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Abstract 
 

A novel hybrid Bat Algorithm (BA) with the Differential Evolution (DE) strategy using the 

feasibility-based rules, namely BADE is proposed to deal with the constrained optimization 

problems. The sound interferences induced by other things are inevitable for the bats which 

rely on the echolocation to detect and localize the things. Through integration of the DE 

strategy with BA, the insects’ interferences for the bats can be effectively mimicked by BADE. 

Moreover, the bats swarm’ mean velocity is simulated as the other bats’ effects on each bat. 

Having considered the living environments the bats inhabit, the virtual bats can be lifelike. 

Experiments on some benchmark problems and engineering designs demonstrate that BADE 

performs more efficient, accurate, and robust than the original BA, DE, and some other 

optimization methods. 

Keywords: Bat Algorithm (BA), Differential Evolution (DE), feasibility-based rules, 

constrained optimization 

1. Introduction 

Dealing with the optimization problems using the natural-inspired algorithms, such as the 

Particle Swarm Optimization (PSO) [1], Differential Evolution (DE) [2], Genetic Algorithms 

[3], Cuckoo Search [4], Social Spider Optimization [5] and so on, has attracted great research 

interest during the recent years. The efficiency of the natural-inspired algorithms can be 

attributed to the fact that they imitate the best features in nature, which have evolved by 

natural selection over millions of years. From the well-known No-Free-Lunch theorems, no 

algorithm can adept at every problem. For example, although the DE exhibits good 

performances on a lot of problems including nonlinear, multimodal, un-constrained, 

constrained and so on [2, 6]. The performance of the DE heavily depends on the selected 

generation strategy and related parameter values used. Inappropriate choices of the generation 

strategies and parameters may lead to premature convergence [7-8].  

The natural-inspired algorithms are only based on some abstraction of the nature. As a 

simplification of the nature, they usually are not perfect. Intuitively speaking, the more the 

algorithm is true to nature, the more the algorithm can solve problems efficiently and widely. 

How to extract the intelligence from the nature and design new powerful algorithm is still in 

progress. 

The Bat Algorithm (BA) [9], proposed by Yang in 2010, is inspired by the echolocation 

characteristics of bats with varying pulse rates of emission and loudness. It can be viewed to 

link with the Harmony Search and PSO under appropriate conditions, and has shown 
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promising efficiency for solving a great many optimization applications [10], including image 

matching [11], uninhabited combat air vehicles [12], classifications [13] and various other 

problems. However, it may also face the problems about premature convergence [14].  

Many studies focus on solving the deficiencies of BA. Wang et al. [15] improved the BA 

by dynamically and adaptively adjusting the virtual bats‟ flight speed and their flight 

direction.  Li et al. [16] proposed a new bat algorithm based on complex-valued encoding to 

enhance the BA‟s performance. Gandomi et al. [17] introduce chaos into BA to increase the 

algorithm‟s global search mobility. Liu et al. [18] further mimicked the bats‟ echolocation 

characteristics by introducing the Doppler Effect into BA. All these variants further mimic the 

behaviors of the bats and successfully enhance the performance of the basic BA. 

In this paper, a novel hybrid BA is proposed to overcome the imperfection of BA by 

further mimicking the living environments the bats inhabit. Using the DE strategy, the other 

insects‟ interferences for the bats can be effectively simulated. Moreover, the swarm‟s mean 

velocity is simulated as other bats‟ effects on the bats. 

The rest of this paper is organized as follows. Section 2 briefly introduces the background 

knowledge about the BA, DE, and the feasibility-based rules. The details of our new hybrid 

optimization algorithm, BADE, and its computational complexity are described in Section 3. 

Section 4 presents the simulations and comparative study. Some conclusions are provided in 

Section 5. 

 

2. Related Works 

2.1. Bat Algorithm (BA) 

Described by its position 𝑥 
 , velocity 𝑣 

 , frequency   , loudness   
 , and the emission pulse 

rate   
  (  ,     -), each bat searches its prey in a D-dimensional space. 

