𝒌𝟐𝟑(𝒔𝟑 − (𝟏 𝟐⁄ )𝜽𝟑 − 𝒔𝟎𝟑)

𝒎𝟐𝒔𝟐𝒈𝒔𝒊𝒏(𝜽𝟏) + 𝒎𝟑𝒔𝟑𝒈𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐) + 𝒎𝟑𝒔𝟐𝒈𝒔𝒊𝒏(𝜽𝟏) + 𝒌𝟏𝟏(𝒔𝟏 + (𝟏 𝟐⁄ )𝜽𝟏 − 𝒔𝟎𝟏)(𝟏 𝟐⁄ )

+𝒌𝟐𝟏(𝒔𝟏 − (𝟏 𝟐⁄ )𝜽𝟏 − 𝒔𝟎𝟏)(−𝟏 𝟐⁄ )

𝒎𝟑𝒔𝟑𝒈𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐) + 𝒌𝟏𝟐(𝒔𝟐 + (𝟏 𝟐⁄ )𝜽𝟐 − 𝒔𝟎𝟐)(𝟏 𝟐⁄ ) + 𝒌𝟐𝟐(𝒔𝟐 − (𝟏 𝟐⁄ )𝜽𝟐 − 𝒔𝟎𝟐)(−𝟏 𝟐⁄ )

𝒌𝟏𝟑(𝒔𝟑 + (𝟏 𝟐⁄ )𝜽𝟑 − 𝒔𝟎𝟑)(𝟏 𝟐⁄ ) + 𝒌𝟐𝟑(𝒔𝟑 − (𝟏 𝟐⁄ )𝜽𝟑 − 𝒔𝟎𝟑)(−𝟏 𝟐⁄ ) ]
 
 
 
 
 
 
 
 
 
 
 
 

  

(17) 

 

 

B. Variable structure Controller 

Consider a nonlinear single input dynamic system is defined by [6]: 

 

𝒙(𝒏) = 𝒇(𝒙⃗⃗ ) + 𝒃(𝒙⃗⃗ )𝒖 (18) 

 

Where u is the vector of control input, 𝒙(𝒏)  is the 𝒏𝒕𝒉  derivation of  𝒙 , 

𝒙 = [𝒙, 𝒙̇, 𝒙̈, … , 𝒙(𝒏−𝟏)]𝑻  is the state vector, 𝒇(𝒙) is unknown or uncertainty, and 𝒃(𝒙) is 

of known sign function. The main goal to design this controller is train to the desired 

state;        𝒙𝒅 = [𝒙𝒅, 𝒙̇𝒅, 𝒙̈𝒅, … , 𝒙𝒅
(𝒏−𝟏)]𝑻, and trucking error vector is defined by [6]:  

 

𝒙̃ = 𝒙 − 𝒙𝒅 = [𝒙̃, … , 𝒙̃(𝒏−𝟏)]𝑻 (19) 

 

A time-varying sliding surface 𝒔(𝒙, 𝒕) in the state space 𝑹𝒏 is given by [6]: 
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𝒔(𝒙, 𝒕) = (
𝒅

𝒅𝒕
+ 𝝀)𝒏−𝟏 𝒙̃ = 𝟎 

(20) 

 

where λ is the positive constant. To further penalize tracking error, integral part can be 

used in sliding surface part as follows [6]: 

 

𝒔(𝒙, 𝒕) = (
𝑑

𝑑𝑡
+ 𝝀)𝒏−𝟏  (∫ 𝒙̃

𝒕

𝟎

𝒅𝒕) = 𝟎 
(21) 

 

The main target in this methodology is kept the sliding surface slope 𝒔(𝒙, 𝒕) near to the 

zero. Therefore, one of the common strategies is to find input 𝑼 outside of 𝒔(𝒙, 𝒕) [6]. 

 
𝟏

𝟐

𝒅

𝒅𝒕
𝒔𝟐(𝒙, 𝒕) ≤ −𝜻|𝒔(𝒙, 𝒕)| 

(22) 

 

where ζ is positive constant. 

