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Abstract 

Aiming at one kind of 3-PRS parallel robot, the study develops a toolbox in MATLAB. The 

toolbox includes functions for forward kinematics, inverse kinematics, velocity kinematics, 

error analysis, schematic representation, and so on. The architecture of the 3-PRS robot is 

introduced firstly. The instructions of the functions, developing procedure and main 

algorithms are presented secondly. The toolbox encapsulates complicated mathematical 

formulas into the single function and provides standard inputs and outputs, which improves 

the reliability and makes it easy to use. Finally, an example calls the toolbox function, and 

verifies its correctness, reliability and convenience. 
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1. Introduction 

As an important branch of the industrial robot, the parallel robot has many advantages, 

such as high stiffness, high accuracy, little cumulate error, large load carrying capacity and 

compact structure [1-7]. It has gained wide applications in all kinds of fields and attracted 

plenty of study. The 3-PRS parallel mechanism is very typical in the parallel robot family [4]. 

There are many complicated mathematical formulas in analysis on degrees of freedom, 

working envelope, kinematics, speed, acceleration, accuracy, and so on [8-18]. Especially, 

the trigonometric function computation, nonlinear equations and complex matrix make design 

and analysis tedious and discouraging [1, 3-5, 7-18]. The engineering software MATLAB has 

powerful performance in numerical computation, symbolic operation and graphical 

representation, so it is an efficient tool for the robot research [19]. The aim of this paper is to 

present a computer-aided analysis toolbox developed in MATLAB for one kind of 3-PRS 

parallel robot, and give key algorithms. 

 

2. Architecture of 3-PRS Parallel Robot 

The schematic representation of the 3-PRS parallel robot is shown in Figure 1 [1, 3-5,7-9]. 

The robot is composed of a moving platform, three limbs, three vertical rails and a fixed base. 

Three vertical rails vertically link to the base
1

B
2

B
3

B . Moreover, 
1

B
2

B
3

B  form an equilateral 

triangle that lies on a circle with the radius R .The axis of the revolute pair R
i
 for 1, 2i  and 3 

is perpendicular to the prismatic pair. Each limb L
i
 for 1, 2i   and 3 with the length of 

i
l  

connects the corresponding rail by a prismatic pair R
i
. The moving platform and three limbs 

are connected by three spherical pairs
1

b ,
2

b  and
3

b . Three spherical pairs form an equilateral 

triangle that lies on a circle with the radius r . The cutter with the length of h is placed at the 
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center of the moving platform. The feed of the prismatic pair is given as
i

H . Angles 
i

  for 

1, 2i   and 3 are defined from the vertical rail to its corresponding limb L
i
. As shown in Figure 

1, a fixed Cartesian reference coordinate system OXYZ is located at the center O of the base

1
B

2
B

3
B . X-axis and Y-axis are in the base plane

1
B

2
B

3
B , X-axis points in the direction of O

1
B , and Z-axis is normal to the base plane and points upward. A moving coordinate frame 

T
o

xyz is located at the cutter point
T

o . The xy plane is parallel to the moving platform
1

b
2

b
3

b , x-

axis points in the direction of 
1 1

C b , and z-axis is normal to the moving platform. The position 

and orientation of the cutter can be described using the coordinates  T o o l T o o l T o o l
, ,x y z  of the cutter 

point and Euler angles  ,  and   rotating about Z, Y and X axes of the fixed system. The 3-

PRS parallel robot possesses 3- DOF that are rotation   about the Z-axis and   about the Y-

axis, and a translational motion 
T

z  along the Z-axis [9]. Three parasitic motions include one 

rotation  , one translational motion 
T

x  about the X-axis, and one translational motion 
T

y  

about the Y-axis. The three parasitic motions  , 
T

x and
T

y  can be expressed using the three 

independent motions  ,   and
T

z . 
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Figure 1. Schematic Representation of the 3-PRS Parallel Robot 

3. Toolbox Development in MATLAB 

All toolbox function names begin with the prefixion 'TPRS_'. In the toolbox functions, the 

parameters A, B, G, R, r, h, XT and YT represent  ,  ,  , R , r , h , 
T

x  and 
T

y , respectively. H 

is a 1-by-3 vector that represents [
1

H , 
2

H , 
3

H ]. TH is a 1-by-3 vector that represents [
1

 ,
2

 ,

3
 ]. B1, B2, B3, R1, R2, R3, b1, b2 and b3 are 1-by-3 vectors of the corresponding points 

coordinates, respectively.  
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3.1. Function for Homogeneous Transformation Matrix 

T= TPRS_Tran (A, B, G, P) returns a 3-by-4 array that represents the homogeneous 

transformation matrix computed using Equation (1) from 
T

o xyz to OXYZ. The input 

parameter P is the vector  T o o l T o o l T o o l

T

x y z .  

