
International Journal of Hybrid Information Technology 

Vol.8, No.1 (2015), pp.339-352 

http://dx.doi.org/10.14257/ijhit.2015.8.1.30 

 

 

ISSN: 1738-9968 IJHIT  

Copyright ⓒ 2015 SERSC 

Land Surface Temperature Retrieval from the Medium 

Resolution Spectral Imager Thermal Data 
 

 

Hailei Liu 
1,2

, Shenglan Zhang 
1,3*

 and Shihao Tang
2
 

1
College of Atmospheric Sounding, Chengdu University of Information 

Technology, Chengdu, China 
2
National Satellite Meteorology Center, China Meteorological Administration, 

Beijing, China 
 3
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 

zslan@cuit.edu.cn 

Abstract 

A single channel land surface temperature (LST) retrieval algorithm named Single 

Channel Water Vapor Dependent (SCWVD) method was presented for Medium 

Resolution Spectral Imager (MERSI) thermal infrared band aboard FengYun-3A (FY-3A) 

satellite. Water Vapor Content (WVC) is the only input parameter in the algorithm 

assuming the surface emissivity is known. NCEP reanalysis monthly mean datasets were 

used to develop the SCWVD algorithm. Some tests, including global numerical 

simulations and validations with both in-situ measurements and MODIS LST product at 

Lake Tahoe, USA, were carried out to evaluate the algorithm performance. The 

simulation results showed that the LST could be estimated by the SCWVD algorithm with 

the root mean square error (RMSE) less than 0.8 K. In the inversion test, MERSI Level 2 

water vapor product was employed, and the MERSI band emissivity was calculated using 

the MODIS band 31 and 32 emissivity by an empirical expression. The results show that 

the difference between the retrieved MERSI LST and the in-situ measurements is less than 

1 K in most situations. The comparison with the MODIS LST products (V5) shows that the 

RMSE is about 2.3 K. 

Keywords: MERSI; land surface temperature; water vapor content; single channel; 

band emissivity 

1. Introduction 

Medium Resolution Spectral Imager (MERSI) is one of the 11 instruments aboard FY-

3A spacecraft which is the first satellite of the second generation of Chinese polar-orbiting 

meteorological satellites launched on 27 May 2008. MERSI is a multispectral and 

medium-resolution spectral imager. It has 20 channels, of which there are four VIS and one 

TIR channels with a high spatial resolution of 250 m, which enables imaging of the Earth 

with high resolution in natural color during the day and high resolution TIR imaging 

during the night Error! Reference source not found.. These data improve our 

understandings of global dynamics and processes occurring on the land, oceans, and in the 

lower atmosphere. Details about some spectral properties of MERSI are listed in Table 1. 

LST is a key parameter of the surface physical processes on regional and global scales. 

It plays an important role in many applications such as agriculture, geosciences, climate 

and other environmental studies Error! Reference source not found.. Depending on the 

region where land surface processes are monitored, higher spatial and temporal 

resolutions are needed, which can be offered by FY-3A MERSI. However, like the 

Landsat missions, one of the main limitations of MERSI thermal information is the 

presence of only one channel in the TIR spectral region. It cannot use the split-window 

technique, the multi-channel method or the multi-angle method, which makes it more 

difficult to perform LST retrieval. 
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Several attempts have been done to perform LST retrieval for the Landsat 5 TM and 

Landsat 7 ETM+ TIR band Error! Reference source not found., but few have been 

reported for MERSI data. What is more, most of those previous methods require 

information from atmospheric radiosoundings to perform atmospheric correction for LST 

retrieval. Qin et al., developed a mono-window LST retrieval algorithm for Landsat TM6 

data using ground emissivity, atmospheric transmittance and effective mean atmospheric 

temperature as input parameters Error! Reference source not found.. In the mono-

window algorithm, the water vapor content (WVC) is designed as 0 to 3 g/cm
2
, which 

limits LST retrieval when the actual WVC beyond 3g/cm
2
. Moreover, air temperatures are 

not available when one wishes to retrieve LST over large areas. Jimёnez-Muñoz and 

Sobrino developed a generalized single-channel method using WVC as the only input 

parameter, which minimizes the input data required and then provides an operational 

methodology to retrieve LST from the Landsat 5 thermal band Error! Reference source 

not found.. They used three parameters (Ψ1, Ψ2 and Ψ3) depending on WVC to retrieve 