 

If  S(0)>0→
𝐝

𝐝𝐭
𝐒(𝐭) ≤ −𝛇 (23) 

 

To eliminate the derivative term, it is used an integral term from t=0 to t=𝒕𝒓𝒆𝒂𝒄𝒉 

 

∫
𝒅

𝒅𝒕

𝒕=𝒕𝒓𝒆𝒂𝒄𝒉

𝒕=𝟎
𝑺(𝒕) ≤ −∫ 𝜼 → 𝑺

𝒕=𝒕𝒓𝒆𝒂𝒄𝒉

𝒕=𝟎
(𝒕𝒓𝒆𝒂𝒄𝒉) − 𝑺(𝟎) ≤ −𝜻(𝒕𝒓𝒆𝒂𝒄𝒉 − 𝟎)  (24) 

 

Where 𝑡𝑟𝑒𝑎𝑐ℎ  is the time that trajectories reach to the sliding surface so, suppose 

S(𝑡𝑟𝑒𝑎𝑐ℎ = 0) defined as; 

 

𝟎 − 𝑺(𝟎) ≤ −𝜼(𝒕𝒓𝒆𝒂𝒄𝒉) → 𝒕𝒓𝒆𝒂𝒄𝒉 ≤
𝑺(𝟎)

𝜻
 

(25) 

 

and 

 

𝒊𝒇 𝑺(𝟎) < 0 → 0 − 𝑆(𝟎) ≤ −𝜼(𝒕𝒓𝒆𝒂𝒄𝒉) → 𝑺(𝟎) ≤ −𝜻(𝒕𝒓𝒆𝒂𝒄𝒉) → 𝒕𝒓𝒆𝒂𝒄𝒉 ≤
|𝑺(𝟎)|

𝜼
  (26) 

 

Equation (26) guarantees time to reach the sliding surface is smaller than  
|𝑺(𝟎)|

𝜻
  since 

the trajectories are outside of 𝑆(𝑡). 

 

𝒊𝒇 𝑺𝒕𝒓𝒆𝒂𝒄𝒉
= 𝑺(𝟎) → 𝒆𝒓𝒓𝒐𝒓(𝒙 − 𝒙𝒅) = 𝟎   (27) 

 

suppose S is defined as  

 

𝒔(𝒙, 𝒕) = (
𝒅

𝒅𝒕
+ 𝝀)  𝒙̃ = (𝐱̇ − 𝐱̇𝐝) + 𝛌(𝐱 − 𝐱𝐝)    

(28) 

The derivation of S, namely, 𝑆̇ can be calculated as the following; 

 

𝑺̇ = (𝐱̈ − 𝐱̈𝐝) + 𝛌(𝐱̇ − 𝐱̇𝐝)     (29) 

 

suppose the second order system is defined as; 

 

𝒙̈ = 𝒇 + 𝒖 → 𝑺̇ = 𝒇 + 𝑼 − 𝒙̈𝒅 + 𝛌(𝐱̇ − 𝐱̇𝐝)   (30) 
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Where 𝒇 is the dynamic uncertain, and also since 𝑆 = 0 𝑎𝑛𝑑 𝑆̇ = 0, to have the best 

approximation ,𝑼̂ is defined as 

 

𝑼̂ = −𝒇̂ + 𝒙̈𝒅 − 𝝀(𝐱̇ − 𝐱̇𝐝)   (31) 

 

A simple solution to get the sliding condition when the dynamic parameters have 

uncertainty is the switching control law [52-53]: 

 

𝑼𝒅𝒊𝒔 = 𝑼̂ − 𝑲(𝒙⃗⃗ , 𝒕) ∙ 𝐬𝐠𝐧(𝒔)     (32) 

 

where the switching function 𝐬𝐠𝐧(𝐒) is defined as [1, 6] 

 

𝒔𝒈𝒏(𝒔) = {
𝟏            𝒔 > 0
−𝟏           𝒔 < 0
𝟎               𝒔 = 𝟎

  
(33) 

 

and the 𝑲(𝒙⃗⃗ , 𝒕) is the positive constant. Suppose by (22) the following equation can be 

written as, 

 
𝟏

𝟐

𝒅

𝒅𝒕
𝒔𝟐(𝒙, 𝒕) = 𝐒 ∙̇ 𝐒 = [𝒇 − 𝒇̂ − 𝑲𝐬𝐠𝐧(𝒔)] ∙ 𝑺 = (𝒇 − 𝒇̂) ∙ 𝑺 − 𝑲|𝑺|  

(34) 

 

and if the equation (26) instead of (25) the sliding surface can be calculated as  

 

𝒔(𝒙, 𝒕) = (
𝒅

𝒅𝒕
+ 𝝀)𝟐  (∫ 𝒙̃

𝒕

𝟎
𝒅𝒕) = (𝐱̇ − 𝐱̇𝐝) + 𝟐𝝀(𝐱̇ − 𝐱̇𝐝) − 𝛌𝟐(𝐱 − 𝐱𝐝)   