 

T o o l

T o o l

T o o l

C C C S S

S S C C S S S S C C S C

C S C S S C S S S C C C

0 0 0 1

x

y
T

z

    

           

           

 

 
   

 
   

 
 

                   (1) 

 

where S  , S  , S  , C  , C  and C   represent s in  , s in  , s in  , co s  , co s   and cos   respectively. 

 

3.2. Function for Euler Angle   

G = TPRS_AB2G (A, B) returns the Euler angle  that can be expressed by the other two 

angles  and   using Equation (2). 

 

s in s in
a rc ta n

c o s c o s

 


 


 


                                                       (2) 

 

3.3. Function for Parasitic Motions 
T

x and
T

y  

[XT, YT]= TPRS_XTYT (A, B, G, r, h) returns the parasitic motions 
T

x and
T

y  that can be 

computed   using Equation (3). 

 T

T

c o s c o s s in s in s in c o s c o s s in
2

s in c o s s in s in c o s c o s s in

r
x h

y h r r

       

      


   



   

                                  (3) 

 

3.4. Function for Coordinates of B1, B2 and B3 

[B1, B2, B3]= TPRS_BiXYZ (R) returns the coordinate vector of B1, B2 and B3 using the 

following equation system. 

 

1 3

2 2

1 3

2 2

T

1

T

2

T

3

B = R 0 0

B = R R 0

B = R - R 0








 
  

 


 
 

 

                                                   (4) 

 

3.5. Function for Coordinates of R1, R2 and R3 

[R1, R2, R3]= TPRS_RiXYZ (H, R) returns the coordinate vector of R1, R2 and R3 using 

the following equation. 
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 1 1

2 2

3 3

0

1 3

2 2

1 3

2 2

T

T

T

R R H

R R R H

R R R H







 

   

 


 

   
 

                                             (5) 

 

3.6. Function for Coordinates of b1, b2 and b3 

[b1, b2, b3] = TPRS_ForKinbi(H, TH,PofTPRS) returns the coordinate vector of b1, b2 

and b3. PofTPRS is a vector including 4 elements that represent R ,
1

l , 
2

l  and
3

l .  

The coordinate vector of b1, b2 and b3 in the system 
T

o xyz can be computed using 

Equation (6). Combined with the transformation matrix T, the coordinate vector in the system 

OXYZ can be gotten. 

 

 1

2

3

0

1 3

2 2

1 3

2 2

T

T

T

b r h

b r r h

b r r h







 

   

 


 

   
 

                                             (6) 

 

3.7. Function for Angles between Vertical Rails and Corresponding Limbs 

[TH, Flag]= TPRS_ForKinTH (H, PofTPRS, TH0) computes three feeds and angles using 

the optimal iteration algorithm based on based on Equation (7). PofTPRS is a 1-by-5 vector 

that represent r , R ,
1

l , 
2

l  and
3

l . The initial iteration value TH0 is a vector including 3 

elements, and has heavy effect on the rationality of the solution. 

 

1 2 1 3 2 3
3 r  b b b b b b                                               (7) 

 

3.8. Function for the Direction Vector of the z-axis 

Vz= TPRS_zVectorFromb1b2b3 (b1, b2, b3) returns the direction vector of the z-axis. The 

direction vector can be computed using the following formula. 

1 2 2 3 2 3 3 1 3 1 1 2

3

1 2 2 3 2 3 3 1 3 1 1 2

b b b b b b b b b b b b
e

b b b b b b b b b b b b

     

     

  
  

  

                               (8) 
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3.9. Function for the Coordinates of the Cutter Point 

[XTool, YTool, ZTool]= TPRS_XTYTZTFromb1b2b3(b1,b2,b3,h,dx,dy) returns the cutter 

point coordinates  T o o l T o o l T o o l
, ,x y z . dx and dy are the offsets x  and y  along x-axis and y-axis 

between the center 
1

C  of the equilateral triangle and the perpendicular projection point 
2

C  of 

the cutter point in the equilateral triangle plane, shown in Figure 2. The algorithm can be 

expressed as follows. 