LST. Each of the parameter has a relationship with WVC, which has been expressed by 

statistical fits. As three middle parameters (Ψ1, Ψ2 and Ψ3) have been used in the 

algorithm, more uncertainties would be introduced during fitting the middle parameter to 

WVC respectively. An error in the water vapor source could lead to another error in the 

three parameters, which will dramatically propagate to the LST retrievals. This problem is 

common to any technique based on a direct single-channel inversion of the radiation 

transferring equation (RTE), in which the final retrievals are very sensitive to 

uncertainties on the input parameters Error! Reference source not found.. 

In this paper, an advanced operative single channel LST retrieval algorithm for MERSI 

TIR data was proposed. Assuming that land surface emissivity (LSE) is known, LST can 

be retrieved by this new advanced algorithm using WVC as the only input parameter. 

Compared with the previous methods, we mainly focused on improving the accuracy of 

retrieved LST by decreasing uncertainties introduced in the three parameters fitting to 

WVC, and the validity of this algorithm when the WVC in atmosphere beyond 3g/cm
2
. 

Table 1. MERSI Channel Characteristics (Partial)  

Channel Wavelen

gth(μm) 

Bandwidth 

(μm) 

Sub-point  

Resolution(m) 

NEΔT / Ρ (%)  

K (300K) 

Primary use 

3 0.650 0.05 250 0.4 Land surface emissivity 

4 0.865 0.05 250 0.45 

5 11.25 2.5 250 0.5K Land surface temperature 

17 0.905 0.02 1000 0.10  

Water vapor content 18 0.940 0.02 1000 0.10 

19 0.980 0.02 1000 0.10 

 

2. Theory and Methodology 
 

2.1. Atmospheric Radiative Transfer 

Generally speaking, the ground is not a blackbody, thus ground emissivity has to be 

considered for computing thermal radiance emitted by ground. Also atmosphere has 

important effects on the received radiance at remote sensor level. For a plane-parallel 

cloud free atmosphere under local thermodynamic equilibrium, ignoring scattering 

influence, the RTE describing the radiation intensity observed in channel i at zenith angle 

θ, can be formulated by including the radiance emitted by the ground, the upwelling 

radiation emitted by the atmosphere towards the sensor, and the downwelling radiation 

emitted by the atmosphere that reaches the Earth’s surface and is then reflected towards 

the sensor. Therefore, the TOA radiance Ii(θ) measured by the satellite sensor in channel i 

at the zenith angle θ can be approximately expressed as [13]: 
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Ii(θ)=Bi(Ti)=τi(θ)εiBi(Ts)+Ii
↑
+τi(θ)(1-εi)Ii

↓
 (1)  

where Ts is the LST. Ti(θ), τi(θ) and εi(θ) are the at-sensor brightness temperature, the 

atmospheric transmittance and ground emissivity in channel i at zenith θ. Ii
↑
 and Ii

↓
 is the 

atmospheric path and downward radiance, respectively. To obtain LST, three atmospheric 

parameters (τ, Ii
↑
 and Ii

↓
) and one band average emissivity should be determined. 

In TIR band, the LST retrieval problem can be viewed as two interdependent processes: 

correction for the effects of the atmosphere, and the uncoupling of the surface temperature 

and emissivity. As for MERSI TIR data, the general objective of atmospheric correction 

algorithms is to remove the atmospheric effects, especially of water vapor absorption. 

And then an accurate estimation of the surface temperature and emissivity will be 

obtained. 

 

2.2. The Simplification of Planck's Function 

In order to derive Ts from equation (1), it is crucial to simplify the Planck's function 

especially for the single channel method and split-window algorithm [14,15]. According 

to Qin [9], there is an approximate linearity between LST and Planck’s radiance in 

11.25μm. Therefore，the simplification of Planck’s function can be expressed as follows: 

 B (T) = a + bT (2)  

Where a, b is the regression coefficients, and can be assigned -23.87, 0.1099 

respectively with a RMSE of 0.06, When T is in the range of 260~300K. 