(35) 

 

in this method the approximation of 𝑼 is computed as [6] 

 

𝑼̂ = −𝒇̂ + 𝒙̈𝒅 − 𝟐𝝀(𝐱̇ − 𝐱̇𝐝) + 𝛌𝟐(𝐱 − 𝐱𝐝)  (36) 

 

Based on above discussion, the variable structure control law for a multi degrees of 

freedom robot manipulator is written as [1, 6]: 

 

𝝉 = 𝝉𝒆𝒒 + 𝝉𝒅𝒊𝒔 (37) 

 

Where, the model-based component 𝝉𝒆𝒒 is the nominal dynamics of systems calculated 

as follows [1]: 

 

𝝉𝒆𝒒 = [𝑴−𝟏(𝑩 + 𝑪 + 𝑮) + 𝑺̇]𝑴  (38) 

and 𝝉𝒅𝒊𝒔 is computed as [1]; 

 

𝝉𝒅𝒊𝒔 = 𝑲 ∙ 𝐬𝐠𝐧(𝑺) (39) 

 

By (39) and (38) the variable structure control of robot manipulator is calculated as;  

 

𝝉 = [𝑴−𝟏(𝑩 + 𝑪 + 𝑮) + 𝑺̇]𝑴 + 𝑲 ∙ 𝐬𝐠𝐧(𝑺) (40) 

 

The lyapunov formulation can be written as follows, 

 

𝑽 =
𝟏

𝟐
𝑺𝑻.𝑴. 𝑺   

(41) 
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the derivation of 𝑉 can be determined as, 

 

𝑽̇ = 
𝟏

𝟐
𝑺𝑻. 𝑴̇. 𝑺 + 𝑺𝑻 𝑴𝑺̇   (42) 

 

the dynamic equation of robot manipulator can be written based on the sliding surface as 

 

𝑴𝑺̇ = −𝑽𝑺 + 𝑴𝑺̇ + 𝑩 + 𝑪 + 𝑮  (43) 

 

it is assumed that 

 

𝑺𝑻(𝑴̇ − 𝟐𝑩 + 𝑪 + 𝑮)𝑺 = 𝟎  (44) 

 

by substituting (43) in (44) 

 

𝑽̇ =
𝟏

𝟐
𝑺𝑻𝑴̇𝑺 − 𝑺𝑻𝑩 + 𝑪𝑺 + 𝑺𝑻(𝑴𝑺̇ + 𝑩 + 𝑪𝑺 + 𝑮) = 𝑺𝑻(𝑴𝑺̇ + 𝑩 + 𝑪𝑺 + 𝑮)  (45) 

 

suppose the control input is written as follows 

 

𝑼̂ = 𝑼𝑵𝒐𝒏𝒍𝒊𝒏𝒆𝒂𝒓
̂ + 𝑼𝒅𝒊𝒔̂ = [𝑴−𝟏̂(𝑩 + 𝑪 + 𝑮) + 𝑺̇]𝑴̂ + 𝑲. 𝒔𝒈𝒏(𝑺) + 𝑩 + 𝑪𝑺 + 𝑮  (46) 

 

by replacing the equation (49) in (41) 

 

𝑽̇ = 𝑺𝑻(𝑴𝑺̇ + 𝑩 + 𝑪 + 𝑮 − 𝑴̂𝑺̇ − 𝑩 + 𝑪̂𝑺 + 𝑮 − 𝑲𝒔𝒈𝒏(𝑺) = 𝑺𝑻 (𝑴̃𝑺̇ +

𝑩 + 𝑪̃𝑺 + 𝑮 − 𝑲𝒔𝒈𝒏(𝑺))  

(47) 

and 

 

|𝑴̃𝑺̇ + 𝑩 + 𝑪̃𝑺 + 𝑮| ≤ |𝑴̃𝑺̇| + |𝑩 + 𝑪̃𝑺 + 𝑮|  (48) 

 

the Lemma equation in robot arm system can be written as follows 

 

𝑲𝒖 = [|𝑴̃𝑺̇| + |𝑩 + 𝑪𝑺 + 𝑮| + 𝜼]
𝒊
 , 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒, …  (49) 

 

and finally; 

𝑽̇ ≤ −∑𝜼𝒊

𝒏

𝒊=𝟏

|𝑺𝒊|  
(50) 

Figure 2 shows the pure variable structure controller applied to continuum robot. 
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Figure 2. Variable Structure Controller 

C. Fuzzy Logic Methodology 

Based on foundation of fuzzy logic methodology; fuzzy logic controller has played 

important rule to design nonlinear controller for nonlinear and uncertain systems [13-14]. 

