
International Journal of Hybrid Information Technology

Vol.8, No.1 (2015), pp.203-216

http://dx.doi.org/10.14257/ijhit.2015.8.1.18

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Monitoring Neighborhood Self-organization and Message

Dissemination for Monitoring Large-scale Distributed Systems

ShuYu Chen
1
, GuiPing Wang

2*
, Jun Liu

2
 and MingWei Lin

2

1
College of Software Engineering, Chongqing University, Chongqing, China

2
College of Computer Science, Chongqing University, Chongqing, China

netmobilab@cqu.edu.cn, w_guiping@163.com, liujun_314@cqu.edu.cn,

linmwcs@163.com

Abstract

In order to successfully monitor a large-scale distributed system, it is an important issue

that the monitoring function fully covers all the entities in the system. To this end, a key

challenge is to efficiently transmit state information of the entities in the system. This paper

solves this challenge from two aspects. First, in virtue of the idea of self-organizing networks,

this paper proposes a neighborhood organization algorithm, which self-organizes the nodes

into several monitoring neighborhoods based on the t distance between nodes. The second

aspect focuses on message transmission. There are three common message transmission

methods in network, i.e., flooding, multicast and unicast. Flooding may cause high network

overhead, while unicast may pose high system delay. Based on the idea of Gossip protocol,

this paper proposes a directional message dissemination algorithm (D-Gossip), which is a

kind of probabilistic multicast. D-Gossip reduces message dissemination uncertainty of

traditional Gossip protocols. It effectively improves the efficiency and coverage of message

dissemination, while reducing redundant information in the system due to Gossip protocol.

The experimental results show that the neighborhood organization algorithm and the D-

Gossip can effectively solve the above challenge.

Keywords: Large-scale Distributed Systems, Self-Organizing Networks (SON), Monitoring,

Message Dissemination, Gossip Protocol, D-Gossip

1. Introduction

In recent years, a variety of large-scale distributed systems, such as P2P, grid, WSN, ad

hoc [1], and cloud computing system [2], have been developing rapidly. For these systems,

fault detection is valuable for system management, replication, load balancing, and other

distributed services [3]. When designing a distributed fault detection system, an important

foundation is monitoring all the entities in the system and achieving that fault detection

function fully covers the whole system. Along with the rapid development of network

technology, distributed systems gradually become more and more open. Any node, as long as

it follows the standard protocols, it can dynamically join in or disjoin from the system. Such

systems often involve a large number of distributed computing nodes and span different

geographic regions with unstable communication delay and loosely management. It is very

difficult to achieve that fault detection function fully covers such systems.

Aiming at solving this problem, this paper makes three main contributions listed as

follows: 1) in virtue of the idea of self-organizing networks (SON), this paper proposes a

neighborhood organization algorithm, which self-organizes nodes into several monitoring

neighborhoods based on t distance between nodes; 2) to overcome the defects of flooding,

multicast and unicast, this paper proposes a message dissemination algorithm (D-Gossip)

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

204 Copyright ⓒ 2015 SERSC

based on gossip protocol; 3) this paper theoretically analyzes coverage efficiency and

network overhead of D-Gossip, and conducts experiments to verify the analyses.

The remainder of this paper is organized as follows. Section 2 summarizes related work.

Section 3 introduces SON and t distance, and then proposes the neighborhood organization

algorithm. Section 4 summarizes two basic modes of transmitting detection messages. Section

5 proposes the D-Gossip algorithm. Section 6 presents experiments and analyses. Finally,

section 7 gives conclusions and looks into future work.

2. Related Work

In large-scale distributed systems, due to the large number of nodes and wide geographic

distribution, traditional centralized management methods can not meet the high dynamic

network structure. In recent years, a variety of network forms with obvious self-organizing

characteristics, such as P2P, Grid, Wireless Sensor Network (WSN), ad hoc [1], and cloud [2],

have been developing and evolving. Self-organizing significantly improves organization and

management of nodes in large-scale distributed systems.

In a large-scale distributed system, a monitoring function which covers all the nodes may

be constructed through self-organizing monitoring domains. For fault detection, the

construction of a monitoring system covering all the nodes is a fundamental step. Another

important issue is how to disseminate the state information of all entities in the network. The

traditional dissemination methods include flooding, multicast and unicast. But these methods

cannot make a well trade-off between network overhead and real-time messages

dissemination. As a kind of probabilistic multicast [4], random dissemination based on gossip

protocol provides a better solution to this problem. With certain redundant messages, this

random dissemination strikes a better balance between network overhead and real-time

messages dissemination.