 

2.3. The Derivation of Single Channel Algorithm for MERSI Data 

The derivation of single channel algorithm is based on radiance transfer (1). According 

to the simplification of plank function mentioned above, the (1) can be rewritten as: 

a + b*Ti =εi τi(a+b*Ts)+ Ii
↑ 
+τi(θ)(1-εi)Ii

↓
  (3)  

Solving for Ts, we obtain the algorithm for LST retrieval from MERSI TIR data as 

follows: 

Ts = 
Ti

 εiτi
 + 

a－ Ii
↓
τi(θ)(1-εi) －Ii

↑

 bεiτi
 － 

a

b
  (4)  

Equation (5) is rewritten in (6) for simplification： 
Ts =ATi + B  (5)  

Where, A= 
1

 εiτi
 , B=  

a－ Ii
↓
τi(θ)(1-εi(θ)) －Ii

↑
(θ)

 bεiτi
 － 

a

b
. 

Water vapor is the major absorber in the TIR, and WVC in the atmosphere varies both 

spatially and temporally, its effect on transmission in the TIR can also vary [16]. So it is 

important for the algorithm to use water vapor as an input variable to improve the 

accuracy of the LST retrieval [17]. As shown in Figure 1, coefficients (A and B) have a 

quadratic dependence on WVC (w) respectively. Thus, the relationship between 

coefficients (A, B) and WVC can be expressed as: 

 
                                                           A=a1*w

2
+a2*w+a3                          (6a)  

                                                          B= b1*w
2
+b2*w+b3                         (6b)  
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Figure 1. Relationship between the Two Coefficients (A, B) and WVC 

Combining (6a) and (6b) with (5) results in a new relation to be derived between Ts, Ti 

and w:  

Ts = (a1*w
2
+a2*w+a3)Ti + b1*w

2
+b2*w+b3  (7)  

Using a nonlinear regression technique, six coefficients ai and bi (i=1,2,3) can be 

determined from (7). In the next section, we will address the progress for determination of 

the regression coefficients in details. 

 

2.4. Determination of the SCWVD Coefficients 

Global-based simulation datasets, including atmospheric profiles, surface temperature, 

and surface emissivity, were used to develop SCWVD algorithm. The atmospheric 

profiles (geopotential height, air temperature, and humidity) were derived from monthly 

mean products (2.5 grid-point spacing) from NCEP climate data assimilation system 

(CDAS) reanalysis project [18]. We selected 467 pixels uniformly over land on global 

scales in January and July from 2000 to 2007 (see Figure 2(a)). Thus, there are 7472 

samples in eight years. Then we carried out cloud detections over the 7472 samples using 

MODIS monthly fraction products [19] by setting a criterion as 0.3. If the cloud fraction 

in a pixel was larger than 0.3, it was considered as cloud contaminated, and the pixel was 

eliminated. At last, 6757 samples under cloud clear conditions were selected. As shown in 

Figure 2(b), 427 pixels were retained after cloud detection in January 2001. 

In order to enlarge the validity of calculated coefficients, we did the following things: 

(1) LST was provided by adding -6, -3, 0, 3 and 6K to the surface air temperature of each 

profile. (2) LSE was set from 0.90 to 1.00 with 0.01 intervals increase. (3) The view 

zenith angle was set to be the values: 0°, 15° and 30°. (4) The surface elevation at each 

pixel was taken from USGS (U.S. Geological Survey) GTOPO30, and the satellite 

altitude is assumed to be 705 km. At last, 1,114,905 (6757×5×11×3) pairs of LST and the 

at-sensor brightness temperatures for the MERSI TIR bands are generated from the 

radiative transfer calculations (MODTRAN 4.0). The datasets were split into a training 

dataset used for calculating coefficients (780,434 patterns) and an independent test set 

used to evaluate its performance (334,471 patterns). The SCWVD coefficients were 

calculated by a least square method. Table 2 shows the derived coefficients. The RMSE 

for each SCWVD equation ranges from 0.81K to 0.91K at the different emissivity (0.90 to 

1.00). 
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Figure 2. (a) Global Distribution of the 467 Pixels; (b) Global Distribution of 

Retained 427 Pixels after Cloud Detection in January 2001 

Table 2.  Coefficients and RMSE (in Kelvin) of Equation (7) for MERSI TIR 
Channel 