However the application area for fuzzy control is really wide, the basic form for all 

command types of controllers consists of; Input fuzzification (binary-to-fuzzy [B/F] 

conversion), Fuzzy rule base (knowledge base), Inference engine and Output 

defuzzification (fuzzy-to-binary [F/B] conversion). Figure 3 shows the fuzzy controller 

part. 

 

 

Figure 3.  Fuzzy Controller Part 

The fuzzy inference engine offers a mechanism for transferring the rule base in fuzzy 

set which it is divided into two most important methods, namely, Mamdani method and 

Sugeno method. Mamdani method is one of the common fuzzy inference systems and he 

designed one of the first fuzzy controllers to control of system engine. Mamdani’s fuzzy 

inference system is divided into four major steps: fuzzification, rule evaluation, 

aggregation of the rule outputs and defuzzification.  Michio Sugeno use a singleton as a 

membership function of the rule consequent part. The following definition shows the 

Mamdani and Sugeno fuzzy rule base [10] 
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𝒊𝒇 𝒙 𝒊𝒔 𝑨 𝒂𝒏𝒅 𝒚 𝒊𝒔 𝑩 𝒕𝒉𝒆𝒏 𝒛 𝒊𝒔 𝑪 ′𝒎𝒂𝒎𝒅𝒂𝒏𝒊′ 
𝒊𝒇 𝒙 𝒊𝒔 𝑨 𝒂𝒏𝒅 𝒚 𝒊𝒔 𝑩 𝒕𝒉𝒆𝒏 𝒛 𝒊𝒔 𝒇(𝒙, 𝒚)′𝒔𝒖𝒈𝒆𝒏𝒐′  

(51) 

 

When 𝑥 and 𝑦 have crisp values fuzzification calculates the membership degrees for 

antecedent part. Rule evaluation focuses on fuzzy operation (𝐴𝑁𝐷/𝑂𝑅 ) in the antecedent 

of the fuzzy rules. The aggregation is used to calculate the output fuzzy set and several 

methodologies can be used in fuzzy logic controller aggregation, namely, Max-Min 

aggregation, Sum-Min aggregation, Max-bounded product, Max-drastic product, Max-

bounded sum, Max-algebraic sum and Min-max. Defuzzification is the last step in the 

fuzzy inference system which it is used to transform fuzzy set to crisp set. Consequently 

defuzzification’s input is the aggregate output and the defuzzification’s output is a crisp 

number. Centre of gravity method (𝐶𝑂𝐺) and Centre of area method (𝐶𝑂𝐴) are two most 

common defuzzification methods. 

 

3. Methodology 

Based on (38) in VSC controller, if we have uncertainty in systems or when 

nonlinearity term  in (38) are unknown, a fuzzy logic can be used to approximate them as 

 

𝑓(𝑥) =  ∑𝜃𝑙ℰ𝑙

𝑀

𝑙=1

(𝑥) =  𝜃𝑇ℰ(𝑥) 

(52) 

Where 

𝜃 = (𝜃1, … , 𝜃𝑀)𝑇, ℰ(𝑥) = (ℰ1(𝑥),… , ℰ𝑀(𝑥))𝑇 , 𝑎𝑛𝑑 ℰ𝑙(𝑥) =

:∏
𝜇

𝐴𝑖
𝑙(𝑥𝑖)

∑ (∏ 𝜇
𝐴𝑖

𝑙(𝑥𝑖))
𝑛
𝑖=1

𝑀
𝑙=1

𝑛
𝑖=1 .  𝜃1, … , 𝜃𝑀  are adjustable parameters in (52). 

𝜇𝐴1
1(𝑥1), … , 𝜇𝐴𝑛

𝑚(𝑥𝑛) are given membership functions whose parameters will not change 

over time. 

 

The second type of fuzzy systems is given by  

𝑓(𝑥) =  

∑ 𝜃𝑙𝑀
𝑙=1 [∏ exp (−(

𝑥𝑖 − 𝛼𝑖
𝑙

𝛿𝑖
𝑙 )

2

)𝑛
𝑖=1 ]

∑ [∏ exp(−(
𝑥𝑖 − 𝛼𝑖

𝑙

𝛿𝑖
𝑙 )

2

)𝑛
𝑖=1 ]𝑀

𝑙=1

  

(53) 

 

Where 𝜃𝑙 , 𝛼𝑖
𝑙  𝑎𝑛𝑑 𝛿𝑖

𝑙 are all adjustable parameters. From the universal approximation 

theorem, we know that we can find a fuzzy system to estimate any continuous function. 