Gossip-based communication mechanisms [5]-[7] spread information in network in a

manner similar to the spread of a virus in a biological community. Therefore, gossip

mechanisms are also known as epidemic algorithms [8][10].

The theory of epidemic algorithm can be traced back to the 1920s [11]. A large number of

researchers began to observe and study infection modes of epidemic diseases in biological

communities. The main purpose is to guide people to prevent epidemic diseases. The first

research work which introduces epidemic algorithm to the field of information science is

done by Demers [12], who employs epidemic algorithm to understand and maintain database

consistency in backup. Since then, epidemic algorithms get broad attention and rapid

development.

Currently, gossip mechanisms have been widely used in message propagation [13], data

replication [8], data aggregation [9], resource discovery and monitoring [14], performance

monitoring [15], fault detection [3], [16][18], etc.

Ganesh et al., [19] prove the following result: if there are N nodes in a large-scale

distributed system, and each node gossips to log(N+c) other nodes on average, then the

probability that everyone gets the notification converges to exp(-e
-c
). This means that if the

number of messages transmitted by per node exceeds log(N), then the probability that each

node in the system can receive a source message is close to 1. Obviously, the significance of

the above result is that it theoretically proves the feasibility and reliability of message

dissemination based on Gossip.

Renesse [3] proposes a Gossip-style failure detection protocol, which utilizes high

reliability of gossip broadcast in network message dissemination and avoids network

congestion due to flooding broadcast. A disadvantage of this Gossip-style protocol is that it

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

Copyright ⓒ 2015 SERSC 205

also brings a certain amount of redundant information, which degrades the system’s

scalability.

Although the scale of distributed systems becomes larger in recent years, gossip

mechanisms are still widely applied to large-scale cloud systems [20], and exascale systems

[21].

This paper combines the idea of SON and gossip mechanisms to construct a monitoring

system that fully covers the nodes in a large-scale distributed system.

3. Distributed Monitoring based on Self-organizing Neighborhoods

This section first introduces SON and t distance, and then proposes the neighborhood

organization algorithm.

3.1. Self-organizing Network (SON)

Based on the existing physical network, SON is a virtual network topology composed of

nodes and logical links. Following the logic of applications or services, SON employs the

basic transmission capacity provided by the underlying network, and reorganizes the network

into a virtual network topology to provide functions that the underlying network can not

provides. SON ignores the details of the underlying network topology. Its structure is closely

related to specific application purposes. As shown in Figure 1, the logical implementation of

SON is often quite different with the underlying network. For two nodes, there is no direct

relationship between their logic link in SON and their physical link in the underlying network.

In the actual network, several nodes may be in different subnets, but they are organized into a

same domain in SON according to the upper application requirements.

L o g ic a l N o d e

P h y s ic a l N o d e

L o g ic a l L in k

P h y s ic a l L in k

Figure 1. SON and the Underlying Physical Network

3.2. Self-organizing of Monitoring Neighborhoods based on t Distance

For SON, an important issue is to partition all the nodes into several domains according

their logic relationships. The logical partition needs to be an optimal solution, rather than

arbitrarily separating all the nodes into several parts. The most direct solution idea is to

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

206 Copyright ⓒ 2015 SERSC

partition all the nodes according to their adjacent distance relationship. Since it is a neighbor

relationship, there must be a direct relationship with near or far distance. Therefore, an

abstract distance can be introduced to characterize the distance relationship between

nodes. In general, the abstract distance between nodes in the network can be based on the

degree of correlation, network packets forwarding hops, or network delay between nodes,

which leads to three different definitions of distance, namely, s distance, h distance and t

distance. In practice, the network distance commonly measures as t distance, which is defined

as follows.

Definition 1(t distance): Assuming nodes Ni and Nj are in a fully connected network, the

time delay of node Ni sending a message to and back from node Nj is t, then
j

i
d t

 is the t

distance between nodes Ni and Nj.

Obviously, the smaller the t distance, the closer between the nodes Ni and Nj.

According to definition 1, the t distance includes the time delay of node Ni sending

detection message to node Nj, the time delay of node Nj dealing with the message, and the

time delay of node Nj sending back acknowledgement message to node Ni, as shown in Figure

2.

As Figure 2 shows, t = tReq + tDeal + tAck. But in practice, the time delay tDeal is often

negligible, Therefore, t = tReq + tAck.

