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Abstract

The dynamics of a GEO satellite will be studied in this work to obtain a dynamical model 

as accurate as possible. This model will be obtained in terms of Gauss’ variation of 

osculating parameter (VOP) equations containing the environmental perturbing 

accelerations, which are traditionally used to plan the station keeping maneuvers. The 

idea is to implement a controller for geostationary station keeping purposes based on a 

model written in terms of osculating orbital elements instead of averaged elements. Such 

a controller plans in an automatic way the station keeping (SK) maneuvers and it could 

be integrated on board in view of autonomous station keeping control loop. 

 

Keywords: classical orbital elements COE, equinoctial orbital elements EOE, 

environmental forces acting, perturbing accelerations,variation of parameter (VOP). 
 

1. Introduction 

The Geostationary Earth Orbit (GEO) satellites maintain an essentially fixed position 

with respect to the surface of the Earth. This is made possible by inserting the spacecraft 

into a circular, equatorial orbit at an altitude of roughly 36000 km. At this altitude, if the 

main environmental disturbing forces (the Earth’s non-spherical gravity attraction, the 

Moon’s and Sun’s gravity attraction and the solar radiation pressure) are neglected except 

the Kepler attraction of the Earth, the geostationary motion is ideal. The satellite remains 

fixed with respect to the surface of the Earth. The mean motion n matches the Earth’s 

rotation rate  of one revolution per 23 hours and 56 minutes. 

In presence of perturbations, it is a common practice to control a GEO satellite actively 

via station keeping maneuvers such that it stays confined in a box of 100–150 km width 

around a nominal geostationary longitude and latitude [1]. Traditionally this is done with 

an open loop control technique based on a dynamical model of the satellite state vector 

subject to the only environmental perturbing forces and on a separate dynamical model 

taking into account the only thrust effects.  

Moreover, this latter model is derived supposing to use a chemical propulsion system 

characterized by high thrusts and very short thrust durations relative to the orbital period. 

These impulsive thrust hypotheses lead to assume that maneuvers induce jumps in the 

velocity part of the state vector but not in the position part. The GEO station keeping 

problem is thus dealt with in a discrete way, without considering spacecraft acceleration 

but only velocity and position vectors. 

With a view to substitute chemical propulsion systems with electrical ones, the solution 

approaches of the GEO station keeping problem should become continuous, in order to 

gain benefit from the technology change. A GEO satellite dynamics model has to be 

obtained taking into account all the perturbing forces (environmental or not) acting on the 

spacecraft. 

In this paper, we explain in detail the nonlinear dynamical model used to design the 

station keeping controller and the analytical approximations done to implement this 

mailto:Louardi_b@yahoo.fr


International Journal of Hybrid Information Technology 

Vol.8, No.1 (2015) 

 

 

418   Copyright ⓒ 2015 SERSC 

model. We present validation simulation results, which have been obtained implementing 

Gauss’ VOP equations [2]. 

 

2. Nonlinear Model in Perturbed Keplerian Conditions 

When the satellite is subject to disturbing forces different to the Keplerian Earth’s 

gravity attraction, the above properties of orbital elements are no longer true. Under the 

hypothesis that the disturbing forces are weak with respect to the main Keplerian two-

body term, it is reasonable to think that the satellite trajectory is slightly different from a 

conic, i.e., that the six first integrals of the unperturbed two-body equations undergo only 

weak variations. The osculating elliptic trajectory defined by the osculating elements is 

tangent to the actual trajectory (i.e., it has the same velocity vector) but it doesn’t have the 

same curvature radius (i.e., it has a different acceleration vector). According to the 

variation of parameter (VOP) methods originally developed by Euler and later improved 

by Lagrange and Gauss in the 18th century to analyses the perturbation effects [2], the 

vectorial first order differential dynamical equations valid for a GEO satellite subject to 

the Keplerian Earth’s gravity attraction and to the generic not Keplerian disturbing 

acceleration ad are: 


dt

dr
                                                                           (1) 
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Where r the spacecraft position vector, is the spacecraft velocity vector, GM is the 

gravitational coefficient of the earth. 