For the first type of fuzzy systems, we can only adjust 𝜃𝑙 in (53). We define 𝑓^(𝑥|𝜃)  as 

the approximator of the real function𝑓(𝑥).  

 

𝑓^(𝑥|𝜃) =  𝜃𝑇𝜀(𝑥) (54) 

 

We define 𝜃∗ as the values for the minimum error: 

 

𝜃∗ = argmin
𝜃∈𝛺

[sup
𝑥∈𝑈

| 𝑓^(𝑥|𝜃) −  𝑔(𝑥)|] (55) 

 

Where 𝛺  is a constraint set for 𝜃 . For specific 𝑥 , 𝑠𝑢𝑝𝑥∈𝑈|𝑓^(𝑥|𝜃∗) − 𝑓(𝑥)|  is the 

minimum approximation error we can get. 
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We used the first type of fuzzy systems (52) to estimate the nonlinear system (38) the 

fuzzy formulation can be write as below; 

 

𝑓(𝑥|𝜃) =  𝜃𝑇𝜀(𝑥)   

              =
∑ 𝜃𝑙𝑛

𝑙=1 [𝜇𝐴𝑙(𝑥)]

∑ [𝜇𝐴𝑙(𝑥)]𝑛
𝑙=1

 

(56) 

 

Where 𝜃1, … , 𝜃𝑛 are adjusted by an adaptation law. The adaptation law is designed to 

minimize the parameter errors of  𝜃 − 𝜃∗.  The SISO fuzzy system is define as  

 

𝑓(𝑥) = ⊖𝑇 𝜀(𝑥) (57) 

 

Where  

⊖𝑇= (𝜃1, … , 𝜃𝑚)𝑇 = 

[
 
 
 
𝜃1

1, 𝜃1
2 , … , 𝜃1

𝑀

𝜃2
1, 𝜃2

2 , … , 𝜃2
𝑀

⋮               
𝜃𝑚

1 , 𝜃𝑚
2  , … , 𝜃𝑚

𝑀]
 
 
 
 

(58) 

 

𝜀(𝑥) = (𝜀1(𝑥),… , 𝜀𝑀(𝑥))𝑇 ,   𝜀1(𝑥) = ∏ 𝜇
𝐴𝑖

𝑙(𝑥𝑖)/∑ (∏ 𝜇
𝐴𝑖

𝑙(𝑥𝑖)) 
𝑛
𝑖=1

𝑀
𝑙=1

𝑛
𝑖=1 ,  and 𝜇

𝐴𝑖
𝑙(𝑥𝑖) 

is defined in (56). To reduce the number of fuzzy rules, we divide the fuzzy system in to 

three parts: 

 

𝐹1(𝑞, 𝑞̇) = ⊖1𝑇
𝜀 (𝑞, 𝑞̇) 

                =  [𝜃1
1𝑇

𝜀 (𝑞, 𝑞̇) , … , 𝜃𝑚
1 𝑇

𝜀 (𝑞, 𝑞̇)  ]
𝑇
 

 

(59) 

 

𝐹2(𝑞, 𝑞̈𝑟) = ⊖2𝑇
𝜀 (𝑞, 𝑞̈𝑟) 

       =  [𝜃1
2𝑇

𝜀 (𝑞, 𝑞̈𝑟) , … , 𝜃𝑚
2 𝑇

𝜀 (𝑞, 𝑞̈𝑟)  ]
𝑇

 

 

(60) 

 

𝐹3(𝑞, 𝑞̈) = ⊖3𝑇
𝜀 (𝑞, 𝑞̈)  =  [𝜃1

3𝑇
𝜀 (𝑞, 𝑞̇) , … , 𝜃𝑚

3 𝑇
𝜀 (𝑞, 𝑞̈)  ]

𝑇
 

 

(61) 

The control security input is given by 

 

𝜏 =  𝑀 𝑞 ̈ 𝑟 +  𝐵(𝑞)𝑞̇𝑞̇ + 𝐶(𝑞)𝑞̇2 + 𝑔(𝑞) + 𝐹1(𝑞, 𝑞̇) + 𝐹2(𝑞, 𝑞̈𝑟) +
 𝐹3(𝑞, 𝑞̈) − 𝐾𝑝𝑒 − 𝐾𝑣𝑒̇  

(62) 

 

Where 𝑀^ ,𝑩(𝒒)𝒒̇𝒒̇, 𝑪(𝒒)𝒒̇𝟐, 𝒈(𝒒) are the estimations of 𝑀(𝑞). 