N i

N j

R e q A c k

tR e q tD e a l tA c k

t

Figure 2. Composition of t Distance

Before the fault detection system forming monitoring neighborhoods, the nodes in the

system are mutually independent. They need to be self-organized into several monitor

neighborhoods according to the algorithm below.

Algorithm 1 (neighborhood organization algorithm): Self-organization of monitoring

neighborhoods based on t distance

Assuming that the size of self-organized neighborhood is K = k + l, where k is the initial

threshold value of each monitoring neighborhood, l is a flexible size for the consideration of

redundant space to accommodate newly added nodes. The algorithm works as follows:

Step 1: It broadcasts monitoring neighborhood construction request messages to all nodes

in the system through an initially or subsequently selected proxy node.

Step 2: Each surviving node having not joined in any monitoring neighborhood responds

to the request message. The proxy node receives the response messages and sorts the

responding nodes in accordance with their response time (in ascending order).

Step 3: It judges whether the number of received acknowledgement messages is greater

than k; and if so, it jumps to step 4; otherwise, it jumps to step 6.

Step 4: According to reach time of acknowledgement messages, it selects top k nodes to

form a monitoring neighborhood of the proxy node. The upper bound of the neighborhood’s t

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

Copyright ⓒ 2015 SERSC 207

distance is 2 times of the t distance of the latest reply message. Meanwhile, the proxy node

sends a neighborhood construction confirmation message with upper bound information of

the neighborhood’s t distance to all the k nodes. And then it completes construction of a

monitoring neighborhood.

Step 5: The proxy node sends a node list that includes the remaining nodes not joining in

the constructed neighborhoods to a selected node with relatively long response delay. The

principle of selecting such a node is that the response delay of this node is not greater than 2

times the upper bound of the neighborhood’s t distance. It requests the selected node act as

the next monitoring proxy node. For the selected node, it jumps to step 1. For the current

proxy node, it jumps to step 6.

Step 6: The proxy node sends a neighborhood construction confirmation message to all

responding nodes. The upper bound of the neighborhood’s t distance is 2 times of the t

distance of the latest reply message. It completes a monitoring neighborhood construction.

The algorithm ends.

After all the neighborhoods covering all the nodes in the system have been constructed, the

nodes in a single neighborhood execute all-to-all monitoring. These nodes mutually distribute

state information of monitored objects in a gossip manner. Meanwhile, the message

dissemination between neighborhoods is implemented through the proxy nodes in each

neighborhood. Combing within- and between-neighborhood message dissemination, it

achieves system-wide message coverage.

4. Transmission Strategies of Detection Messages

In the traditional distributed fault detection methods, there are in general two basic modes

to transmit detection messages, i.e., the ping mode and the heartbeat mode, which are

described below.

4.1. The Ping Mode

The ping model is also called pull mode or active mode. In this mode, the detector actively

sends liveness request periodically to monitored components, as shown in Figure 3. In this

case, monitored components do not actively send their state information to the detector, but

reply to the detector’s request. For non-all-to-all fault detection, this transmission mode can

effectively reduce the network overhead. However, in the polling cycle, the detector is unable

to obtain any information about monitored components. Meanwhile, for all-to-all fault

detection, it means more network overhead, since this strategy generates not only report

messages but also query messages. Moreover, monitored components may issue the same

message for different inquiry messages. In this case, it will consume more network bandwidth

to transfer acknowledge message.

Generally speaking, the ping mode is suitable for a hierarchical management model with a

clear framework, and there are dedicated detectors monitoring the monitored components in a

management domain.

4.2. The Heartbeat Mode

The heartbeat mode is also known as push mode or passive mode. In this mode, each

monitored component periodically sends messages (heartbeat messages) to the failure

detector which is monitoring the component [17], as shown in Figure 3. Without polling

operation, this method can effectively reduce the workload of the detector itself.

Both transmission modes have advantages and disadvantages. However, the ping mode is

not suitable for all-to-all fault detection, since the ping mode will pose certain threat to self-

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

208 Copyright ⓒ 2015 SERSC

organization. Meanwhile, in the ping mode, detectors need a certain global knowledge for the

monitored system, which increases the difficulty to design the detectors.