 

b1b2

b3

C1

x

y

x

yC2

 T T T, ,x y z

D

E

F

 

Figure 2. Algorithm Diagram for Function TPRS_XTYTZTFromb1b2b3 

The coordinates  C 1 C 1 C 1
, ,x y z  of the center 

1
C  of the equilateral triangle b1b2b3 can be 

expressed as  

b 1 b 2 b 3

C 1

b 1 b 2 b 3

C 1

b 1 b 2 b 3

C 1

3

3

3

x x x
x

y y y
y

z z z
z

 





 





 




                                                       (9) 

Based on the coordinates of b1 and b2, the direction vector  , ,m n p of the y-axis can be 

computed. The parameter equation for the y-axis line is 

C 1

C 1

C 1

x x m t

y y n t

z z p t

 


 


 

                                                                 (10) 

The corresponding t  of the point E is 

2 2 2

y
t

m n p




 

                                                          (11) 

 

The coordinates  E E E
, ,x y z of E can be computed. Likewise, the coordinates of b2b3 center 

D can be gotten, the direction vector of the x-axis can be computed, and the coordinates 
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 F F F
, ,x y z of the point F can be gotten. Based on coordinates of points E and F, the center 

coordinates of the parallelogram 
1 2

C F C E  can be computed, and coordinates  C 2 C 2 C 2
, ,x y z of 

the point 
2

C  are 

C 2 E F C 1

C 2 E F C 1

C 2 E F C 1

x x x x

y y y y

z z z z

  


  


  

                                                          (12) 

The function TPRS_zVectorFromb1b2b3 is called to compute the direction vector of the 

line that the cutter resides. Likewise,  T o o l T o o l T o o l
, ,x y z  can be computed. 

 

3.10. Function for Three Euler Angles from the Direction Vector of the Cutter 

[A, B, G]= TPRS_VectorOfTool2ABG(VectorOfTool) returns Euler angles. The input 

parameter VectorOfTool is a vector including three elements that represents the direction of 

the cutter. The 9 upper-left elements in the transform matrix T form the direction cosine 

matrix from 
T

o xyz to OXYZ. The unit vectors of the three coordinate axes of OXYZ are

1
[1, 0 , 0 ]E  , 

2
[0 ,1, 0 ]E   and

3
[0 , 0 ,1]E  , while the three unit vectors of 

T
o xyz are

1
e , 

2
e  and 

3
e . The 

direction cosine matrix D  can be expressed as  

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

E e E e E e

D E e E e E e

E e E e E e

 

 
  

 
 

                                                         (13) 

The unit vector 
3

e  is the utilization one of VectorOfTool. The matrix elements in the third 

row and third row of D  can be computed. The Euler angles   and   are computed using 

Equation (1) and (2), then the Euler angle   is gotten by calling the function TPRS_AB2G. 

 

3.11. Function for the Inverse Kinematics 

[H, TH] = TPRS_BacKin (A, B, ZT, PofTPRS) returns three feeds and three angles. 

PofTPRS is a vector including 6 elements that represent r , R ,
1

l , 
2

l , 
3

l  and h . The initial 

iteration value TH0 is a vector including 3 elements, and has heavy effect on the rationality of 

the solution. The Euler angle   is computed using TPRS_AB2G, and the transformation 

matrix T is computed using TPRS_Tran. The coordinates of b1, b2 and b3 in the system 
T

o

xyz can be expressed as 
b b b

[ , , ,1]
T

i i i
x y z  1, 2 , 3i  , and the corresponding coordinates in the system 

OXYZ can be computed using the transformation matrix T. The feeds of the three prismatic 

pairs 
i

H  1, 2 , 3i   are  

   
2 22

R b R b R bi i i i i i i i
H Z Z l X X Y Y            (i=1, 2, 3)                       (14) 

where 
R i

Z  is the Z coordinate of R
i

, 
i

l  is the length of limb L
i
, 

R i
X  and

b i
X  are the X 

coordinates of R
i

 and b
i

 respectively, and 
R i

Y  and 
b i

Y  are Y coordinates of R
i

 and b
i
 

respectively. 
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3.12. Function for all Solutions of Angles Using Monte Carlo Simulation 

[TH,N]= TPRS_ForKinAllTH (H, PofTPRS, THMin, THMax, K, M, Error) returns all 

solutions of three angles between vertical rails and corresponding limbs using Monte Carlo 

simulation. The return value N is the number of the solutions. The input parameter PofTPRS 

has the same meaning as the function TPRS_BacKin, [THMin, THMax] is the interval where 

the solution resides, K is the number of Monte Carlo sampling, and M is the number of the 

possible solutions. The solutions are regarded as one if the absolute value of their difference 

is no more than the limiting error Error. The return number of the solutions N is no more than 

the set number M. 