 

Based on variable structure formulation (28) and PD linear methodology (5); 

 

𝑆𝑁𝑒𝑤 = (𝑒̇ + 𝜆𝑒) (63) 

And 𝑈𝑠𝑤𝑖𝑡𝑐ℎ is obtained by 

 

Uswitch = K(x⃗ , t) ∙ sgn(SNew) = K(x⃗ , t) ∙ sgn (𝐾(𝑒̇ + 𝜆𝑒))    (64) 
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The Lyapunov function in this design is defined as 

 

𝑉 =
1

2
𝑆𝑇𝑀𝑆 +

1

2
∑

1

𝛾𝑠𝑗

𝑀

𝐽=1

𝜙𝑇 . 𝜙𝑗 

(65) 

 

where 𝛾𝑠𝑗 is a positive coefficient, 𝝓 = 𝜽∗ − 𝜽, 𝜽∗ is minimum error and 𝜃 is adjustable 

parameter. Since 𝑀̇ − 2𝑉 is skew-symetric matrix; 

 

𝑆𝑇𝑀𝑆̇ +
1

2
𝑆𝑇𝑀̇𝑆 = 𝑆𝑇(𝑀𝑆̇ + 𝑉𝑆)  

(66) 

 

If the dynamic formulation of robot manipulator defined by 

  

𝜏 = 𝑀(𝑞)𝑞̈ + 𝑉(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) (67) 

the controller formulation is defined by 

 

𝜏 = 𝑀̂𝑞̈𝑟 + 𝑉̂𝑞̇𝑟 + 𝐺 − 𝜆𝑆 − 𝐾 (68) 

According to (58) and (59) 

 

𝑀(𝑞)𝑞̈ + 𝑉(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝑀̂𝑞̈𝑟 + 𝑉̂𝑞̇𝑟 + 𝐺 − 𝜆𝑆 − 𝐾  (69) 

 

Since 𝒒̇𝒓 = 𝒒̇ − 𝑺 and 𝒒̈𝒓 = 𝒒̈ − 𝑺̇  

 

𝑀𝑆̇ + (𝑉 + 𝜆)𝑆 = ∆𝑓 − 𝐾  (70) 

𝑴𝑺̇ = 𝚫𝒇 − 𝑲 − 𝑽𝑺 − 𝝀𝑺 
The derivation of V is defined 

𝑉̇ = 𝑆𝑇𝑀𝑆̇ +
1

2
𝑆𝑇𝑀̇𝑆 + ∑

1

𝛾𝑠𝑗

𝑀

𝐽=1

𝜙𝑇 . 𝜙̇𝑗   
(71) 

𝑽̇ = 𝑺𝑻(𝑴𝑺̇ + 𝑽𝑺) + ∑
𝟏

𝜸𝒔𝒋

𝑴

𝑱=𝟏

𝝓𝑻. 𝝓̇𝒋 

Based on (61) and (62) 

 

V̇ = ST(Δf − K − VS − λS + VS) + ∑
1

γsj

M
J=1 ϕ

T. ϕ̇
j
  (72) 

 

where ∆𝑓 = [𝑀(𝑞)𝑞̈ + 𝑉(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞)] − ∑ 𝜃𝑇𝑀
𝑙=1 𝜁(𝑥) 

 

 𝑽̇ = ∑[𝑺𝒋(𝚫𝒇𝐣 − 𝑲𝒋)]

𝑴

𝑱=𝟏

−𝑺𝑻𝝀𝑺 + ∑
𝟏

𝜸𝒔𝒋

𝑴

𝑱=𝟏

𝝓𝑻. 𝝓̇𝒋 

 

suppose 𝐾𝑗 is defined as follows 
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𝐾𝑗 =
∑ 𝜃𝑗

𝑙[𝜇𝐴(𝑆𝑗)]
𝑀
𝑙=1

∑ [𝜇𝐴(𝑆𝑗)]
𝑀
𝑙=1

= 𝜃𝑗
𝑇𝜁𝑗(𝑆𝑗)  

(73) 

 

Where 𝜁𝑗(𝑆𝑗) = [𝜁𝑗
1(𝑆𝑗), 𝜁𝑗

2(𝑆𝑗), 𝜁𝑗
3(𝑆𝑗), … . . , 𝜁𝑗

𝑀(𝑆𝑗)]
𝑇 

 

𝜁𝑗
1(𝑆𝑗) =

𝜇(𝐴)𝑗 
𝑙 (𝑆𝑗)

∑ 𝜇(𝐴)𝑗 
𝑙 (𝑆𝑗)𝑖

  
(74) 

 

where 𝜇(𝑥𝑖) is membership function.  

