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Abstract 

This paper took a research about the small size sample problem of the discriminant 

locality preserving projections method, and proposed the discriminant locality preserving 

projections method based on neighborhood maximum margin (NMMDLPP). Firstly, the 

training sample structured a weighted of K-nearest neighbor graph, and gave the weight 

parameter to each side of the nearest neighbor graph for obtaining the intraclass neighbors 

and interclass neighbors local geometry information of each point; then reduce the interval 

between the intraclass neighbors and increase the interval between the interclass neighbors 

with the result of transfer matrix, and applied the neighbor point optimal refactoring 

coefficient of the data to the objective function. This method chose the difference between the 

locality preserving between-class scatter and the locality preserving within-class scatter as 

the objective function to avoid of calculating the inversion of matrix. This method has 

conducted an experiment on the UMIST face database and Yale face database. Experimental 

results show that the NMMDLPP algorithm is superior to other algorithms in recognition 

rate. The recognition rate can reach more than 91.4%. 

Keywords: feature extraction; face recognition; K-nearest neighbor rule; discriminant 

locality preserving projection 

1. Introduction 

In recent years, dimensionality reduction has been widely concerned in many fields such as 

machine learning, data mining and pattern recognition [1]. The aim is to map the high 

dimensional data into a low dimensional subspace, and keep the manifold structure of high 

dimensional data essential to subspace. Among the dimensionality reduction techniques, the 

most well-known techniques are the principal component analysis (PCA), linear discriminant 

analysis (LDA), locality preserving projections (LPP), and neighborhood preserving 

embedded (NPE) [2-3]. Although these methods have different suppositions, they can be put 

into a unified graph embedding framework with different constraints [4]. PCA is an 

unsupervised method, which does not take the class information into account [5]. The aim of 

LDA is to optimize the discriminate patterns of different classes by searching the projection 

axes, which the data points of different classed are far from each other, while constraining the 

data points of the same to be as close to each other as possible [6-7]. Among them, LPP is one 

of the most representative algorithm, there were many improved algorithm based on LPP 

theory [8]. Inspired by the LPP algorithm, someone has put forward the discriminant locality 

preserving projection (DLPP) algorithm, but there are still remained small size sample 

problem and information redundancy problem [9]. The categories of information data has not 

been fully used, which leads to a decrease in classification performance in pattern recognition 

problem of high-dimensional data [10]. Therefore, in view of the above questions, we propose 
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the discriminant locality preserving projections method based on neighborhood maximum 

margin (NMMDLPP) algorithm. It utilizes the sample data of local geometric information 

and class information to model the intraclass neighborhood scatters and interclass 

neighborhood scatters. 

 

2. Discriminant Locality Preserving Projections 

Discriminant locality preserving projections is introduced into the discriminant analysis, 

combined with Fisher criterion and locality preserving projections [11-12]. A sample set 
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transformation matrix can be obtained by the objective function (2). To solve the 

generalized eigenvalue problem. 
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3. Discriminant Locality Preserving Projections based on Neighborhood 

Maximum Margin 

The method first begins to build an adjacent graph   by k-neighborhood for all points. 

Suppose training samples
1 2

{ , , , }
d

n i
X x x x x R ， are a group of high dimensional data, the 

purpose of NMMDLPP is to find the optimal projection 

matrix A，
d D

A R D d


 ， ，
1 2

[ , , , ]
D

A a a a , making the original high-dimensional data 

projected into the lower space to get a set of corresponding low-dimensional feature 

data
1 2

{ , , , }
n

Y y y y ， D

i
y R ， T

i i
y A x . For a data point

i
x , let 

i j
  be the set of k-

nearest neighbors of it. The objective function of neighborhood maximum margin criterion is 

defined as follows: 

 
22

1 1
m a x ( ( ) ( ) )

w w

i i k i

n nb w

ij i j ik i ki y N i y N
J y y y y 

   
                       (5) 

 

Where the parameter b

i j
w is the refactoring coefficient of between-class and the 

parameter w

ij
w is the refactoring coefficient of within-class. Let b

i
N  denote the intraclass 

neighbors in the k-neighborhood 
i j

 (i.e., neighbors from the same class as
i

x ) and w

i
N  

the interclass neighbors of 
i

x in 
i j

  (i.e., neighbors from different classes). 

 
2

1

e x p ( )

0

b

i j

bb

j iKij b

i jj

x x

t
x N

o th e r w is e






  



 







,

2

1

e x p ( )

0

w

i j

ww

k iKik b

ikk

x x

t
x N

o th e rw ise






  



 







 

Where the parameter t is a constant, 
w

K  is number of within-class adjacent points 

and
b

K is number of between-class adjacent points. According to formula T

i i
y A x , we 

can get the following equation: 
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Where the parameter L

b
S  is matrix of locality preserving between-class scatter and 

L

w
S  is matrix of locality preserving within-class scatter. They are defined as follows: 
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According to (12) and (13), the formula 
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x x     is intraclass discriminating 

weight, which can represent the class information of the same classes. The formula 
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nonnegative constant which can balances the relative merits of maximizing the locality 

preserving between-class scatter and the minimization of the locality preserving within-class 

scatter. So the objective function of NMMDLPP is defined as follows: 
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The objective function of NMMDLPP is based on the difference form and the matrix 
L L

b w
S kS is symmetric. Thus, the small size sample and the inverse matrix operation problem 

are avoided. Suppose the parameter F is a matrix L L

b w
S kS . Figure 1 shows the flow chart of 

the NMMDLPP algorithm. 
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Figure 1. Flow Chart of the NMMDLPP Algorithm 

So the criterion in (14) can be maximized by solving: 
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4. Experimental Results 

This section will conduct an experiment about the effectiveness of the NMMDLPP method 

on UMIST and Yale face database. There are twenty face images in the UMIST face 

database, which are common and rich in gesture variation, as shown in Figure 2. The face 

image of the Yale face database has the variation of light and expression, the face expression 

view keeps the same with the all positive face image pixel of 320×243, as shown in Figure 3. 

