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Abstract 

An analytical technique, namely the homotopy analysis method (HAM), is applied to solve 

periodic solutions for superharmonic resonances of nonlinear oscillations with parametric 

excitation. Unlike perturbation methods, HAM does not depend on any small physical 

parameters at all. Thus, it is valid for both weakly and strongly nonlinear problems. Besides, 

different from all other analytic techniques, the HAM provides us a simple way to adjust and 

control the convergence region of the series solution by means of an auxiliary parameter h. 

In this paper, periodic analytic approximations for superharmonic resonances of nonlinear 

oscillations with parametric excitation are obtained by using the HAM, which agree well with 

numerical results. This article shows that the HAM is a powerful and effective technique for 

nonlinear dynamical systems. 

Keywords: Nonlinear Oscillations, Parametric Excitation, Homotopy Analysis Method 
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1. Introduction 

Exact solutions of differential equations are rare in many branches of fluid 

mechanics, solid mechanics, and physics because of nonlinearity, inhomogeneity, 

variable coefficients, and so on. Hence, it is necessary to determine approximate 

solutions of complicated nonlinear differential equations by using some analytical 

techniques. Foremost among the analytic techniques are the methods of perturbations 

(asymptotic expansions) in terms of a small/large parameter [1, 2]. Because many 

nonlinear problems do not contain such a small/large parameter named perturbation 

quantity, the artificial small parameter method, the  -expansion method and 

Adomian’s decomposition method were developed [3-5]. In 1992, Liao employed the 

basic ideas of the homotopy in topology to propose a general analytic method for 

nonlinear problems, namely the homotopy analysis method (HAM)[6]. Different from 

all other analytic techniques, the HAM provides us with a simple way to adjust and 

control the convergence region of approximate series solutions  [7]. HAM has been 

successfully applied to solve many types of nonlinear problems [8-15].In this paper, the 

basic idea of HAM is used to solve nonlinear oscillations which often appear in some 

parametricly excited gear systems[16], governed by 
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where ( )
e

k t  is time-varying mesh stiffness, ( )f x  is a nonlinear displacement function 

which includes gear backlash and can be defined by equation (2).   is the damping 

coefficient, 
m

F  is the mean load of the gear pair. a T
F and a h

F  are the amplitudes of 

external and internal excitations. Parameters 
e

 , 
eT

 and 
eh

  are the frequencies of the 

parametric, external and internal excitations, respectively. 

5

1

( ) 1 co s ( )
e j e j

j

k t B j t 



   ,  
3 5 7

1 3 5 7
( )f x a x a x a x a x                            (2) 

For the sake of simplicity, the equation (1) can be rewritten as 

2

3

2
[1 c o s ( )] ( ) 0

d x
t x x

d t
                                          (3) 

where ( )x t  is an unknown real function, , , ,     are known physical parameters. 

Here, we are interested in the periodic oscillations with the frequency 

n  ( 1, 2 , 3 , )n                                                  (4) 

In other words, given , , ,     and the frequency described above, the HAM is 

applied to find the corresponding unknown amplitude A , such that 

(0 ) , '( 0 ) 0x A x                                                (5) 

 

2. Basic Idea of HAM 

Assuming that the solution of Eq. (3) and (5) is periodic with the frequency   

defined by (4). Then, writing 

n


  , ( ) ( )x t A V t                                                 (6) 

Eq. (3) becomes 

2 3
''( ) (1 c o s )[ ( ) ( )] 0

t
V t V t A V t

n


                                    (7) 

subject to the initial conditions 

(0 ) 1, '( 0 ) 0V V                                                     (8) 

According to the initial conditions (8) and the nonlinear term in Eq. (7), the periodic 

solution of ( )V t  with the given frequency   can be expressed by 

1

( ) c o s
k

k

V t c k t





                                                  (9) 

where 
k

c  is a coefficient to be determined.  This provides us with the so-called solution 

expression of ( )V t , which plays an important role in the frame of the HAM, as shown 

later. For the sake of simplicity, using the transformation t   and ( ) ( )V t u  , Eqs. 

