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Abstract \/’
Era

An analytical technique, namely the homotopy analysis method (HAM), is li solve
periodic solutions for superharmonic resonances of nonlinear oscillations @ metric
excitation. Unlike perturbation methods, HAM does not depend on | physical
parameters at all. Thus, it is valid for both weakly and stro ﬁonlinea roblems. Besides,
u

different from all other analytic techniques, the HAM_preyi a simple,way to adjust and

control the convergence region of the series solutio @ ans n auXxiliary parameter h.

In this paper, periodic analytic approximations for rharmo%SV‘ sonances of nonlinear
AM,

oscillations with parametric excitation are obtaifiet, by using which agree well with
numerical results. This article shows that th isa pow and effective technique for
nonlinear dynamical systems.
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1. Introduction \Q\

Exact solutions of @rential es&alons are rare in many branches of fluid
mechanics, solid @cs, a hysics because of nonlinearity, inhomogeneity,
variable coefficign d so nce, it is necessary to determine approximate
e(plitated ponlif€ar differential equations by using some analytical
ost a he analytic techniques are the methods of perturbations
(asymptotic eXpansion terms of a small/large parameter [1, 2]. Because many
nonlinear problems ot contain such a small/large parameter named perturbation
guantity, the a small parameter method, the s -expansion method and
Adomian’s deco sition method were developed [3-5]. In 1992, Liao employed the
the homotopy in topology to propose a general analytic method for
lems, namely the homotopy analysis method (HAM)[6]. Different from
lytic techniques, the HAM provides us with a simple way to adjust and
e convergence region of approximate series solutions [7]. HAM has been
su fully applied to solve many types of nonlinear problems [8-15].In this paper, the

basic idea of HAM is used to solve nonlinear oscillations which often appear in some
parametricly excited gear systems[16], governed by

2

d x
dt?

' cosm,t 1)

ahmeh

dx
+2u—+k () f(x)=F_ +F_ cos(o  t+¢ )+ F
dt
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where k_(t) is time-varying mesh stiffness, f (x) is a nonlinear displacement function
which includes gear backlash and can be defined by equation (2). x is the damping
coefficient, F_ is the mean load of the gear pair. F_ and F, are the amplitudes of
external and internal excitations. Parameters o_, o, and o, are the frequencies of the
parametric, external and internal excitations, respectively.

5
k,(t) =1+> B, cos(jot+¢,), f(x)=ax+ a,x +ax’ +a,x’ (2)
j=1

For the sake of simplicity, the equation (1) can be rewritten as

2

(3)
dt’

where x(t) 1s an unknown real function, ¢,a, 8.y r p@@ rameters.
cy

Here, we are interested in the periodic oscillations wi‘w@
w=ny (n=1,2,

(4)
In other words, given ¢,a,8,y and the quency kd above, the HAM is
itude A that

x(O) - xs{q\@ (5)
2. Basic Idea of HAM

Assuming that the solytion of E @xd (5) is periodic with the frequency o
defined by (4). Then, w, @ %\
Q\\ & X(t) = AV (t) (6)

Eq. (3) beco
®(1+gcos—)[av )+ AV (D)]=0 (7

subject to the in@mdltlons
V(0)=1,V '(0)=0 (8)

ccor the initial conditions (8) and the nonlinear term in Eq. (7), the periodic
ol::n (t) with the given frequency o can be expressed by

applied to find the corresponding unknow

V(t)=> c coskat 9
k=1
where c, is a coefficient to be determined. This provides us with the so-called solution
expression of V (t) , which plays an important role in the frame of the HAM, as shown
later. For the sake of simplicity, using the transformation r = @t and V (t) = u(z), Eqs.
(7) and (8) are rewritten as
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©u"(r)+ 1+ e cos ) [au(c)+ BAU ()] = 0 (10)
n
u(0)=1,u'(0)=0 (11)