Emissivity a1 a2     a2     b1 b2    b3 RMSE (in K) 

1.00 0.014 0.023 1.0284 -4.117 -5.486 -5.490 0.81 

0.99 0.015 0.022 1.0331 -4.402 -5.320 -6.149 0.83 

0.98 0.016 0.020 1.0371 -4.739 -4.952 -6.663 0.86 

0.97 0.016 0.020 1.0418 -4.864 -4.987 -7.330 0.88 

0.96 0.016 0.022 1.0454 -4.788 -5.444 -7.709 0.89 

0.95 0.013 0.026 1.0497 -4.006 -6.661 -8.234 0.88 

0.94 0.012 0.028 1.0553 -3.584 -7.550 -9.067 0.88 

0.93 0.008 0.030 1.0612 -2.522 -8.134 -9.968 0.91 

0.92 0.002 0.031 1.0676 -0.882 -8.727 -10.96 0.87 

0.910 0.001 0.023 1.0742 -0.057 -6.589 -12.08 0.84 

 

2.5. Sensitive Analysis 

Provided that ground emissivity is known, the SCWVD algorithm for MERSI requires 

WVC as the only one parameter. Sensitivity and error analysis in term of the uncertainty 

of WVC in the atmosphere are presented in this section. 

The sensitivity analysis of retrieved LST was carried out with the change of WVC in 

the standard atmosphere (Mid-latitude summer atmosphere, WVC = 2.92 g/cm2) 

simulated with MODTRAN 4.0. As shown in Figure 3, the LST error linearly increases 

with the WVC error rising in all cases, especially when the WVC is smaller than the truth 

value. When emissivity is low, the increasing of LST error is much slower. The maximum 

error does not exceed 0.8 K whatever the emissivity when the error on WVC is less than 

0.5 g/cm2. In this case, the maximum error obtained depends more on the emissivity. If 

one considers only the cases emissivity larger than 0.95, the maximum error on the 

retrieved temperature does not exceed 0.6 K when the error on W is less than 0.5 g/cm2. 

As a conclusion, the sensitivity of the SCWVD method to errors on SCWVD increases for 

greater WVC and lower emissivity.  
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Figure 3. Relationships between the Retrieved LST Error and WVC Error at 
Given Different Emissivity 

2.6. Land Surface Emissivity and Water Vapor Content 

 

2.6.1. Land Surface Emissivity: It is very challenging to accurately estimate land surface 

emissivity (LSE) at the global scale. For water surface which is comparatively 

homogeneous, a constant emissivity can be assumed; for land surface, the LSE dynamics 

have wider range and can vary over short distance. Several methods have been reported 

on the basis of either the normalized difference vegetation index (NDVI) or the land cover 

information [20-24]. Red and NIR channels of MERSI in table 1 can be used to derive 

NDVI for calculating LSE. 

 

 

Figure 4. (a) Thermal Band Response Functions for MERSI and MODIS; (b) 
Relationship between MERSI Thermal Band Emissivity and the Average 

Emissivity of MODIS Band 31 and Band 32. 

In this research, an empirical expression was built to evaluate the MERSI band 

emissivity using the MODIS band 31 and 32 emissivity. Figure 4 (a) gives MERSI and 

MODIS thermal infrared band spectral responses function. MERSI thermal band is 

located in the region 8~14μm Error! Reference source not found.. It is possible to 

estimate the MERSI band emissivity using MODIS band 31 and 32 emissivity due to the 

lower emissivity values variation in 8-14μm. In order to analyze the relationship between 

the MERSI and MODIS thermal infrared band emissivity. Surface emissivity was 

provided by using 55 materials (water, snow/ice, vegetation, and soil, etc.) selected from a 

spectral library (http://speclib.jpl.nasa.gov/) Error! Reference source not found.. Then, 

the band average emissivity was calculated using the selected JPL emissivity spectra 

convolved with the MERSI and MODIS response function. Figure 4 (b) shows the 

relationship between MERSI thermal band emissivity and the average emissivity of 

MODIS band 31 and band 32. The final expression for MERSI LSE is given by: 

http://speclib.jpl.nasa.gov/
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εmersi=0.791(εmodis31+εmodis32)+0.204. In our inversion tests, we will use the MODIS Land 

emissivity product (MOD11_L2) to derive MERSI emissivity maps for the LST retrieval. 