 

2.1.1. Movement of Virtual Bats: After a random initialization, the new positions (solutions) 

and velocities at time step t are updated as follows: 

  =  𝑚 𝑛 + ( 𝑚𝑎𝑥 −  𝑚 𝑛) × 𝛽,                                           (1) 

𝑣 
 :1 = 𝑣 

 + (𝑥 
 − 𝑥∗) ×   ,                                                 (2) 

𝑥 
 :1 = 𝑥 

 + 𝑣 
 :1,                                                                 (3) 

Where 𝛽  ,   - is a random vector drawn from a uniform distribution. 𝑥∗ is the current 

global best solution. Initially, each bat is randomly assigned with a frequency in [ 𝑚 𝑛  𝑚𝑎𝑥]. 

The values of  𝑚 𝑛 and  𝑚𝑎𝑥 depend on the domain size of the problem of interest. 

For the local search part, once a solution is selected among the current best solutions, a 

new solution for each bat is generated locally according to the following equation: 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀 ∗   ,                                                            (4) 

Where 𝜀 is a random vector drawn from a uniform distribution in the interval [−1, 1].    is 

the average loudness of all the bats at time step t. The global best solution 𝑥∗ can be updated 

when the best fitness value obtained by all the N bats is superior to the previous  (𝑥∗). 
 

2.1.2. Loudness and Pulse Emission: The loudness   
  and emission rates   

  decrease and 

increase respectively, only if the new solutions are updated, which means that these bats are 

moving towards their prey. These can be formulated as follows. 

If (     (   )    
      (𝑥 )   (𝑥))                                       (5) 

 (𝑥) =  (𝑥 ),                                                              (6) 

  
 :1 = 𝛼  

 ,                                                                 (7) 

  
 :1 =   

0( − 𝑒;𝛾 ),                                                  (8) 
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Where      (   )is a random vector drawn from a uniform distribution.  𝛼 and 𝛾 are two 

constants, 𝛼 is similar to the cooling factor of a cooling schedule in simulated annealing. The 

initial loudness   
0 and pulse rate   

0 are random numbers uniformly distributed in the interval 

[1, 2] and [0, 1], respectively. 

 

2.2. Differential Evolution (DE) 

The DE is an evolutionary algorithm. There exist several variants of the traditional DE. 

The DE/rand/1/bin scheme of Storn and Price [19] is chosen in this work for a general 

description. In the DE algorithm, candidate solutions are represented as chromosomes in a 

vector like 𝑥 ⃗⃗  ⃗ = (𝑥  1 𝑥  2  𝑥   )  where    ,     - ,   ,     - The solutions are 

randomly initialized in the D-dimensional search space. They can evolve by undergoing 

simple operations of mutation 𝑣 
 ⃗⃗⃗⃗  ⃗, crossover 𝑢 

 ⃗⃗⃗⃗  and selection 𝑥 
 ⃗⃗⃗⃗ . 

𝑣 
 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑎

 ⃗⃗⃗⃗ + 𝐹(𝑥𝑏
 ⃗⃗⃗⃗ − 𝑥𝑐

 ⃗⃗⃗⃗ ),                                                          (9) 

𝑢  𝑗
 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {

𝑣  𝑗
 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗           𝑗 (   )   𝐶𝑅𝑗 𝑜   = 𝑘  

𝑥  𝑗
 ⃗⃗ ⃗⃗  ⃗      𝑜𝑡ℎ𝑒 𝑤 𝑠𝑒 

,                   (10) 

𝑥 
 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {

𝑢 
 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗       (𝑢 

 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   )   (𝑥 
 ⃗⃗⃗⃗  ) 

𝑥 
 ⃗⃗⃗⃗      𝑜𝑡ℎ𝑒 𝑤 𝑠𝑒

.                                       (11) 

Where               ,   - 𝑘  ,   - 𝑘  is randomly selected,  (𝑥 
 ⃗⃗⃗⃗ )  denotes 

the fitness value of the ith individual at t time step. 𝐹  (   ) is a positive parameter for 

scaling the difference solutions. 𝐶𝑅  (   ) is the crossover rate. 

 

2.3. The Feasibility-based Rules 

The feasibility-based rules [20] used in this paper are illustrated as follows. 

(1) Any feasible solution is superior to any infeasible solution.  

(2) Between two feasible solutions, the one having a better objective function value is 

preferred.  

(3) Between two infeasible solutions, the one having a smaller constraint value is 

preferred.  

To summarize, these rules are to choose a solution that lies closer to the feasible region. 