 

 

Figure 2. Images of One Person in UMIST 

 

Figure 3. Images of One Person in Yale 
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4.1. Experiments on the UMIST Face Database 

Take the face image from the UMIST face database as training sample set consisted of 6 

faces image. The remaining sample image would be used as the test sample set of 

NMMDLPP method proposed in this paper. There are two experiments on the UMIST face 

database. The first experiment is as shown in Figure 4. Firstly, it researches the variation 

condition of the recognition rate of NMMDLPP with varying the k-neighborhood parameter 

k
W of the structure neighbor graph. The increase step is 2 with the ranges from 1 to 15. The 

second experiment is as shown in Figure 5. It surveys the comparison of the NMMDLPP 

method proposed in this paper and the method of PCA, LDA, LPP, DLPP with different 

feature dimension, when parameter 
k

W  is 15. The general recognition performance of the 

recognition rate from the experiment result of the NMMDLPP method and the four methods 

on the UMIST face database is as shown in Table 1. 

As the Figure 4 shows, the recognition rate with different parameter 
k

W  increase 

rapidly with the feature dimension varied 0 to 5, and the recognition rate with different 

parameter 
k

W  is very close with the feature dimension less than 5. Take the k-

neighborhood parameter 
k

W  of 7 as the boundary with the feature dimension more than 

5, the recognition performance with 
k

W  more than 7 is better than the recognition 

performance with 
k

W  less than 7, the recognition rate with different 

parameter
k

W increase slowly with the feature dimension varied 5 to 10. The recognition 

performance of method can be the best with the 
k

W varied from 13 to 15. As the Figure 

5 and Table 1 show, when the feature dimension of NMMDLPP method is 10, the 

recognition rate is lower than the DLPP method within 3%, and is more than the 

recognition rate of the four methods with the other feature dimension. The recognition 

rate can reach the highest figure of 91.4% with the feature dimension of 14. 

 

0 10 20 30 40 50

0

20

40

60

80

100

 

 

R
e

c
o

g
n

it
io

n
 r

a
te

(%
)

Feature dimension

 W
k
=1

 W
k
=3

 W
k
=5

 W
k
=7

 W
k
=9

 W
k
=11

 W
k
=13

 W
k
=15

 

Figure 4. The Average Recognition Rates of NMMDLPP versus 
k

W  on 

UMIST Face Database 
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Figure 5. The Average Recognition Rates versus Feature Dimension on 

UMIST Face Database 

Table 1. The Maximal Average Recognition Rates of Each Method on 
UMIST with the Feature Dimension 

Method Recognition rate (%) Feature dimension 

PCA 81.4 10,12 

LDA 87.6 14 

LPP 

DLPP 

NMMDLPP 

89.2 

89.8 

91.4 

12 

16 

14 

 

4.2. Experiments on the Yale Face Database 

The training sample set consist of 3 graphs of each face in the Yale face database 

experiment with the 45 samples of 3×15, and the remaining 120 images of 8×15 

constitute the test sampling set. The NMMDLPP recognition rate varies with varying 

the k-neighborhood parameter 
k

W of the structured neighbor graph, see figure 6.When 

the parameter 
k

W is 15, the different method recognition rate with different feature 

dimension is as shown in Figure 7. The highest recognition rate resulted from Yale face 

database and the feature dimension is shown in Table 2. 
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Figure 6. The Average Recognition Rates of NMMDLPP versus 
k

W on Yale 

Face Database 
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Figure 7. The Average Recognition Rates versus Feature Dimension on 
Yale Face Database 

Table 2. The Maximal Average Recognition Rates of Each Method on Yale 
with the Feature Dimension 

Method Recognition rate(%) Feature dimension 

PCA 78.17 16 

LDA 82.50 10 

LPP 

DLPP 

NMMDLPP 

84.50 

86.50 

89.00 

13 

10,13 

16,19 

 

As the Figure 6 shows, the recognition rate of NMMDLPP method increases rapidly 

with the different parameter 
k

W with the feature dimension varied from 0 to 10; the 

recognition rate increases slowly with the feature dimension varied from 10 to 30. 

When the parameter 
k

W is 15, the method can reach the highest recognition rate. As the 

Figure 7 and Table 2 shows, NMMDLPP method is greater than the other method 

recognition rate with the low feature dimension, and the recognition rate is lower than 

the recognition rate of DLPP method with the feature dimension varied from 6 to 13. 

When the feature dimension is more than 13, the recognition rate of NMMDLP method 

has a positive improvement than other recognition methods. The recognition rate of 

NMMDLP method can reach 89% with the feature dimension varied from 16 to 19. 

 

5. Conclusion 

This paper proposes the discriminant locality preserving projection based on neighborhood 

maximum margin. It improves the objective function, avoids the calculation of inversion and 

solves the small size sample problem effectively. The objective function introduced a 

parameter and balanced the maximum between-class and the minimum within-class for 

achieving the best optimization of recognition performance. Besides, the local weight of the 

neighbor image and discriminant weight could express the local neighbor structure and class 

information of the data, which can strength the class effect. 
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