And they are equivalent to the set of differential equations 
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Where a is the semi-major axis, (P1, P2) is the eccentricity, (Q1, Q2) is the Inclination 

and l is the mean longitude in terms equinoctial orbital elements EOEs [3]. 
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Where a, e, i, Ω,,M  are the semi-major axis, eccentricity, Inclination, mean 

longitude, Argument of perigee and mean anomaly in the classical orbital elements 

(COEs) [3], respectively. Also called the Keplerian elements, Θ (t) is Right ascension of 

the Greenwich meridian,  is the angular velocity of the Earth. 

Where the mean motion n is function of the unperturbed semi-major axis a:  

3
a

GM
n


                                                             (12) 
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Vector D is the disturbing contribution to the VOP equations, small with respect to the 

Keplerian part [3]. We will call this perturbing contribution G (as Gauss) when the VOP 

equations contain directly the disturbing acceleration ad   

),(),(),( txatxGtxD
EOEdEOEEOE

                               (13) 

 

3. Gauss Variation of Parameter (VOP) Equation 

The Gauss variation of parameter equations (or Gauss planetary equations) give the 

variations over time of the classical orbit elements COEs characterizing the motion of a 

spacecraft subject to the Keplerian gravity attraction of the Earth’s and subject to small 

perturbing accelerations [4]. 

Let be 

NaTaRaa
dNdTdRd

                                                    (14) 

The sum of all the disturbing acceleration vectors expressed in the radial tangent 

normal RTN reference frame. The disturbing acceleration components perturb the 

solution xKCOE of the unperturbed Kepler’s problem [5]. This new perturbed solution 

fulfils the Gauss’ variation of parameter equations  
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The dependence of the matrix Ğ on the mean anomaly M is not explicit. In fact, sine 

and cosine of the true anomaly ν depend on sine and cosine of the eccentric anomaly E 

[5], via the inverse formulas  
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In its turn, the eccentric anomaly E is solution of Kepler’s equation  

 MEeE  sin                                                                 (19) 

This, for small eccentricity, can be solved analytically with a Taylor series expansion 

process or with a differential process [6]. It can also be easily solved numerically, using 

the method of successive substitutions or using Newton’s method to calculate successive 

refinements of E values until the result changes by less than a specified amount from one 

iteration to the next. In this last solution way, an auxiliary function  

MEeEEf  sin)(                                                 (20) 

Is defined and solved for a given value of M. Applying Newton’s method for this 

purpose, an approximate root Ei of f may be improved by computing: 
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Gauss’ VOP equations (15) can also be written in terms of the equinoctial orbit 

elements (EOE) thanks to the following differential conversion formula [7]: 


 
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Where Jacobian matrix [8]: 
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Is the partial derivative matrix of the equinoctial orbit element state vector x with 

respect to the classical orbit element state vector xCOE. The right-hand side of (15) has to 

be replaced in the conversion formula (22) by matrix Ğ and disturbing acceleration vector 

ad expressed in terms of equinoctial elements: 
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Gauss VOP equations in terms of equinoctial orbital elements EOE are as follows [9, 

10] 
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Sin and cosine of the true longitude L are defined by: 
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Witch are implicit function of (l Θ) via the eccentric longitude: 
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First order analytical solution in P1 and P2 of Kepler’s equation: 
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Considering P1 and P2 as small parameters, the solution of Kepler’s equation above has 

the functional form k*=g(P1,P2)that ca be expanded in Taylor series about P1=0 and  P2=0 
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Where k0 is called the zeroth-order solution, k0+k11P1+k12P2 is called the first-order 

solution and so on. Equation (42) can be rewritten as k*=k0+k with 
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Then, k* is substituted into equation.(42) which in turn is expended in terms of small 

quantities k, P1 and P2 around k= k0 , P1=0 and  P2=0 
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Finally, equation (44) is written only in terms of powers of P1 and P2 thanks to 

equation (43), and the coefficients of the various powers are equated to zero. This process 

gives the equations 
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This can be solved sequentially for k0, k11, k12, etc.. All the partial derivatives in the 

above equations (45)-(50) are evaluated in k=k0, P1=0 and P2=0. At the first order in P1 

and P2 one obtains the coefficients 
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Which are those of solution of equation (40). 