 

3. Hybrid BA with DE strategy 

3.1. The Basic Idea of BADE 

Bats use echolocation to detect prey and discriminate different types of insects even in the 

dark. Hence bats are sensitive to the sounds. Bats usually feed on insects, which can emit 

sound. In a specific habitat, there exist a group of bats, some of which may simultaneously 

forage for food. Thus bats may be subjected to the noise and interference induced by their 

prey and their partners. Comprehensive study has suggested that bats seem to be able to 

discriminate targets by the variations of the Doppler Effect induced by the wing-flutter rates 

of the targeted insects [21].  

As the simplification of the bats‟ behaviors, the other bats‟ and insects‟ interferences for 

the bats are not considered in the basic BA. To make the virtual bats resemble the realistic 

bats is the main idea in this work. In this paper, the living environments the bats inhabit 

would be integrated into the BA.  
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Through integration of the mutation operator in the DE/rand/1/bin scheme with the BA, the 

insects‟ interferences for the bats can be visually simulated as a stochastic decision. The 

insects‟ interferences for the bats only exists when rand (0, 1), a uniform random number in 

[0, 1], is smaller than CR. Here CR is the crossover rate in DE. Consider three different 

individuals interfere with the virtual bats. If the interference is strong enough that the virtual 

bats cannot distinguish the targets by themselves, they will follow the clues suggested by the 

interference. Otherwise, they will continue searching for their targets using their own 

strategies. 

For simplicity, the swarm‟s mean velocity is simulated as the other bats‟ effects on the 

bats. Figure 1 is a good case to illustrate that it may contribute to help the virtual bats to find 

the prey by considering the swarm‟s mean velocity. 

 

 

 

 

 

 

 

 

 

Figure 1. The Swarm’s Trajectory 

Without considering the swarm‟s mean velocity, the bat i will be located at 𝑥 
 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   according 

to the equations (1), (2) and (3). However, following this direction, bat i will be far away 

from the optimal solution. If the opposite swarm‟s mean velocity is considered, the situation 

will be improved. Compared with 𝑥 
 :1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , the new location (solution) 𝑥 

 :1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  can be closer to the 

optimal solution than 𝑥 
 :1, when we use the equations (1), (12) and (3) to update the new 

location (solution). 

𝑣 
 :1 = 𝑤 × (𝑣 

 − 𝑤2 × 𝑣) + (𝑥 
 − 𝑥∗) ×   ,                       (12) 

Where 𝑤  (   ) 𝑤2  (−   )  are two random vectors drawn from a uniform 

distribution.  

Moreover, consider a following situation. Bats would not find a better food than their 

previous ones during several time step (G), and they have eaten up their food. Then they may 

go to another place to forage for food. For simplicity, this situation can be simulated as 

follows. All the bats‟ loudness would be initialized again. Their pulse rates can be temporarily 

set to a high value, hence the bats can search globally. 

Using the criteria above, the virtual bats in the proposed algorithm can be more lifelike 

than the ones in basic BA, thus helping them escape from the local optima.  

 

3.2. Main Procedure of BADE 

The main procedure of the BADE can be described as follows. 

Step 1 Initialization 

1.1 Initialize N bats‟ positions 𝑥 , velocities 𝑣  (  ,     -) in a D-dimensional space, 

and initialize the associated parameters, such as frequency    , pulse rates    , and the 

loudness   .  

1.2 Evaluate the fitness value of each bat by the objective function  (𝑥) and the constraint 

value of each bat by the constrained functions. 

𝑥𝑖
𝑡⃗⃗  ⃗ 

𝑥∗⃗⃗  ⃗ 

𝑥𝑖
𝑡:1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

−𝑣   
𝑥𝑖
𝑡:1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑥𝑜𝑝𝑡𝑖𝑚𝑢𝑚 
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Step 2 Update solutions. 

While t < Max number of iterations (M)  

Step 2.1 Generate offspring (solutions) 𝑥 
 :1 using the equations (1), (12) and (3). 

Step 2.2 If (     (   ) >   ) 
Select a solution among the best solutions 

Generate a local solution 𝑥 
 :1 around the selected best solution using the equation (4). 

End if 

Evaluate the fitness values and constraint values of the offspring 𝑥 
 :1. 

Step 2.3 If (     (   ) < CR) 

Generate offspring 𝑥 
 :1 using the equation (9). 