(7) and (8) are rewritten as 
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2 2 3
''( ) (1 c o s )[ ( ) ( )] 0u u A u

n


                                  (10) 

(0 ) 1, '( 0 ) 0u u                                                   (11) 

According to the solution expression (9), ( )u   can be expressed by 

1

( ) c o s
k

k

u c k 





                                                  (12) 

According to (11) and (12), it is obvious for us to choose such an initial guess 

0
( ) co su                                                       (13) 

According to (12), obviously, we should choose the auxiliary linear operator 

2

2

2

( , )
[ ( , ) ] [ ( , ) ]

q
L q q


  



 
   


                                  (14) 

which has the property 

1 2
( s in co s ) 0L C C                                             (15) 

for any integration constants 
1

C  and 
2

C .  we define a nonlinear operator 

2

2 2 3

2

[ ( , ) ]
[ ( , ) , ( ) ] (1 c o s )[ ( , ) ( ) ( , ) ]

q
N q q q q q

n

 
      



 
        


       (16) 

where [ 0 ,1]q   is an embedding parameter, ( , )q  is a kind of mapping of the 

unknown function ( )u  , and ( )q  is a kind of mapping of the unknown amplitude A . 

Then, we construct the so-called zero-order deformation equation 

0
(1 ) [ ( , ) ( )] [ ( , ), ( )]q L q u h q N q q                               (17) 

subject to the initial conditions 

0

( , )
(0 , ) 1, 0

q
q









  


                                  (18) 

When 0q  , the solution of Eqs. (14) and (15) is   

0
( , 0 ) ( )u                                                        (19) 

When 1q  , the zero-order deformation equations (17) and (18) are equivalent to the 

original equations (10) and (11), provided 

( ,1) ( )u   ,  (1) A                                              (20) 

Therefore, as the embedding parameter q  increases from 0 to 1, ( , )q  varies from 

the initial guess 
0

( ) co su    to the unknown solution ( )u   of Eqs (10) and (11). 

Likewise, ( )q  varies from the initial guess 
0

A  to the unknown amplitude A .Note that 

the zero-order deformation equation (17) contains a nonzero auxiliary parameter h . 
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Assuming that h  is chosen so properly that the zero-order deformation equations (17) 

and (18) have solutions in the whole region [ 0 ,1]q  , and besides, there exist 

0

1 ( , )
( )

!

m

m m

q

q
u

m q






 



,      

0

1 ( )

!

m

m m

q

d q
A

m d q



                          (21) 

For any 1m  .  Then, by means of Taylor series and using (16), we have 

0

1

( , ) ( ) ( )
m

m

m

q u u q  





    ,    
0

1

( )
m

m

m

q A A q





                          (22) 

Assuming that h  is so properly chosen that the power series (22) converge at 1q  , 

using (22), we have the series solutions 

0

1

( ) ( ) ( )
m

m

u u u  





      
0

1

m

m

A A A





                                 (23) 

For the sake of simplicity, define the vectors 

0 1 2
{ ( ), ( ), ( ), , ( )}

m m
u u u u u    , 

0 1 2
{ , , , , }

m m
A A A A A . 

Differentiating the zero-order deformation equations (17) and (18) m  times with 

respect to the embedding parameter q , then dividing them by !m , and finally setting 

0q  , we have the so-called m th-order deformation equation 

1 1 1
[ ( ) ( )] ( , )

m m m m m m
L u u h R u A  

  
                                    (24) 

subject to the initial conditions 

(0 ) 0 , '(0 ) 0
m m

u u                                                    (25) 
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m i k i j r m k j r

k i j r

u A A u u u
n
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and 
0 , 1,

1, 1 .
m

m

m



 



 

Note that both ( )
m

u   and 
1m

A


 are unknown, but we have now only one equation 

(24) for ( )
m

u  . Thus, another algebraic equation must be given so as to determine 
1m

A


. It is found that the right-hand side of the m th-order deformation equation (24) is 

expressed by 

1 1 ,0 1 , 1

1

( , ) ( ) ( ) co s ( )

m

m m m m m m k m

k

h R u A b A b A k




   



                          (27) 
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where 
, 1

( )
m k m

b A


 is a coefficient, 
m

  is a positive integer dependent on the order m . 

According to the property (15) of the auxiliary linear operator L , when 
,1 1

( )
m m

b A


0 , 

the solution of the m th-order deformation equation (24) and (25) contains the so-called 

secular term c o s  , which however disobeys the solution expression (9).  To avoid the 

secular terms, we must enforce 

, 1
( )

m l m
b A


=0                                                         (28) 

which provides us another algebraic equation for 
1m

A


.  Then, the general solution of 

equation (24) reads 

, 1

1 1 22 2

2

( )
( ) ( ) co s ( ) co s s in

(1 )

m

m k m

m m m

k

b Ah
u u k C C

k



     








   


            (29) 

where the integration constants 
1

C ,
2

C  are determined by the initial conditions (25).  