In order to achieve scalability and meet the high dynamism of nodes, this paper employs

the heartbeat mode to effectively transmit state information.

d e te c to r

D e te c tio n m e s s a g e

th e m o n ito re d

c o m p o n e n ts

H e a r tb e a t , P u s h , P a s s iv e

d e te c to r

D e te c tio n m e s s a g e

th e m o n ito re d

c o m p o n e n ts

P in g , P u ll , A c tiv e

Figure 3. Two Interaction Modes between the Detectors and the Monitored
Components

5. Disseminating Detection Messages based on Gossip Protocol

This section proposes an algorithm of disseminating detection messages based on gossip

protocol, called D-Gossip in this paper.

5.1. The Basic Principle of Gossip Protocol

The process of information dissemination in a distributed system is similar to the spread of

infectious diseases. When an entity receives some information, it randomly disseminates the

information following specific rules to other individuals directly connected with it, and so

forth. This process disseminates information to a network-wide system without the

administrative control of a centralized center. Gossip mechanisms have many advantages,

such as low deployment difficulty, high robustness, and high fault-tolerance. In the latest

researches, gossip mechanisms act as data distribution means in large-scale networks and

attract widespread attention. The research experiments in literature e.g., [19] show that even

in high dynamic networks with high node failure rate, high packet loss rate, and limited

communication links, gossip mechanisms can still achieve high reliability through

appropriately setting dissemination parameters. This means that, with reasonably redundant

information, gossip mechanisms ensure all entities receive detection messages in a high

probability.

Although gossip mechanisms trade the redundant messages for compensating reliability

degrading due to node failure and package losing, the amount of redundant messages is only

log(N) for a single node [19], where N is the total number of nodes in a gossip dissemination

network. Therefore, gossip mechanisms have good scalability.

5.2. Dissemination Method based on Gossip Protocol

This subsection discusses message dissemination mechanism in a single monitoring

neighborhood. According to the discussion about detection message transmission in Section 4,

this paper employs gossip-based message dissemination mechanism to transmit heartbeat

messages.

Each monitored component, p, is assigned a fault detector, d. All the fault detectors form a

set of detectors. Each fault detector d maintains a local view, LocalView, which saves the

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

Copyright ⓒ 2015 SERSC 209

relevant information about other detectors that can communicate directly with d. In this paper,

the directly interconnected entities are called neighbors. In addition, “node” and “detector”

are interchangeable in this paper.

A detector divides its neighbors into three states, which corresponding to three different

sets: healthy detector set, Dheal; suspect detector set, Dsusp; and failed detector set, Dfail.

After a time interval Tinter, each detector in the system will actively send its state

information in random gossip manner to a specified number of neighbors in the sets of Dheal

and Dsusp. When sending state information, the detector d increases its own heartbeat counter

(HBcounter) by 1. Meanwhile, it adds a timestamp (Timestamp) into the message. Each

individual message has a globally unique ID number. The ID value can be easily achieved

through hashed value of d's IP address and port number, plus the heartbeat count HBcounter.

Each node also maintains a list of messages, indexed by the messages’ IDs.

When a node receiving the detection message from another node, it first analyzes the

message, and then executes corresponding processing according to whether the message has

been received before or not. The description of directional gossip-based message

dissemination (referred to as D-Gossip) will be given below.

Figure 4 shows the flow chart of D-Gossip message dissemination algorithm.

W h e th e r re c e iv e d

a s a m e m e s s a g e ?

D is c a rd th is

m e s s a g e

E n d

E x tra c t H B C o u n te r f ro m th e m e s s a g e

U p d a te L o c a lV ie w

E x tra c t s ta te in fo rm a tio n in th e m e s s a g e

S u b m it s ta te in fo rm a tio n to d e te c tio n m o d u le

D is s e m in a te th is m e s s a g e

to o th e r d e te c to rs

E x tra c t p a th in fo rm a tio n

f ro m th e m e s s a g e

N e e d to d is s e m in a te

to o th e r d e te c to rs ?

Y e s

N oY e s

N o

R e c e iv e a d e te c tio n

m e s s a g e

S ta r t

Figure 4. The Flow Chart of D-Gossip

Algorithm 2 (D-Gossip): Message dissemination based on gossip protocol

Assumption: this algorithm concerns a node (denoted as the current node) in a monitoring

neighborhood; in its LocalView, both the healthy detector set (Dheal) and suspect detector set

(Dsusp) are not empty; every time, the number of objects (i.e., the fanout) to which the node

disseminate the message is denoted as f.

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

210 Copyright ⓒ 2015 SERSC

Step 1: It analyzes the received detection message, and judge whether the received

message is same as one received before according the message ID. If yes, it jumps to step 5;

otherwise, it executes step 2.