According to the solution expression (9), u(z) can be expressed by

u(z) =Y ¢, coskr (12)

k=1

According to (11) and (12), it is obvious for us to choose such an initial guess
u,(z) =cosr

N
According to (12), obviously, we should choose the auxiliary linear operat?\

L[® (z,9)] = @ (14)
TN

L(C,sinzt +C,cos (15)

which has the property

for any integration constants C, and C,_. fine a no@ar operator

(o}
N[®(r,0),A(q)] = [ (. 9) cos@v(r Q)+ AAT(@0 ()] (16)

where ¢ €[0,1] is an emb&dkg param ®(r,q) is a kind of mapping of the
unknown function u(r), A (q) 1 of mapping of the unknown amplitude A .
Then, we construct gh ed ze r deformation equation

q)L[ %

U (z)I=h a N[®(7r,q),A(q)] (17)
subject to th‘ nEfc@

o0.q -1 2D

E@ .
When g = 0, the solution of Egs. (14) and (15) is
®(7,0) =u,(r) (19)

=1, the zero-order deformation equations (17) and (18) are equivalent to the
1 equations (10) and (11), provided

0 (18)

O(r,1)=u(r), A1)=A (20)

Therefore, as the embedding parameter q increases from 0 to 1,® (z,q) varies from
the initial guess u,(z) =cosz to the unknown solution u(r) of Egs (10) and (11).

Likewise, A (q) varies from the initial guess A, to the unknown amplitude A .Note that

the zero-order deformation equation (17) contains a nonzero auxiliary parameter h .
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Assuming that h is chosen so properly that the zero-order deformation equations (17)
and (18) have solutions in the whole region q < [0,1], and besides, there exist

1 0" 1.d"A
oy L@l ) @
m!  aq m! dq
q=0 q=0
For any m > 1. Then, by means of Taylor series and using (16), we have
®(r,q)=u,(z)+ > u (£)a", A(@)=A +> Aq" (22)

m=1 m=1

Assuming that h is so properly chosen that the power series (22) converge dfq =2,
using (22), we have the series solutions

u(r):uo(r)+zwum(r) A= A+ %CQ (23)

m=1
For the sake of simplicity, define the vectors Q V
u_ ={u,(r).u,(z)u, (), u (r)}

Differentiating the zero-order deformagi quatlon\%) and (18) m times with
. <
respect to the embedding parameter q

\ dividi em by m!, and finally setting
q = 0, we have the so-called m th-a@efor%@
&

L[um(Qm no (7)) P (24)
subject to the initial cond 5@
\\Q {o, u_'(0)=0 (25)

0" IN[® (r,9), A ()] :

@Q 6@ Y g |qu =o'u, , "(r)

m-1-k m-1-k-j

+(1+gcos®@+ ,Bz (z AA DI z u,(z) z u (e)u, o, (7)1 (26)
dy
an d@m >1.

that both u_(r) and A

uation

_, are unknown, but we have now only one equation

(24) for u_(r). Thus, another algebraic equation must be given so as to determine A,

. It is found that the right-hand side of the m th-order deformation equation (24) is
expressed by

- Ho

hR (U LA )= mO(Am D bmk(Am )cos(kr) (27)

k=1

150 Copyright © 2014 SERSC



International Journal of Hybrid Information Technology
Vol.7, No.5 (2014)

where b (A ) is a coefficient, 4 is a positive integer dependent on the order m .

According to the property (15) of the auxiliary linear operator L, when b_ (A ) =0,

the solution of the m th-order deformation equation (24) and (25) contains the so-called
secular term r cos ¢ , which however disobeys the solution expression (9). To avoid the
secular terms, we must enforce

b, (/KM) =0 (28)

which provides us another algebraic equation for A Then, the general solution of

m-1°

equation (24) reads

h o bmk m-—

u,(2) = z,u,,(#)+—> 1)<:os(kr)+C cost + C, si (29)
0l 5 1K) 6

where the integration constants C,,C, are determme(ﬂne 1n1t®1d1t10ns (25).