The N th-order approximation is given by 

0

1

( ) ( ) ( )

N

m

m

u u u  



   ,      
0

1

N

m

m

A A A



                                 (30) 

Note that   is given, and thus n   determined by the given positive integer n  is 

known.  For example,  =   when 1n  ,  = 2   when 2n  , 3   when 3n  , and so 

on. 

 

3. Result Analysis 

For given , , ,     and n , the periodic solution with the known frequency n   and 

the corresponding unknown amplitude A  can be determined by the analytic approach 

mentioned above.  Note that there exist an auxiliary non-zero parameter h , which provides us 

with a simple way to ensure the convergence of solution series, as mentioned by Liao [6-12] 

and other authors [13-15]. For example, let us consider the case of 1  , 4  , 1 0  , 

0 .0 1  , and 1n   (i.e., 1 0  ). Such kind of excitation is often called the primary 

parametric resonance.  Obviously, the amplitude A  contains the auxiliary non-zero parameter 

h . As suggested by Liao, one can plot the A - h  curve to determine the so-called valid region 

of h , as shown in Figure 1. Obviously, the series of A  converges when 0 0 .0 6h  . For 

instance, when 0 .0 1 5h  , we have the convergent result A  5.85329, as shown in Table 1. 

The corresponding 2th-order approximation of ( )x t  agrees well with the numerical result, as 

shown in Figure 2. 

Similarly, in case of 1  , 4  , 1 0  , 0 .0 1  , and 2n   (i.e., 2 0  ), we 

obtain the convergent amplitude A  11.7536 by means of h =0.015. And it is a little surprise 

that even the corresponding 2nd HAM approximation agrees well with the numerical ones, as 

shown in Figure 3. 
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Table 1. The Analytic Approximations of A by Means of h=0.015 

Order N A  Error: (An-An-1)/An 

1 5.76 0.00266 

2 5.77 0.00243 

3 5.79 0.00221 

4 5.80 0.00200 

5 

6 

7 

8 

9 

10 

11 

5.81 

5.82 

5.83 

5.83 

5.84 

5.85 

5.85 

0.00180 

0.00162 

0.00146 

0.00131 

0.00119 

0.00107 

0.00097 

 

 

Figure 1. The 11th-order Approximation of A  versus h  in Case of 1  , 4  , 

1 0  , 0 .0 1  , and 1n   (i.e., 1 0  ) 

 

Figure 2. Comparison of the 2nd-order HAM Approximation of ( )x t  with the 

Numerical Solution in Case of 0 .0 1 5h  , 1  , 4  , 1 0  , 0 .0 1  , and 

1n   (i.e. 1 0  ). Solid Line: HAM result; circle: Numerical Solution 
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Figure 3. Comparison of the 2nd-order HAM Approximation of ( )x t  with the 

Numerical Solution in Case of 0 .0 1 5h  , 1  , 4  , 1 0  , 0 .0 1  , and 

2n   (i.e. 2 0  ). Solid Line: HAM Result; Circle: Numerical Solution 

In a similar way, note that when n =2,3,4, etc., the natural frequencies of oscillation are 2, 

3 and 4 times of the frequency   of parametric excitation, respectively. Such cases can be 

called superharmonic resonances which are very important in engineering. 

 

4. Conclusions 

In this paper, an analytical technique, namely the homotopy analysis method (HAM), 

is applied to obtain the periodic solutions for superharmonic resonances of nonlinear 

oscillations with parametric excitation. For given physical parameters and the frequency 

of superharmonic resonances, the convergent series solutions of the corresponding 

amplitude A  and ( )x t  are explicitly obtained, which agree well with the numerical 

results.  All of these verify that the HAM is valid for superharmonic resonances of 

nonlinear oscillation systems with parametric excitation. 

Indeed, the homotopy analysis method (HAM) has many advantages. Different from all 

other analytic techniques, it provides us with a simple way to adjust and control the 

convergence region of approximate series solutions[9-22].  The current work illustrates that 

the HAM is indeed a powerful and versatile analytical technique for most types of nonlinear 

problems, and might have many applications in science and engineering. 
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