Evaluate the fitness values and constraint values of the new offspring 𝑥 
 :1 . 

Select the final offspring 𝑥 
 :1  by comparing the fitness value and constraint value of 

𝑥 
 :1 with those of 𝑥 

 :1  according to the feasibility-based rules. 

End if  

Step 2.4 If (     (   ) <   ) 

If 𝑥 
  is infeasible, but 𝑥 

 :1 is feasible  

Or both 𝑥 
 , 𝑥 

 :1are feasible, but  (𝑥 
 )   (𝑥 

 :1) 

Or both 𝑥 
 , 𝑥 

 :1are infeasible, but constraint value of 𝑥 
  is bigger than that of 𝑥 

 :1. 

Accept the offspring 𝑥 
 :1as the new solutions. 

Increase   , and reduce    using the equations (7) and (8). 

End if 

Step 2.5 Rank the bats and find the current best 𝑥∗. 

Step 2.6 If 𝑥∗ does not improve in G generations. 

Reinitialize the loudness   , and set the pulse rates   , which is a uniform random number 

between [0.85, 0.9]. 

t = t + 1. 

End while 

Step 3 Update the best 𝑥∗. 

 

3.3. Computational Complexity of BADE 

The computational complexity of the BADE can be estimated. M stands for maximal 

iteration number. In the BADE, the „worst-case‟ complexities are described as follows. 

1) In Step 1.1, the time complexity of initializing N bats is  (   +   ). 
2) In Step 1.2, evaluating N bats‟ fitness values and constraint values is  (  ). 
3) In Step 2, the time complexity is   (  ). 
4) In other steps, the computational complexity is rather simple, and can be neglected. 

To summarize, the overall computational complexity of the BADE is  (  ). 

 

4. Validation and Comparison 

In order to verify the efficiency of the BADE, and illustrate its superiority over other 

methods, some well-known benchmark problems and real-world engineering designs are used 

to investigate the performance of the algorithms. In all case studies, the statistical results have 

been obtained, based on 100 independent trials for each of the algorithms. The number of 

iterations is 1,000 in each trial. For a fair comparison, the population size in each algorithm is 

set to be the same. Table 1 presents the details about the parameters of the BADE, BA and 

DE. 
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Table 1. The Parameters’ Values of BADE, BA and DE 

Algorithm Parameters 

BADE 𝛼 = 𝛾 =   9,  𝑚 𝑛 =    𝑚𝑎𝑥 =    0  ,   -  0  ,   -   
𝑤  (     ) 𝑤2  (−   ) 𝐺 =    

BA 𝛼 = 𝛾 =   9,  𝑚 𝑛 =    𝑚𝑎𝑥 =    0  ,   -  0  ,   - 
DE CR = 0.9, F = 0.6 

 

4.1. Benchmark Problems 

In this section, a total of nine benchmark problems [22-23] are used to demonstrate the 

BADE‟s superiority over the basic BA and DE. These problems are presented as follows. 

F1. Minimize  (𝑥 ) =  ∑ 𝑥 −  ∑ 𝑥 
2 − ∑ 𝑥 

13
 <5

4
 <1

4
 <1  

Subject to  1(𝑥 ) =  𝑥1 +  𝑥2 + 𝑥10 + 𝑥11 −        
                  2(𝑥 ) =  𝑥1 +  𝑥3 + 𝑥10 + 𝑥12 −       

          3(𝑥 ) =  𝑥2 +  𝑥3 + 𝑥11 + 𝑥12 −       
                 4(𝑥 ) = − 𝑥1 + 𝑥10     
                 5(𝑥 ) = − 𝑥2 + 𝑥11     
                 6(𝑥 ) = − 𝑥3 + 𝑥12     

          7(𝑥 ) = − 𝑥4 − 𝑥5 + 𝑥10     
                 8(𝑥 ) = − 𝑥6 − 𝑥7 + 𝑥11     

          9(𝑥 ) = − 𝑥8 − 𝑥9 + 𝑥12     
Where the bounds are   𝑥    (  ,    9-),   𝑥      (i = 10, 11, 12), and   
𝑥13   , the global optimum is at  𝑥∗ = (                         )  where   (𝑥∗) = −  .  