The N th-order approximation is given by

u(r) = u, (T)+ZU (r), OA + (30)

Note that y is given, and thus o = n rmlne e glven positive integer n is
Y

known. For example, ® =y when n @ 2

3. Result Analysis A \%

For given ¢,a, 8, ;/ the perl 1ut10n with the known frequency « = ny and
Eat the

=2, =3y when n =3, and so

the corresponding qit amplitude A can be determined by the analytic approach
mentioned above. st n auxiliary non-zero parameter h , which provides us
with a simplesway™o eénsure Vergence of solution series, as mentloned by Liao [6-12]
and other au [13-15 xample, let us consider the case of @ =1, g =4, y =10,

£=0.01,and n=1 % =10 ). Such kind of excitation is often called the primary

N
O

parametric resonan iously, the amplitude A contains the auxiliary non-zero parameter
h.As suggested@o, one can plot the A -h curve to determine the so-called valid region
of h, as shown inWigure 1. Obviously, the series of A converges when 0 < h < 0.06 . For
instance, = 0.015, we have the convergent result A ~ 5.85329, as shown in Table 1.
The co ding 2th-order approximation of x(t) agrees well with the numerical result, as
éigure 2.

larly, in case of « =1, B =4,y =10, £ =0.01, and n=2 (i.e.,, = 20 ), we

S

obtain the convergent amplitude A ~ 11.7536 by means of h =0.015. And it is a little surprise
that even the corresponding 2nd HAM approximation agrees well with the numerical ones, as
shown in Figure 3.
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Table 1. The Analytic Approximations of A by Means of h=0.015

Order N A Error: (An-An-1)/An
1 5.76 0.00266
2 5.77 0.00243
3 5.79 0.00221
4 5.80 0.00200
5 5.81 0.00180
6 5.82 0.00162
7 5.83 0.00146
8 5.83 0.00131
9 5.84 0.00119
10 5.85 0.00107
11 5.85 0.00097

N
"?

007 10,05 -0.025
254

>

Figure 1. The 11th-order X|mat|o\ A versus h inCaseof o« =1, g =4,

y ,g 0(®in=1(i.e.,w=10)
o&o 3

AHULLAN
o~ | \/

Figure 2. Comparison of the 2nd-order HAM Approximation of x(t) with the
Numerical Solution in Case of h = 0.015,a =1, g =4, y =10, ¢ =0.01, and
n=1 (i.e. » =10). Solid Line: HAM result; circle: Numerical Solution
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Figure 3. Comparison of the 2nd-order HAM Approximation of x(t) withthe*

)
Numerical Solution in Case of h =0.015,a =1, =4, y =10, ¢ = 0.?77@
on

n=2 (i.e. ® = 20). Solid Line: HAM Result; Circle: Numerical
*
eguencies cillation are 2,

x(0)

In a similar way, note that when n =2,3,4, etc., the natura |
3 and 4 times of the frequency , of parametric excitatian, espectiwuch cases can be

called superharmonic resonances which are very im in enw.
4. Conclusions Q ¢ %
S \

In this paper, an analytical techniqui\Gr ly the otopy analysis method (HAM),

is applied to obtain the periodic sol#6hs for monic resonances of nonlinear
oscillations with parametric excitat or giv sical parameters and the frequency
of superharmonic resonances, onver series solutions of the corresponding

amplitude A and x(t) are e itly ob N , which agree well with the numerical
results. All of these vepify, that th is valid for superharmonic resonances of

nonlinear oscillatiorl S with pararmetric excitation.
Indeed, the hom nalysis od (HAM) has many advantages. Different from all
s, it

other analytic te 1}@6 us with a simple way to adjust and control the
a

convergence #EZIQM0tf appromate series solutions[9-22]. The current work illustrates that
the HAM is @n a po nd versatile analytical technique for most types of nonlinear
problems, and might h y applications in science and engineering.
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