 

2.6.2. Water Vapor Content: As shown in Table 1, MERSI has three channels which 

can be used to estimate WVC, including strong water vapor absorption line at 0.940μm, 

weak water vapor absorption line at 0.905μm and atmospheric window at 0.980μm. The 

WVC can be derived using the reflected solar radiance measurement [28, 29]. In this 

research, the MERSI L2 PWV product is used. The details of the MERSI L2 PWV 

algorithm can be found in [30]. The method adopted here for PWV retrieval is based on 

the ratio of reflected solar radiance detected by satellite between water vapor absorption 

channels and atmospheric window channels. By employing channel ratios, the aerosol 

extinction distribution and the variation effect of surface reflectance are partially 

removed, and the atmospheric transmittance of water vapor channels is approximately 

obtained. The PWV is derived from the atmospheric transmittance based on a Look up 

Table which is pre-calculated using a radiation transfer model. The sensitivities of 

atmospheric transmission in each NIR water vapor channels of MERSI to the total 

perceptible water vapor are also simulated.  The result indicates that FY-3A/MERSI has 

and good ability in detecting NIR water vapor, and can demonstrate fine characteristic of 

PWV spatial distributions with 20% relative error to the sounding. They have assessed the 

PWV L2 WVC accuracy, the retrieved WVC from MERSI NIR are compared with the 

ground based sounding data. Over cloud free area, there is a good agreement between 

them in variation trend and spatial distribution.   

 

3. Results and Discussion 
 

3.1. Numerical Tests of the Algorithm 

 

3.1.1. Standard Atmosphere Simulation Results: In this section, we apply the SCWVD 

algorithm to retrieve LST to evaluate its performance. The best way to validate an 

algorithm is to compare the in-situ ground truth measurements of LST with the retrieved 

one. However, this is not feasible, for it is extremely difficult to obtain the in-situ ground 

truth measurements which must be comparable to the pixel size of MERSI data at the 

satellite pass. A practical way is to use the simulated data generated by atmospheric 

simulation programs such as LOWTRAN, MODTRAN or RTTOV [31]. 

The simulation with the mid-latitude summer atmosphere was carried out to test our 

algorithm. MODTRAN 4.0 was used in the calculation. Detailed results are listed in Table 

3, when the WVC in mid-latitude summer atmosphere is 2.92 g/cm2. The results indicate 

the algorithm is able to provide a quite accurate estimation of LST, with the difference 

between the assumed LST and the retrieved less than 0.5 K in most cases. It is 

encouraging that the result is good at several different emissivity. 

Table 3. Tests of SCWVD Algorithm for the Mid-latitude Summer 
Atmosphere 

Emissivity R Tb Ts_truth Ts_truth-Tb LSTSCWVD Ts_truth- LSTSCWVD  

1.00 7.86 288.49 295.00 6.50 294.52 0.47 

0.98 7.77 287.71 295.00 7.28 294.56 0.43 

0.96 7.67 286.92 295.00 8.07 294.55 0.44 

0.94 7.58 286.12 295.00 8.87 294.52 0.47 

0.92 7.48 285.32 295.00 9.67 294.38 0.61 

 

3.1.2. NCEP/CDAS Reanalysis Simulation Results: Global-based simulation datasets as 

mentioned in section 2.4 were used to test SCWVD algorithm. Figure 5 (a) depicts the 

difference between LST retrieved using the SCWVD method and LST get from global 
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assimilation data. Figure 5 (b) represents the relations between the errors of retrieved LST 

using the SCWVD method and WVC. As shown in Figure 5 (b), the absolute errors of 

retrieved LST in global area are mainly concentrated in the range of±1.5K, with a RMSE 

of 0.87K. We also found that the retrieval errors are mainly located in the range of ±1K, 

when WVC is less than 1.5g/cm
2
. However, When WVC is larger than 3g/cm

2
, the 

retrieval errors can reach up to 2K. 