F2. Minimize  (𝑥 ) = − (∑  𝑜𝑠4(𝑥 )  −   ∏  𝑜𝑠2(𝑥 )
𝑛
 <1

𝑛
 <1 ) √∑  𝑥 

2𝑛
 <1   

Subject to    1(𝑥 ) =     − ∏ 𝑥 
𝑛
 <1    

                    2(𝑥 ) = ∑ 𝑥 
𝑛
 <1 −         

Where n = 20,   𝑥     (  ,     -), the optimal solution is  (𝑥∗) = −       9. 

F3. Minimize  (𝑥 ) = −(√ )𝑛 ∏ 𝑥 
𝑛
 <1  

Subject to   ℎ(𝑥 ) = ∑ 𝑥 
2𝑛

 <1 −  =   

Where n = 10 and   𝑥     (   ,     - ), the global optimum is at   𝑥∗ =   √ , 

where  (𝑥∗) = − . 

F4. Minimize  (𝑥 ) =  𝑥1 +   ;6𝑥1
3 +  𝑥2 +  ×   ;6𝑥2

3   

Subject to  1(𝑥 ) = −(𝑥1 −  )2 − (𝑥2 −  )2 +        
                  2(𝑥 ) = (𝑥1 −  )2 + (𝑥2 −  )2 −          

Where    𝑥1      and   𝑥2     , the optimal solution is at  𝑥∗= (14.095, 0.84296), 

where  (𝑥∗) = − 9       .  

F5. Minimize  (𝑥 ) = 𝑥1
2 + 𝑥2

2 + 𝑥1𝑥2 −   𝑥1 −   𝑥2 + (𝑥2 −   )2 +  (𝑥4 −  )2 +
(𝑥5 −  )2 +  (𝑥6 −  )2 +  𝑥7

2 +  (𝑥8 −   )2 +  (𝑥9 −   )2 + (𝑥10 −  )2 +    

Subject to  1(𝑥 ) =  𝑥1 +  𝑥2 −  𝑥7 + 9𝑥8 −          
         2(𝑥 ) =   𝑥1 −  𝑥2 −   𝑥7 +  𝑥8      
         3(𝑥 ) = − 𝑥1 +  𝑥2 +  𝑥9 −  𝑥10 −       
         4(𝑥 ) =  (𝑥1 −  )2 +  (𝑥2 −  )2 +  𝑥3

2 −  𝑥4 −        
                  5(𝑥 ) =  𝑥1

2 +  𝑥2 + (𝑥3 −  )2 −  𝑥4 −       
         6(𝑥 ) = 𝑥1

2 +  (𝑥2 −  )2 −  𝑥1𝑥2 +   𝑥5 −  𝑥6     
         7(𝑥 ) =    (𝑥1 −  )2 +  (𝑥2 −  )2 +  𝑥5

2 − 𝑥6 −       
                  8(𝑥 ) = − 𝑥1 +  𝑥2 +   (𝑥9 −  )2 −  𝑥10     
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Where n = 10 and −   𝑥     (   ,     - ), the global optimum is at 𝑥∗  = 

(2.171996,2.363683,8.773926,5.095984,0.9906548,1.430574,1.321664,9.828726,8.280092,8.

375927), where  (𝑥∗) =         9 . 

F6. Minimize  (𝑥 ) = ∑ 𝑥 
3
 <1  

Subject to  1(𝑥 ) = − +       (𝑥4 + 𝑥6)     
          2(𝑥 ) = − +       (𝑥5 + 𝑥7 − 𝑥4)     

                 3(𝑥 ) = − +     (𝑥8 − 𝑥5)     
                 4(𝑥 ) = −𝑥1𝑥6 +          𝑥4 +    𝑥6 −              

         5(𝑥 ) = −𝑥2𝑥7 +     𝑥5 + 𝑥2𝑥4 −     𝑥4     
                6(𝑥 ) = −𝑥3𝑥8 +        + 𝑥3𝑥5 −     𝑥5     

Where    𝑥1       ,      𝑥        (i=2, 3) and    𝑥       (  ,     - ), 
the optimal solution is at 𝑥∗  = (579.19, 1360.13, 5109.92, 182.0174, 295.5985, 217.9799, 

286.4, 395.5979), where  (𝑥∗) =    9      
F7. Minimize  (𝑥 ) = 𝑥1

2 + (𝑥2 −  )2 

Subject to ℎ(𝑥 ) = 𝑥2 − 𝑥1
2 =  . 