Step 2: If the node which transmits this messages to current node exists in the set of Dheal

or Dsusp, it updates the node information according HBCounter value of the message, and

moves the node to Dheal.

Step 3: It extracts state information from the detection message, and forwards state

information to the fault detection module.

Step 4: It extracts TTL (Time To Live) value of the message; if the TTL value is greater

than 0, it continues to execute step 5; otherwise, it jumps to step 7.

Step 5: It takes the healthy and suspect detectors in the LocalView as the set of

dissemination objects; then it extracts path information from the message and deletes

duplicate nodes in the dissemination set compared with the nodes in the path; if the

dissemination set is not empty, it executes step 6; otherwise, it jumps to step 7.

Step 6: It adds the current node to the message path; if the dissemination set is smaller

than f, it sends the message to all the nodes in the dissemination set; if the dissemination set is

larger than f, it randomly selects f nodes in the dissemination set to transmit the message. The

algorithm ends.

Step 7: It discards the message. The algorithm ends.

5.3. Coverage Analysis of D-Gossip Message Dissemination

The proposed D-Gossip algorithm transmits the state information of a node to the entire

system. This subsection analyzes whether the message dissemination can cover the entire

network. First, the execution of D-Gossip in a single neighborhood is analyzed.

When a detector receives a detection message for the first time, it is said to be infected. A

round, denoted by r, is referred that the detection message is transmitted one time.

Assume that in the r-th round, there are λr infected nodes. The probability of uninfected

nodes to be infected is considered. It is clear that when r = 0, λ0 = 1.

First, the random dissemination process without dissemination path is considered. When a

node receives a detection message, if the TTL value of this message is greater than 0, D-

Gossip then randomly selects f nodes from its LocalView as the set of dissemination objects in

the next round. In order to facilitate the analysis, this paper assumes that the LocalView of a

single node contains all the nodes in its own neighborhood, and the number of nodes in its

neighborhood is n.

For a single node, the simplest method is to randomly select f dissemination nodes from its

LocalView. Therefore, the probability of any neighbor node in the LocalView to be infected is

f/(n-1). While the probability of any neighbor node in the LocalView not receiving detection

message is 1-f/(n-1). In the r-th round, there are λr infected nodes. Therefore, the probability

that an uninfected node in the neighborhood will still not be infected in the current round

should be   1 1
r

f n


  . It can be conclude that, with λr nodes having been infected in the

former r rounds, the probability of a particular uninfected node to be infected is computed as

follows:

() 1 1
1

r

r

f

n



 
 

   
 

 (1)

D-Gossip embeds dissemination path into the detection message. Namely, in each

dissemination round, it adds the information of current node to the path. Therefore, in the

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

Copyright ⓒ 2015 SERSC 211

next dissemination round, the nodes having passed by will not be considered. Thus, ρ(λr) can

get improved. The improved probability is denoted by ρ'(λr) and computed as follows:

() 1 1
1

r

r

i

f

n h



 
 

    
  

 (2)

In the above formula, hi is called dissemination avoiding factor, which is the number of

deleted nodes in the current dissemination round. The introduction of hi can effectively

reduce the number of redundant messages in D-Gossip.

Based on above analysis, the iterative relationship of system infection evolution can be

drawn as:
'

1
() ()

r r r r
n    


   (3)

In addition, in the (r+1)-th round, the number of issued messages in the system is f·λr.

Then the probability that all nodes are infected in the (r+1)-th round is

n

f
r

n

 
 
 

.

Let α be the threshold of detection coverage, when:

n

f
r

n




 
  
 

 (4)

, the number of rounds needed to satisfy the coverage α of the detection system can be

calculated through formulae (1), (2), and (3).

5.4. Network Overhead Analysis of D-Gossip Message Dissemination

Excessive network consumption will pose the network overloaded and congested. This

subsection analyzes network overhead of the proposed D-Gossip algorithm.

In order to facilitate the analysis, this paper approximates the hi value of each node as the

mathematical expectation value of all his, denoted as h. The approximation does not bring any

change to the nature of D-Gossip, but simplifies the discussion below. Therefore, the equation

(2) becomes:

1 1
1

r

r

f

n h



 
 

   
  

（ ） (5)

The following equation is got when substituting (5) into (3).