The fuzzy system is defined as  

 

𝑓(𝑥) = 𝜏𝑓𝑢𝑧𝑧𝑦 = ∑ 𝜃𝑇
𝑀

𝑙=1
𝜁(𝑥) =   𝜓(𝑒, 𝑒̇)  

(75) 

 

where 𝜃 = (𝜃1, 𝜃2, 𝜃3, …… . , 𝜃𝑀) is adjustable parameter in (65)  

according to (62), (63) and (65); 

 

𝑉̇ = ∑ [𝑆𝑗(Δ𝑓j − 𝜃𝑇𝜁(𝑆𝑗)]
𝑀
𝐽=1 −𝑆𝑇𝜆𝑆 + ∑

1

𝛾𝑠𝑗

𝑀
𝐽=1 𝜙𝑇 . 𝜙̇𝑗  (76) 

 

Based on 𝝓 = 𝜽∗ − 𝜽 → 𝜽 = 𝜽∗ − 𝝓 

 

V̇ = ∑ [Sj(Δfj − θ
∗T

ζ(Sj) + ϕ
T

ζ(Sj)]
M
J=1 −STλS + ∑

1

γsj

M
J=1 ϕ

T. ϕ̇
j
  

 

(77) 

𝑽̇ = ∑[𝑺𝒋(𝚫𝒇𝐣 − (𝜽∗)𝑻𝜻(𝑺𝒋)]

𝑴

𝑱=𝟏

−𝑺𝑻𝝀𝑺 + ∑
𝟏

𝜸𝒔𝒋

𝑴

𝑱=𝟏

𝝓𝒋
𝑻[𝜸𝒔𝒋. 𝑺𝒋. 𝜻𝒋(𝑺𝒋) + 𝝓̇𝒋]) 

 

where 𝜽̇𝒋 = 𝜸𝒔𝒋𝑺𝒋𝜻𝒋(𝑺𝒋) is adaption law, ∅𝒋
̇ = −𝜽̇𝒋 = −𝜸𝒔𝒋𝑺𝒋𝜻𝒋(𝑺𝒋) 

  𝑽̇ is considered by 

 

𝑉̇ = ∑[𝑆𝑗

𝑚

𝑗=1

∆𝑓𝑗 − ((𝜃𝑗
∗)𝑇𝜁𝑗(𝑆𝑗))] − 𝑆𝑇𝜆𝑆  

(78) 

The minimum error is defined by 

 

𝑒𝑚𝑗 = ∆𝑓𝑗 − ((𝜃𝑗
∗)𝑇𝜁𝑗(𝑆𝑗)) (79) 

 

Therefore 𝑽̇ is computed as 

 

𝑉̇ = ∑[𝑆𝑗

𝑚

𝑗=1

𝑒𝑚𝑗] − 𝑆𝑇𝜆𝑆 
(80) 

≤ ∑ |𝑆𝑗
𝑚
𝑗=1 ||𝑒𝑚𝑗| − 𝑆𝑇𝜆𝑆      

= ∑|𝑆𝑗

𝑚

𝑗=1

||𝑒𝑚𝑗| − 𝜆𝑗𝑆𝑗
2   
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      = ∑|𝑆𝑗

𝑚

𝑗=1

|(|𝑒𝑚𝑗| − 𝜆𝑗𝑆𝑗)   
(81) 

For continuous function 𝑔(𝑥), and suppose 𝜀 > 0 it is defined the fuzzy logic system 

in form of  

 

𝑆𝑢𝑝𝑥∈𝑈|𝑓(𝑥) − 𝑔(𝑥)| < 𝜖 (82) 

the minimum approximation error (𝑒𝑚𝑗) is very small.  