Where −  𝑥1 𝑥2   , the optimal solution is at  𝑥∗ = (   √     ), where  (𝑥∗) =       
F8. Minimize  (𝑥 ) = (𝑥1 −  )2 + (𝑥2 −  )2 

Subject to    1(𝑥 ) = 𝑥1 −  𝑥2 +  =   

                        2(𝑥 ) =     𝑥1
2 + 𝑥2

2 −     

Where−   𝑥1 𝑥2    , the optimal solution is at 𝑥∗ = (          9    ) where  (𝑥∗) = 

1.3935. 

F9. Minimize  (𝑥 ) = (𝑥1
2 + 𝑥2 −   )2 + (𝑥1 + 𝑥2

2 −  )2 

Subject to    1(𝑥 ) = (𝑥1 −     )2 + (𝑥2 −    )2 −        

                        2(𝑥 ) =     − 𝑥1
2 − (𝑥2 −    )2    

Where   𝑥1 𝑥2   , the optimal solution is at 𝑥∗ = (                 ), where  (𝑥∗) = 

13.59085. 

Table 2 presents the statistical results obtained by the BADE, BA and DE. It clearly shows 

that the proposed algorithm outperforms the BA and DE for solving all these problems in 

terms of optimization accuracy and robustness.  

As illustrative examples, two complex problems are chosen to show the convergence 

performance of the three algorithms. Note that different strategies of the vertical axis are used 

in Figure 2 and Figure 3 to obtain a visible comparison result. In Figure 3, a logarithmic (base 

10) scale is used for the vertical axis, while the vertical axis in Figure 2 is divided by the 

optimal value of the problem F1.  

It can be figured out that BADE can yield a better convergence performance than that of 

the BA and DE. Thus the proposed algorithm successfully enhances the bat algorithm‟s 

performance. 

Table 2. Optimization Results Obtained by BADE, BA and DE 

Problem Algorithm Best Mean Worst Std. 

F1 

(Optimum 

-15) 

BA -14.895416 -14.123807 -13.281171 0.0326253 

BADE -15.000000 -15.000000 -15.000000 0 

DE -15.000000 -14.309998 -5.000000 0.215554 

      

F2 

(Optimum 

-0.803619) 

BA -0.415492 -0.288233 -0.188259 0.00511553 

BADE -0.803551 -0.774184 -0.627821 0.00301232 

DE -0.802466 -0.763126 -0.622109 0.00377503 

      

F3 BA -0.146877 -0.006375 -0.000000 0.002418 
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(Optimum 

-1) 

BADE -1.000000 -0.999989 -0.999587 4.25983e-6 

DE -0.9999998 -0.9999910 -0.9999398 1.17517e-6 

      

F4 

(Optimum 

-6961.81388) 

BA -6955.586103 -6861.925196 -6747.332675 3.97447 

BADE -6961.813876 -6961.813876 -6961.813876 3.72944e-13 

DE -6961.813876 -5636.952741 -550.011046 298.533 

      

F5 

(Optimum 

24.306) 

BA 31.202667 37.812975 44.376195 0.256523 

BADE 24.306516 24.309069 24.325009 0.000328386 

DE 24.307619 24.452326 25.078375 0.0281264 

      

F6 

(Optimum 

7049.3307) 

BA 7641.352525 15886.42796 29999.28351 511.12 

BADE 7049.330285 7050.769000 7098.552165 0.508031 

DE 7049.66928 7380.71174 11010.0000 79.1739 

      

F7 

(Optimum 

0.75) 

BA 0.750021 0.752844 0.756825 0.000175376 

BADE 0.75 0.75 0.75 1.12144e-18 

DE 0.75 0.750704 0.778339 0.0003717 

      

F8 

(Optimum 

1.3935) 

BA 1.397637 1.455812 1.534232 0.00340042 

BADE 1.393465 1.393465 1.393465 1.11424e-16 

DE 1.393465 1.394360 1.454966 0.000675 

      

F9 

(Optimum 

13.59085) 

BA 13.598136 13.684625 13.864751 0.00569281 

BADE 13.590842 13.590842 13.590842 1.14132e-15 

DE 13.590842 15.558862 67.422811 0.784452 

 

 

Figure 2. Convergence Curves of F1 
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Figure 3. Convergence Curves of F5 

4.2. Applications of BADE in Engineering Design 

(1) Cantilever beam. The structure of a cantilever beam with square cross section [4] is 

shown in Figure 4. The design variables are the heights (or widths) of the different beam 

elements. The beam is rigidly supported at node 1. There exist five nodes. A given vertical 

force acts at node 6. Here, the thickness (t), which is set to 2/3, is held fixed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cantilever Beam 

This design problem can be described as follows. 