 1
1

1

r

r r

f
n n

n h



 


 
    

  

 (6)

By equation (6), the following equation can be obtained:

1
1

1

r

r

r

n f

n n h








  

  
   

 (7)

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

212 Copyright ⓒ 2015 SERSC

Since when n is sufficiently large, the value of
1

f

n h 
 is far less than 1, equation (7) can

be approximated as:

1 1

r
f

r n h

r

n
e

n






 

  





 (8)

Further, the following equation can be obtained:

1

1
ln

r

r

r

nn h

f n







    
   

   

 (9)

From the dissemination manner of D-Gossip algorithm, it is known that in the (r+1)-th

round, the number of issued messages in the system is f·λr. Therefore, during the former (r+1)

rounds, the total number of messages, θ, can be computed as follows:

1

1
ln

r

r

r

r

f

nn h
f

f n

 






 

    
   

   





 (10)

Therefore, the total number of messages is:

   1 ln 1n h n     . (11)

The above formula shows that the total number of messages has a direct relationship with

the size of neighborhood, n. From equation (11), the following conclusion is also obtained.

For the neighborhood-based monitoring method, its network overhead is certainly better

than one without neighboring.

The underlying reason is that, since the neighborhood is divided from the monitored

system, the number of nodes in a single neighborhood is certainly less than the total number

of nodes in the monitored system. Therefore, the above conclusion is obtained according to

equation (11).

6. Experiments and Analysis

This paper implements a network monitoring tool based on socket network programming

API under Linux operating systems. It simulates D-Gossip message dissemination in the wide

area network environment. Message dissemination within a neighborhood employs UDP

protocol, while TCP is applied between neighborhoods.

The following experiments mainly focus on statistical analysis of coverage of message

dissemination and the amount of messages. The dissemination interval is set to 400ms.

6.1. Coverage Experiment of D-Gossip Message Dissemination

16 nodes are selected to compose a testbed. The operating system in each node is Linux

(kernel version is 2.6.32). The network bandwidth is 100M. Multiple processes are running

on each node, and each process initiates up to 16 fault detection threads to imitate random

dissemination. Each fault detection thread imitates a fault detector. The total number of fault

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

Copyright ⓒ 2015 SERSC 213

detectors is denoted as N. Each thread configures a Timer object to control the time interval

of send detection messages. The experiments observe the coverage of infected nodes in the

system achieved by D-Gossip along with round r increases. The parameter f is set as 2. Under

different system scale, Table 1 shows the comparison of the coverage along with round r

increases.

Table 1. Comparison of Infection Coverage by Different Rounds (f = 2)

 r

N
3 5 7 9 11 13 15 17

64

128

1024

0.16

0.09

0.01

0.55

0.36

0.05

0.93

0.59

0.18

0.97

0.86

0.52

1

0.97

0.68

-

1

0.85

-

-

0.94

-

-

0.96

The experiment results in Table 1 show that, along with the expansion of the system scale,

the dissemination rounds needed to cover the whole system also increase. Taking the

threshold α as 0.95, when N = 64, and r ≥ 9, the coverage>α; when N = 128, and r ≥ 11, the

coverage>α; while when N = 1024, until after the 17th round, the coverage meets threshold

requirements. This fully shows that the larger the size of the system to monitor, the more

significant the time needing to cover the whole system, which also confirms the correctness

of the basic idea in D-Gossip.

According to D-Gossip, each node excludes the infected nodes in the received message,

and then randomly selects f nodes in the remaining neighbor nodes to disseminate the

message. If there is no node to disseminate, or the TTL value of the message is 0, then the

dissemination process automatically ends. The experiment is independently run 10 times. The

final results of these 10 experiments are calculated as average transmission times and average

coverage of message dissemination, as shown in Table 2.

As can be seen in Table 2, if the fanout, f, is larger, the average coverage also increases.

But a larger f value will cause high local network traffic during initial dissemination process,

which might affect network congestion or cause packet loss in the actual network. This in

return will restrict the average dissemination time and average coverage. Therefore, in order

to make a trade off between network overhead and coverage convergence efficiency, a fanout

value should be appropriately chosen according to current network state and coverage

convergence requirement.