 

𝑖𝑓  𝜆𝑗 = 𝛼     𝑡ℎ𝑎𝑡     𝛼|𝑆𝑗| > 𝑒𝑚𝑗 (𝑆𝑗 ≠ 0)        𝑡ℎ𝑒𝑛    𝑉̇ < 0 𝑓𝑜𝑟 (𝑆𝑗 ≠ 0)  (83) 

This method has two main controller’s coefficients, 𝐾𝑝 𝑎𝑛𝑑 𝐾𝑉 . To tune and 

optimize these parameters mathematical formulation is used  

 

𝑈𝑚𝑜𝑑𝑒𝑙−𝑏𝑎𝑠𝑒 = 𝑈𝑓𝑢𝑧𝑧𝑦 + 𝑈𝑉𝑆𝐶   (84) 

Umodel−base = Ufuzzy + UVSC = [𝑴−𝟏(𝑩 + 𝑪 + 𝑮) + 𝑺̇]𝑴 + 𝑲 ∙ 𝐬𝐠𝐧(𝑺) +

 

∑ θ
lM

l=1 [∏ exp(−(
xi−αi

l

δi
l )

2

)n
i=1 ]

∑ [∏ exp(−(
xi−αi

l

δi
l )

2

)n
i=1 ]M

l=1

  

(85) 

 

The most important different between VSC and FVSC is the uncertainty. In VSC the 

uncertainty is d = G+F + f. The variable structure gain must be bigger than its upper 

bound. It is not an easy job because this term includes tracking errors  𝑒1 and𝑞̇1. While in 

FVSC, the uncertainty η is the fuzzy approximation error for 𝐺 + 𝐹 +  𝑓. 

 

𝐺 + 𝐹 + 𝑓 =  

∑ 𝜃𝑙𝑀
𝑙=1 [∏ 𝑒𝑥𝑝(−(

𝑥𝑖−𝛼𝑖
𝑙

𝛿𝑖
𝑙 )

2

)𝑛
𝑖=1 ]

∑ [∏ 𝑒𝑥𝑝(−(
𝑥𝑖−𝛼𝑖

𝑙

𝛿𝑖
𝑙 )

2

)𝑛
𝑖=1 ]𝑀

𝑙=1

  

(86) 

 

It is usually is smaller than  𝐺 + 𝐹 +  𝑓 ; and the upper bound of it is easy to be 

estimated. 

 

4. Results and Discussion 

In this section, we use a benchmark model, OCTARM VI robot manipulator, to 

evaluate our control algorithms [22]. We compare the following controllers: classical PD 

controller, PD fuzzy controller and model base fuzzy variable structure controller which is 

proposed in this paper. The simulation was implemented in MATLAB/SIMULINK 

environment. 

 

Close loop response of tracking result without any disturbance: Figure 4 illustrates the 

tracking performance in three types of controller; linear PD controller, linear PD 

controller based on fuzzy logic estimator and proposed controller.  
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Figure 4.   Linear PD, PDFLC and Proposed Method Trajectory Following 
without Disturbance 

Based on Figure 4; pure PD controller has oscillation in first and three links, because 

continuum robot manipulator is a highly nonlinear controller and control of this system by 

linear method is very difficult. Based on above graph, however PD-FUZZY controller is a 

nonlinear methodology but it has difficulty to control this plant because it is a model base 

controller. 

  

Close loop response of trajectory following in presence of load disturbance: Figure 5 

demonstrates the power disturbance elimination in three types of controller in presence of 

disturbance for robot manipulator. The disturbance rejection is used to test the robustness 

comparisons of these three methodologies.  
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Figure 5. Linear PD, PD-FLC and Proposed Method Trajectory Following 
with Disturbance 

Based on Figure 5; by comparison with the PD, PD-FLC and proposed model base 

FVSC is more stable and robust and this method is a chattering free design. 

 

5. Conclusion 

This research focuses on basic concepts of continuum robot manipulator (e.g., 

OCTARM VI robot manipulator) and model base robust soft computing control 

methodology. The dynamic parameters of this system are highly nonlinear. To control of 

this system nonlinear control methodology variable structure controller (VSC) is 

introduced. VSC is a significant nonlinear controller under condition of partly uncertain 

dynamic parameters of system. This controller is used to control of highly nonlinear 

systems especially for robot manipulators, because this controller is a robust and stable. 

Conversely, pure VSC is used in many applications; it has two important drawbacks 

namely; chattering phenomenon, and nonlinear equivalent dynamic formulation in 

uncertain dynamic parameter. In this research the chattering phenomenon and equivalent 

part problems can resolve by using artificial intelligence methodology. Fuzzy logic theory 

is used to estimate the system dynamic. To estimate the system dynamics and eliminate 

the chattering, fuzzy variable structure controller is commencing. This methodology is 

based on applied fuzzy logic in equivalent nonlinear dynamic part to estimate unknown 

parameters. This controller has acceptable performance in presence of uncertainty (e.g., 

overshoot=1%, rise time=0.9 second, steady state error = 1.6e-8 and RMS error=4.8e-8).  
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