Minimize  (𝑥 ) =       ∑ 𝑥 
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3 −     

Table 3 shows the optimization results obtained by BADE and other algorithms. It clearly 

shows that the solution achieved by the BADE is slightly better than that of others. The 
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constraint value is   ∗ = -7.12208e-13, which means the best solution achieved by BADE 

is feasible. 

Table 3. Optimization Results of the Cantilever Beam Design 

 Chickermane et al. [24] 

  MMA     GCA(I)   GCA(II) 

Gandomi et al. [4] BADE 

𝑥1 6.010 6.010 6.010 6.0089 6.015810 

𝑥2 5.300 5.300 5.300 5.3049 5.309177 

𝑥3 4.490 4.490 4.490 4.5023 4.494092 

𝑥4 3.490 3.490 3.490 3.5077 3.501817 

𝑥5 2.150 2.150 2.150 2.1504 2.152765 

Worst N/A N/A N/A N/A 1.33995636 

Mean N/A N/A N/A N/A 1.33995636 

Std. N/A N/A N/A N/A 7.4604e-11 

Best 1.340 1.340 1.340 1.33999 1.33995636 

 (2) Welded beam design. The schematic of the welded beam [3], shown in Figure 5, is 

described by four design variables, which are h (𝑥1), l (𝑥2), t (𝑥3), and b (𝑥4). This design is 

to find a minimum total fabricating cost, subject to the constraints on the shear stress  , 

bending stress in the beam  , buckling load on the bar  𝑐, and deflection of the beam 𝛿, and 

side constraints.  

 

Figure 5. Welded Beam Design 

The problem can be explained as follows. 

Minimize  (𝑥 ) =        𝑥1
2𝑥2 +        𝑥3𝑥4(𝑥2 +   ) 

Subject to  1(𝑥 ) =  (𝑥) −  𝑚𝑎𝑥    

          2(𝑥 ) =  (𝑥) −  𝑚𝑎𝑥    

          3(𝑥 ) = 𝑥1 − 𝑥4    

          4(𝑥 ) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥    

          5(𝑥 ) =  −  𝑐(𝑥)    

Where  (𝑥 ) = √(  )2 +       𝑥2 ( 𝑅) + (   )2 ,   =   (√ 𝑥1𝑥2)  
  =  𝑅    =

 ( +    𝑥2)  𝑅 = √    𝑥2
2 +     (𝑥1 + 𝑥3)

2   =  *√ 𝑥1𝑥2,𝑥2
2   +     (𝑥1 + 𝑥3)

2-+  

 (𝑥 ) =     (𝑥3
2𝑥4)  𝛿(𝑥 ) =    3 ( 𝑥3

3𝑥4) ,  𝑐(𝑥 ) =         2√
𝑥 
 𝑥 

 

36
( − 𝑥3 

(  )√  ( 𝐺)) , P=6000lb, L=14in, 𝛿𝑚𝑎𝑥 =     in, E=30,000,000psi, G=12,000,000, 

 𝑚𝑎𝑥 =        𝑠    𝑚𝑎𝑥 =        𝑠         𝑥1        𝑥2 𝑥3         𝑥4     
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Table 4. Optimization Results of Welded Beam Design 

 Coello, et al 

[3] 

Coello, et al. 

[25] 

He, et al. 

[1] 

Zhang, et al. 

[6] 

Cuevas, et al. 