 

3.13. Function for the Position and Orientation Error 

Error= TPRS_ManError (A, B, ZT, PofTPRS, EPofTPRS) returns the position and 

orientation error. The return value Error is a vector including 6 elements that represent the 

errors of the three Euler angles and position coordinates. The input parameter PofTPRS has 

the same meaning as the function TPRS_BacKin. EPofTPRS is a vector including 11 

elements that represent moving platform radius error r , fixing base radius error R , three 

limb-length-errors 
1 2 3

l l l  , , , cutter length error h , three feeds errors 
1 2 3

H H H  ， ， , offsets 

x  and y . The computation procedure is as follows.  

Step 1: Three feeds H and three angles TH0 are computed using [H, TH0]= TPRS_BacKin 

(A, B, ZT, PofTPRS).  

Step 2: The three angles are computed again using [TH, Flag]= TPRS_ForKinTH 

(H+EPofTPRS(7:9), PofRobot(1:5)+EPofTPRS(1:5), TH0).  

Step 3: The three-dimensional coordinates of b1, b2 and b3 are computed using [b1, b2, b3]= 

TPRS_ForKinbi(H+EPofTPRS(7:9), TH, PofTPRS(2:5)+ EPofTPRS(2:5)). 

Step 4: The direction vector of the z-axis is computed using Vz= TPRS_zVectorFromb1b2b3 

(b1, b2, b3).  

Step 5: Three Euler angles A, B and G are computed using [A, B, G]= 

TPRS_VectorOfTool2ABG (-Vz).  

Step 6: The coordinates  T o o l T o o l T o o l
, ,x y z are computed using [XTool, YTool, ZTool] = 

TPRS_XTYTZTFromb1b2b3 (b1, b2, b3, EPofTPRS(6), EPofTPRS(10), 

EPofTPRS(11)).  

Step 7: The error Error is computed using the actual and nominal values. 

 

3.14. Function for the Jacobian Matrix 

Jacobian = TPRS_ Jacobian (A, B, ZT, PofTPRS, Flag) computes the Jacobian matrix 

according to the position and orientation, and the structure parameter. The input parameter 

PofTPRS has the same meaning as the function TPRS_BacKin. If Flag is 1, the function 

returns the Jacobian matrix; else, the inverse Jacobian matrix. The return value Jacobian is a 

3-by-3 matrix. The 3-PRS parallel robot possesses 3- DOF  ,   and
T

z . Based on the 

Equation (1) and (14), three feeds are functions of  ,   and
T

z . The  ,   and 
T

z  are functions 

of the time t , and can be expressed as ( )t , ( )t  and ( )Z t . So Equation (14) can be expressed as 

 

 ( ) ( ), ( ), ( )
i i

H t F t t Z t                                                 (15) 

 

So 
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31 2
dd d d d d

d d d d d d

T T

HH H Z
J

t t t t t t

    


   
  

                           (16) 

where the Jacobian matrix J  is  

1 1 1

2 2 2

3 3 3

H H H

Z

H H H
J

Z

H H H

Z

 

 

 

   

 
  

 

   
  

  
 

   

 
   

                                                   (17) 

If J  has full rank, the inverse Jacobian matrix can be computed. Because of the 

complexity of Equations (15) to (17), the Jacobian matrix function jacobian (f, v) can be used 

directly. 

 

3.15. Function for the Acceleration Computation 

aH = TPRS_ Acceleration (A, B, ZT,VABX, aABX, PofTPRS) computes the acceleration 

of three feeds. PofTPRS has the same meaning as the function TPRS_BacKin. VABX and 

aABX are the velocity and acceleration vectors of the cutter direction and position, and each 

includes 3 elements. The return value aH is a vector including 3 elements representing the 

acceleration of three feeds. The transmission relationship can be gotten through 

differentiation using Equation (16). 

 

3.16. Function for the Structure Diagram Drawing 

TPRS_ Plot(B1,B2,B3,R1,R2,R3,b1,b2,b3) plots the scheme of the 3-PRS robot. The 

function TPRS_XTYTZTFromb1b2b3 is called to compute the coordinates of the cutter 

point, and the MATLAB function plot3 is used to draw the scheme. 