Table 2. The Experiments Result of Message Dissemination in a Neighborhood

Number of

detectors within a

neighborhood

TTL f

The average number

of messages within a

neighborhood

Average Coverage

32 10 2 103 99.4%

64 10
2 266 98.5%

3 284 99.4%

128 10
2 614 95.8%

3 658 98.6%

256 10

2 1418 93.4%

3 1488 98.3%

4 1642 99.2%

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

214 Copyright ⓒ 2015 SERSC

6.2. Network Overhead Experiment of D-Gossip Message Dissemination

24 nodes are selected to compose a testbed, where 12 nodes locate in a laboratory in

University of Electronic Science and Technology, the other 12 nodes locate in a laboratory in

Chongqing University. Each node runs 8 fault detection threads. Each fault detection thread

imitates a fault detector. Therefore, the total number of fault detectors is 192. The detection

coverage threshold α is set as 0.95.

By executing the neighborhood construction algorithm in Section 3.2, and setting the upper

threshold of neighborhood size as 80, three neighborhoods are obtained. When the coverage

reaches the threshold, D-Gossip ends, and the total number of detection messages (i.e.,

network overhead) can be calculated. The experiment compares D-Gossip with the purely

random dissemination method Renesse, [3] and flooding. The experimental results are shown

in Table 3, where each number denotes the total number of detection messages.

In Table 3, Ri represents a dissemination round, Cavg represents the average number of

detection messages. As can be seen from Table 3, the D-Gossip algorithm reduces 31%

network overhead compared with the purely random dissemination (Renesse), which is

congruent with the analysis in Section 5.4. Although the flooding method achieves fewer

detection messages, it is prone to make local network traffic surge, which results in a greater

probability of data loss occurring. Therefore, in each round of the experiment, the flooding

method can not achieve complete coverage of the nodes. Especially in crowded public

network during the day time, packet loss is even more obvious, which also causes a greater

latency messaging and reducing its availability.

Table 3. Network Overhead Comparison of 3 Methods

 R1 R2 R3 R4 R5 R6 Cavg

D-Gossip 819 856 923 791 813 756 826

Renesse 1228 1356 1303 1084 1101 1205 1213

Flooding 182 168 171 183 179 182 178

7. Conclusion and Future Work

Based on self-organizing ideas, this paper proposes a neighborhood organization method

based the t distance between system entities. This method can effectively monitor all nodes in

the system, and reduces monitoring delay, thus improving monitoring efficiency. In addition,

the paper also proposes an algorithm (i.e., D-Gossip) of message dissemination based on

gossip protocol. D-Gossip reduces message dissemination uncertainty of traditional Gossip

protocols, and effectively improves the efficiency and coverage of message dissemination.

Meanwhile, it reduces the amount of redundant detection messages.

In future we will focus on optimizing the distance between nodes. The introduction of s

distance will aggregate detection services based on the correlation between services, which

will make fault detection more accurate and efficient, and provide more support for the top

decision-making applications.

Acknowledgments

We are grateful to the editors and anonymous reviewers for their valuable comments on

this paper.

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

Copyright ⓒ 2015 SERSC 215

The work of this paper is supported by Research Fund for the Doctoral Program of Higher

Education of China (Grant No. 20110191110038) and National Natural Science Foundation

of China (Grant No. 61272399).

References

[1] A. Gaba, S. Voulgaris, K. Iwanicki and M. van Steen, “Revisiting Gossip-Based Ad-Hoc Routing”, In:

Proceedings of 21st International Conference on Computer Communications and Networks (ICCCN), (2012),

pp. 1-6.

[2] M. Armbrust, A. Fox, and R. Griffith, “A view of cloud computing”, Communications of the ACM, vol. 53,

no. 4, (2010), pp. 50-58.

[3] R. Renesse R, Y. Minsky and M. Hayden, “A gossip-style failure detection service”, In: Proceedings of IFIP

International Conference on Distributed Systems Platform and Open Distributed Processing, (2009), pp. 55-

70.

[4] P. Th. Eugster and R. Guerraoui, “Probabilistic multicast”, In: Proceedings of 32nd International

Conferences on Dependable Systems and Networks (DSN), (2002), pp. 313-324.

[5] S. Boyd, A. Ghosh, B. Prabhakar and D. Shah, “Randomized gossip algorithms”, IEEE Transactions on

Information Theory, vol. 52, no. 6, (2006), pp. 2508-2530.

[6] D. Kempe and J. Kleinberg, “Protocols and impossibility results for gossip-based communication

mechanisms”, In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,

(2002), pp. 471-480.

[7] K. Birman, “The Promise, and Limitations, of Gossip Protocols”, ACM SIGOPS Operating Systems Review,

vol. 41, no. 5, (2007), pp. 8-13.