[5] 

 BADE 

𝑥1 0.205986 0.205700 0.202369 N/A N/A  0.205730 

𝑥2 3.471328 3.470500 3.544214 N/A N/A  3.470489 

𝑥3 9.020224 9.036600 9.048210 N/A N/A  9.036624 

𝑥4 0.206480 0.205700 0.205723 N/A N/A  0.205730 

Worst 1.993408 3.179709 1.782143 1.724853 1.7993318  1.724852 

Mean 1.792654 1.971809 1.748831 1.724852 1.7464616  1.724852 

Std. 0.074713 0.443131 0.012926 2.1e−7 0.02572985  2.22e-16 

Best 1.728226 1.724852 1.728024 1.724852 1.7248523  1.724852 

Table 4 summarizes a comparison of the results obtained by the BADE and other 

optimization methods [1, 3, 5-6, 25]. BADE can yield a better result than the results reported 

by Coello et al. [3] and He et al. [1], and has a comparable optimization accuracy with that 

reported by Coello et al. [25], Zhang et al. [6] and Cuevas et al. [5]. However, BADE 

performs more stable than all the methods. The best solution obtained by BADE is feasible. 

The constraint values are   ∗ = (0, 0, -5.55112e-17, -0.23554, -2.72848e-12). It can be 

draw the conclusion that BADE outperforms all the methods in these literatures for solving 

this problem. 

(3) Coil compression spring design. The coil compression spring [26] (as shown in Figure 

6) is to minimize the weight of the compression spring, subject to the constraints on the 

minimum deflection, shear stress, surge frequency, diameter and design variables. The design 

variables are the mean coil diameter D (x1), the wire diameter d (x2), and the number of 

active coils N (x3).  

 

d

D

N

 

Figure 6. Coil Compression Spring Design 

This problem can be formulated as follows. 

Minimize  (𝑥 ) = 𝑥1
2𝑥2(𝑥3 +  ) 

Subject to  1(𝑥 ) =  − 𝑥2
3𝑥3 (     𝑥1

4)    

                  2(𝑥 ) = ( 𝑥2
2 − 𝑥1𝑥2) (     (𝑥1

3𝑥2 − 𝑥1
4)) +   (    𝑥1

2) −     

                 3(𝑥 ) =  −        1 (𝑥2
2𝑥3)    

                 4(𝑥 ) = (𝑥1+𝑥2)    −     

Where      𝑥1           𝑥2        𝑥3      
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Table 5. Optimization Results of Coil Compression Spring Design 

 He, et al. 

[1] 

Gao, et al. 

[26] 

Zhang, et al. 

[6] 

Ali, et al. 

[27] 

Cuevas, et al. 

[5] 

BADE 

𝑥1 0.051728 0.051678 N/A 0.05169280 N/A 0.051689 

𝑥2 0.357644 0.356436 N/A 0.35680768 N/A 0.356718 

𝑥3 11.244543 11.306441 N/A 11.28369666 N/A 11.288966 

Worst 0.012924 N/A 0.012769 N/A 0.01286792 0.0126656 

Mean 0.012730 N/A 0.012680 N/A 0.01276489 0.0126652 

Std. 5.1985e-5 N/A 2.7e−5 N/A 0.000093 3.9551e-9 

Best 0.0126747 0.0126665 0.012665 0.01266523 0.01266523 0.0126652 

 

Table 5 shows the statistical results obtained by BADE and several other methods [1, 5-6, 

26-27]. According to the comparison results, the proposed algorithm outperforms the methods 

reported by He et al. [1] and Gao et al. [26] in terms of optimization accuracy and robustness. 

Though the results reported by Zhang et al. [6], Ali et al. [27] and Cuevas et al. [5] have 

comparable optimization accuracy with that of BADE, BADE shows its superiority over these 

methods in terms of robustness. The best result achieved by BADE is feasible. The constraint 

values are   ∗ = (0, 0, -4.05379, -0.727729). 

 

5. Conclusion 

A novel hybrid bat algorithm, BADE, is proposed in this paper to enhance the performance 

of the basic BA. Using the mutation operator in the DE within the BA framework, the insects‟ 

interferences for bats can be effectively simulated. The other bats‟ effects on the bats can be 

simulated by adding the swarm‟s mean velocity to the velocity equation in BA. Having 

considered the interference induced by other bats and insects, the virtual bats in BADE can be 

more lifelike than those in BA. Experimental results on a total of nine benchmark problems 

and three engineering design problems demonstrate that the BADE perform more efficient 

and robust than the basic BA, DE, and a few other methods. How to use BADE to solve 

multi-objective optimization problems is worth doing in the future. 
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