 

4. Example Result and Discussion 

The structure parameters of a 3-PRS parallel robot are as follows. 
1 2 3

1 1 0 7l l l   , 2 0 0r  , 

3 5 0R   and 2 8 0h  . The trajectory path of the cutter point is the intersection of the spherical 

surface and the plane
0

z z , and the cutter is always perpendicular to the spherical surface. The 

trajectory path of the cutter point can also be expressed as 

 

 

 

22

s s 0

22

s s 0

0

c o s

s in

x R R z t

y R R z t

z z


  




  








         ( 0 0
0 3 6 0t  ) 

The direction vector of the cutter is  0
, ,x y z , and the direction vector of the z-axis is  0

, ,x y z

. The toolbox developed can be used to analyze the characteristics. If
s

1 0 0R  , 
0

1 6 0z   and 0
6 0t 

, the computation procedure and key codes in MATLAB are as follows. 

>> dRsz0=sqrt(100*100-(100-160)*(100-160)); 
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>> x=dRsz0*cos(pi/3); y=dRsz0*sin(pi/3);                           % Prepare parameters 

>> [A,B,G]= TPRS_VectorOfTool2ABG(-[x,y,160]) ;         % Compute three Euler angles 

>> [H,TH]= TPRS_BacKin(A,B,160,[200,350,1107,1107,1107,280]);  

% Compute feeds and angles  

>> [R1,R2,R3]= TPRS_RiXYZ(H,350);   % Compute coordinates 

>> [b1,b2,b3]= TPRS_ForKinbi(H, TH,[350,1107,1107,1107]);          

  % Compute coordinates 

>> [B1,B2,B3]= TPRS_BiXYZ(350);                                   %Compute coordinates  

>> TPRS_Plot(B1,B2,B3,R1,R2,R3,b1,b2,b3,280);             % Plots the scheme 

The feed vector of the three prismatic pairs is H=[1462.50857, 1462.50857,1591.87333], 

the three angles vector between vertical rails and corresponding limbs is TH =[0.1359, 

0.1359, 0.1649], and the scheme of the robot is is shown in Figure 3. 

 

 

Figure 3. Scheme of the Robot Position and Orientation for Position and 
Orientation 

The parameter t is made discrete over the interval 0 0
[0 , 360 ) . Each discretization value is 

computed, and the result is shown in Figure 3. TPRS_BacKin is used for Figure 4 (a), 

TPRS_XTYT for Figure 4 (b), and TPRS_ManError for Figure 4(c) and (d). The error vector 

of the 11 parameters is [0.0068, 0.0770, 0.0798, 0.0250, -0.0726, -0.0566, -0.0636, -0.0918, -

0.0788, 0.0232, 0.0878] in Figure 4(c) and (d). The three position-coordinates errors and three 

Euler angles errors differ greatly in value although the error source is same, which 

demonstrates that the position and orientation has tremendous effect on the error sensitivity. 

The translational motion of the 3-PRS robot possesses is only one 
T

z  along the Z-axis, and it 

has two parasitic motions 
T

x  and
T

y , as shown in Figure 4(b). An X-Y table is needed to 

compensate the parasitic motions 
T

x  and
T

y , and the compensations Xp and Yp are shown in 

Figure 4 (b). 
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a) Feeds of Three Prismatic Pairs 

 
b) Parasitic Motions and Compensations 

 

  

c) Three Euler Angles Errors d) Position Errors 

Figure 4. Computing Results of the Example 

5. Conclusions 

A toolbox for the 3-PRS parallel robot is developed in MATLAB and key algorithms are 

given. The toolbox includes 16 functions for forward kinematics, inverse kinematics, velocity 

kinematics, error analysis, schematic representation of the robot, and so on. Finally, an 

example calls the toolbox function, and verifies its correctness, reliability and convenience. 

The toolbox is very useful for design and analysis of the 3-PRS robot characteristic. The 

developed toolbox and its application have several advantages. The toolbox encapsulates 

complicated mathematical formulas into the single function and provides standard inputs and 

outputs, which improves the reliability and makes it easy to use. The functions are saved as 

m-files and all file names end with the extension '.m', so it is helpful and almost necessary for 

the user to modify the codes for expansion. However, it should be noticed that the 3-PRS 

robot can be classified into four categories including seven kinds according to limb 

arrangements as discussed in [9]. Based on the toolbox here, the function for the other kinds 

can be extended. 
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