 

 

Figure 5. (a) Relationship between the Truth LST (NCEP) and the Retrieved 
LST by SCWVD Method; (b) Relationship between LST Error and WVC 

3.2. Tests Using in-situ Measurements in Lake Tahoe and MODIS product: The 

objective of the present work is to estimate the LST from the second generation of China's 

polar-orbiting meteorological satellite FY-3A MERSI observation over the cloud-free 

area. The TOA brightness temperatures are directly extracted from the MERSI L1B 

satellite data. The LSE map was derived from the MODIS LSE product according to the 

method motioned above. The WVC are obtained from MERSI L2 total perceptible water 

product, which can be accessed from FENGYUN Satellite Data Center 

(http://fy3.satellite.cma.gov.cn/). FY-3A MERSI Level 2 water vapor product is used as 

the input parameter for the SCWVD method, and a 2-D data interpolation procedure is 

applied in order to match the MERSI L1B data in spatial resolution. 

In order to validate our presented algorithm, the Lake Tahoe, CA/NV, USA, is selected 

as the study area. NASA scientists selected Lake Tahoe as a validation site just before the 

Terra satellite was launched in 1999 on a 15-year mission to study Earth's environment 

[32]. Equipped with a suite of instruments that constantly monitor the lake environment, 

the rafts and buoys provide information that helps make sure that Earth-observing 

satellites are getting their temperature measurements right. Measurements at the site are 

made from four permanently moored buoys on the lake, referred to as TB1, TB2, TB3, 

and TB4.  Each buoy has a custom-built radiometer that measures the skin temperature 

and several temperature sensors that measure the bulk water temperature. The automated 

validation site, where ground measurements of lake skin temperature have been made on 

a near continuous basis (every 2 min) since 1999 and used to calibrate and validate TIR 

data and products from airborne and satellite instruments, including the ASTER, MODIS, 

Landsat 5 TM, the Landsat 7 TM and ATSR [32-37]. Figure 6 gives the current location 

of the measurement sites on a map.  

As SCWVD algorithm is developed for cloud clear conditions, cloud detection should 

be done first. In this section, the SCWVD method is validated using MERSI scenes 

acquired around Lake Tahoe in 2009.  Twelve MERSI and MODIS scenes were selected 

from June to October. Table 4 gives the Data acquisition details of the various daytime 

MERSI and MODIS scenes. The difference of MERSI and MODIS overpass time was 

within 30 minutes in most cases. Taking into account the lake surface is relatively 

uniform, LST changes caused by the time difference is negligible. The MODIS LST 

products have been validated within 1K in multiple validation sites in relatively wide 

ranges of surface and atmospheric conditions. We tested SCWVD algorithm g in more 
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than 10 clear-sky cases according to compare the MERSI retrieved LST with in-situ 

measurement data and MODIS LST product. 

Table 4. Data Acquisition Details of Various Daytime Imagery of MERSI and 
MODIS 

Date Julian Day MERSI overpass time MODIS overpass time 

2009.6.9 160 18:30 19:00 

2009.6.16 167 19:10 18:55 

2009.6.18 169 18:30 19:00 

2009.7.2 183 19:10 19:00 

2009.7.4 185 18:30 18:55 

2009.8.3 215 19:10 18:55 

2009.8.5 217 18:30 18:55 

2009.8.28 240 18:00 18:55 

2009.9.13 256 18:30 19:00 

2009.9.29 272 19:35 18:55 

2009.10.9 282 18:10 19:30 

2009.10.22 295 19:05 19:00 

 

 

Figure 6. Current Location of the Measurement Sites on the Map (from 
http://laketahoe.jpl.nasa.gov) 

The difference of MERSI and MODIS overpass time was within 30 minutes in most 

cases. Taking into account the lake surface is relatively uniform, LST changes caused by 

the time difference is negligible. The MODIS LST products have been validated within 

1K in multiple validation sites in relatively wide ranges of surface and atmospheric 

conditions. We tested SCWVD algorithm g in more than 10 clear-sky cases according to 

compare the MERSI retrieved LST with in-situ measurement data and MODIS LST 

product. 
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Figure 7 (a) depicts the surface temperature distribution retrieved by SCWVD method 

for MERSI scene acquired around 03h UTC on 3 August 2009. Figure 7 (b) give the 

MODIS LST product (provided by NASA) around Lake Tahoe. Obviously, the surface 

temperatures in Tahoe Lake range in 16~18℃ and the temperature distribution is quite 

uniform with the average value of 16.7K which is near the value measured by the buoy 