[8] J. Holliday and R. Steinke, “Epidemic algorithms for replicated databases”, IEEE Transactions on

Knowledge and Data Engineering, vol. 15, no. 5, (2003), pp. 1218-1238.

[9] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in large overlay networks”, In:

Proceedings of the 24th International Conference on Distributed Computing Systems, (2004), pp. 102-109.

[10] B. Ghit, F. Pop and V. Cristea, “Epidemic-Style Global Load Monitoring in Large-Scale Overlay Networks”,

In: Proceedings of International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

(2010), pp. 393-398.

[11] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics”, In:

Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Pysical

Caracter, vol. 115, no. 772, (1927), pp. 699-721.

[12] A. Demers, M. Gealy and D. Greene, “Epidemic algorithms for replicated database maintenance”, In:

Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC), (1987),

pp. 1-12.

[13] I. Antonios, F. Zhang and L. Lipsky, “A Performance Model of Gossip-Based Update Propagation”, In:

Proceedings of 9th IEEE International Symposium on Network Computing and Applications (NCA), (2010),

pp. 125-131.

[14] R. Renesse, K. Birman and W. Vogels, “Astrolabe: A Robust and Scalable Technology for Distributed

System Monitoring, Management, and Data Mining”, ACM Transactions on Computer Systems, vol. 21, no.

2, (2003), pp. 164-206.

[15] J. W. Zhu, P. G. Bridges, A. B. Maccabe, “Lightweight Online Performance Monitoring and Tuning with

Embedded Gossip”, IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 7, (2009), pp. 1038-

1049.

[16] S. Ranganathan, A. D. George, R. W. Todd and M. C. Chidester, “Gossip-Style Failure Detection and

Distributed Consensus for Scalable Heterogeneous Clusters”, Journal of Cluster Computing, vol. 4, no. 3,

(2001), pp. 197-209.

[17] N. Hayashibara, A. Cherif and T. Katayama, “Failure Detectors for Large-Scale Distributed Systems”, In:

Proceedings of 21st IEEE Symposium on Reliable Distributed Systems, (2002), pp. 404-409.

[18] Y. Horita, K. Taura and T. Chikayama, “A scalable and efficient self-organizing failure detector for grid

applications”, In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing, (2005), pp.

202-210.

[19] A. J. Ganesh, A. M. Kermarrec and L. Massoulié, “Scamp: peer-to-peer lightweight membership service for

large-scale group communication”, In: Proceedings of the 3rd International COST264 Workshop on

Networked Group Communication, (2001), pp. 44-55.

[20] J. S. Ward and A. Barker, “Varanus: In Situ Monitoring for Large Scale Cloud Systems”, In: Proceedings of

IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), (2013), pp.

341-344.

International Journal of Hybrid Information Technology

Vol.8, No.1 (2015)

216 Copyright ⓒ 2015 SERSC

[21] P. Soltero, P. Bridges, D. Arnold and M. Lang, “A gossip-based approach to exascale system services”, In:

Proceedings of the 3rd International Workshop on Runtime and Operating Systems for Supercomputers

(ROSS), (2013), Article No. 3.

Authors

ShuYu Chen, he received his Ph.D. degree in Chongqing

University, P. R. China, at 2001. Currently, he is a professor of

College of Software Engineering at Chongqing University. His

research interests include distributed systems, cloud computing,

embedded Linux system. He has published over 120 journal and

conference papers in related research areas during recent years.

GuiPing Wang, he received his B.S. degree and M.S. degree in

Chongqing University, P. R. China, at 2000 and 2003 respectively. Since

July 2003, he acts as a lecturer in Department of Computer Science,

Zhejiang University of Finance and Economy. Currently he is a full-time

Ph.D. candidate in College of Computer Science, Chongqing University.

His research interests include fault diagnosis, dependability analysis and

design of distributed systems, cloud computing. As the first author, he

has published nearly 20 papers in related research areas during recent

years.

Jun Liu, he received his B.S. degree in Southwest University, P.

R. China, at 2001, and M.S. degree in Chongqing University, P. R.

China, at 2008. He is currently a Ph.D. candidate in College of

Computer Science, at Chongqing University. His current interests

include flash memory, Linux kernel and big data analytics.

MingWei Lin, he received his B.S. degree in Chongqing

University, P. R. China, at 2009. He is currently a Ph.D. candidate in

Chongqing University. He is invited as the reviewer by Journal of

Systems and Software, as well as Computers and Electrical

Engineering. His current interests include wireless sensor network,

flash memory, and Linux kernel.