With those EOE time histories obtained above, we have evaluated numerically the 

components FdR, FdT , FdN and the modulus Fd of the vector of the environmental forces 

acting on the spacecraft [9]. 

They have been calculated as follows 
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4. Simulation Results 

The Simulations are performed with a program implemented in Matlab. The 

corresponding results are presented in this work, to validate the models. The satellite 

considered in the simulations is characterized by the following structural parameters: a 

mass m=4500 kg; a mean surface absorbing the solar radiation S= 300 m
2
; a mean 

reflectivity coefficient  ε = 0.3, which entails a radiation pressure coefficient CR = 1.3. 

Figure 1 to Figure 6 show the equinoctial element time histories obtained by numerical 

integration of Gauss’ VOP equations over 2 years with initial dynamical conditions a 

(t0)=ak, , P1(t0)= P2(t0)= Q1(t0)= Q2(t0)=0,l=60°. 

At the initial epoch t0=0 corresponding to the date 2010 January 1.0.for a satellite, a 

disturbing acceleration vector and a t0  value like the ones above. 
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Figure 1. Mean Latitude lθ Time Histories over 2 Years 
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Figure 2. Semi-major Axis a Time Histories over 2 Years 
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Figure 3. Time Histories of the Eccentricity Vector Components P1 and P2 

over 2 Years 
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Figure 4. Zoom of Figure 3 over 6 Weeks 
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Figure 5. Time Histories of the Inclination Vector Components Q1 and Q2 
over 2 Years 
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Figure 6. Zoom of Figure 5 over 6 Weeks 

Figure 7 and Figure 8 show the time histories of FdR, FdT , FdN and Fd over 2 years. We 

observe that the amplitudes of these force components vary in the same range for both the 

initial conditions and that they have the same periodic behavior. 

Figure 9 and Figure 10 is a zoom of Figure 7 and Figure 8 over 6 weeks and they show 

that a change of initial longitude results in a change of phase of the force component time 

histories. 
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Figure 7. Time History over 2 Years of the Gaussian Components of the 
Environmental Disturbing Force Vector Acting on a Spacecraft with Mass m 

= 4500 kg 



International Journal of Hybrid Information Technology 

Vol.8, No.1 (2015) 

 

 

Copyright ⓒ 2015 SERSC  425 

0 100 200 300 400 500 600 700
10

20

30

40

50

60

70

t[day]

F
d=

m
*a

d[
m

N
]

 

Figure 8. Time History over 2 Years of the Modulus of the Environmental 
Disturbing Force Vector Acting on a Spacecraft with Mass m = 4500 kg 
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Figure 9. Zoom of Figure 7 over 6 Weeks 
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Figure 10. Zoom of Figure 8 over 6 Weeks 

5. Conclusion 

We have studies translation dynamical nonlinear models in unperturbed Keplerian 

conditions for a GEO satellite written in terms of environmental disturbing accelerations 

(Gauss’ form). 
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Numerical simulations of these model let us obtain the time history of the satellite state 

vector and of the perturbing accelerations, which depend on  orbital parameters; they 

allow us to identify also from which perturbing force the orbital parameters are mainly 

affected. 

Appendix 

ak = 42164.172 km 

GM= 398600.4415 km
3
/s

2
 

 = 0.7292115×10
-4

 rad/s 
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