(17.5◦C). The LST around the Lake Tahoe is obviously higher than water face with the 

average value about 30℃. Taking into account the spatial-resolution difference between 

MERSI and MODIS, match-up was generated employing the 2-D interpolation. Figure 8 

(a) gives the error distribution map between MERSI LST with MODIS LST product. For 

the water surface temperature, the maximum difference is about 1.2 K, most of the 

differences are around 0.5 K, and the RMSE is 0.35 K. The largest temperature difference 

was obtained outside lake with an error of 4.7 K. We think the main reason maybe the 

effect of spatial-resolution difference and the implement of the interpolation. Figure 8 (b) 

gives the scattering plot of the retrieved MERSI LST and MODIS LST product with an 

RMSE of 2.3K. The results indicate that most of the retrieved LSTs from MERSI data are 

a little higher than that from MODIS LST products around the lake. It is worth noticing 

that MERSI LST has great improvement than MODIS in the spatial resolution, for 

example, MERSI can easily get the temperature changes information of the small water 

body nearby the Lake Tahoe. 

The LSTs retrieved by the SCWVD algorithm have also been compared with in-situ 

measurements in Lake Tahoe. Figure 9 give the difference between MERSI, MODIS and 

buoy measurement water surface skin temperature over the 12 days (4 buoys 

measurements average per day). The results indicate that the accuracy of the retrieved 

MERSI LSTs is less than 1.5K.  The MODIS LST accuracy is better than MERSI’s. 

 

   

Figure 7. (a) Retrieved LST using SCWVD Algorithm from MERSI L1B Data 
over Lake Tahoe at 03h UTC, 3 Aug. 2009; (b) MODIS LST Product over Lake 

Tahoe at Same Time 
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Figure 8. (a) Difference between MERSI LST with MODIS LST Product 
(provided by NASA); (b) Comparison between the Derived MERSI LST and 

MODIS LST 

 

Figure 9. Comparison of the LST Error between the MERSI, MODIS LSTs 
and in-situ Measured LSTs in Lake Tahoe 

3. Conclusions 

As a new generation of polar orbiting meteorological satellite, FY-3 series consists of 

two experimental and at least four operational satellites, which is expected to have a 

service life until 2020.  Launched respectively on 27 May 2008 and 5 November 2011, 

FY-3A and FY-3B are designed with the same assignments and equipped with 11 

payloads. The only difference is that FY-3A is a morning-observation satellite and FY-3B 

is an afternoon-observation satellite. These two satellites can provide global observation 

of the Earth Land surface temperature with high spatial resolution (250m) four times per 

day, which is a great improvement comparison to the current LST products of other 

satellite in the temporal and spatial. 

Based on the upper background, we developed a SCWVD algorithm for LST retrieval 

from MERSI TIR data. The derivation of this algorithm is based on the thermal radiance 

transfer equation and the linearization of Planck's radiance function. Totally there are two 

critical parameters in the algorithm: emissivity and WVC. On giving those two 

parameters, it will be very easy to use this algorithm for LST estimation not only from 

MERSI data but also from others. Moreover, the approach does not need radiosonde data 

or local meteorological observations. The principle of algorithm can be also extended to 

other sensors having one or more TIR channels such as TM and ETM+ aboard Landsat 

series satellite.  
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Tests with the simulated datasets suggest that the SCWVD algorithm has a high 

accuracy for LST retrieval. Compared with NCEP data and U.S. standard mid-latitude 

summer atmosphere model, the retrieved LST from simulated MERSI brightness 

temperature with MODTRAN had a RMSE about 0.8 K. Further application of the 

SCWVD algorithm is carried out at Lake Tahoe. The result shows that the difference 

between the retrieved MERSI LST and the LST measured by the buoy is less than 1.5K. 

Comparison between LST retrieved by SCWVD algorithm and MODIS LST product 

suggests that the SCWVD algorithm is applicable and feasible in actual conditions, with 

the RMSE about 2.3 K. It should be pointed out that the LST estimated from the MERSI 

measurement has not been validated with in-situ measurements over land pixels. In the 

future, we will validate the SCWVD algorithm over land and compare the retrieved LST 

from MERSI TIR data with the well validated MODIS LST product.  
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