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Abstract 

Large volumes of short reads of genomic data are generated by high-throughput 

sequencing instruments. The FASTQ format is widely accepted as the input format of genomic 

reads and has presented challenges in data storage, management, and transfer. The 

performance of this type of serial algorithms such as G-SQZ and DSRC is limited by the 

single processor and the memory in a single computer. Utilizing data parallelism, the 

circular dual queues of buffers, memory mapping integrated with superblocks, pipeline 

parallelism with multi threads, and so on, we present the parallel compression and 

decompression methods for DNA sequence reads in FASTQ format based on the parallel 

computer architectures of the cluster and the SMP. Experimental results for the parallel 

DSRC algorithm clearly show the efficiency of using the powerful computing resources from 

multi computing nodes and multi cores of each node. The speedups vary from 46 to 62 for 

parallel compression and vary from 40 to 58 for parallel decompression by using 10 nodes of 

the cluster in Tianhe-1A super computer. Test results on the SMP machine are also pleasant. 

The methods could be applied to any serial compressing algorithms of DNA sequence reads 

in FASTQ format only if they have the traits of index and superblocks. 

 

Keywords: High-performance Computing, Data Intensive Computing, Parallel 

Compression 

 

1. Introduction 

Large volumes of short reads of genomic data are generated by high-throughput sequence 

instruments. The FASTQ format is the widely accepted input format of genomic reads 

because compared with other formats (such as the FASTA format), it could contain the 

annotations (like quality scores denoting uncertainties in sequence identification processes), 

read identifications and other descriptions (e.g., unique instrument name) at the same time. 

However, this characteristic of FASTQ format has presented challenges in data storage, 

management, and transfer.  

Considering the compression of the FASTQ file, the G-SQZ [1] and DSRC [2] are two 

important compression and decompression algorithms proposed in recent years with excellent 

performance. These two algorithms both use the index to locate and access the specific reads 

quickly without decoding the whole compressed file. What’s more, the DSRC algorithm 
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divides the whole file data into many superblocks, and the G-SQZ algorithm could also use 

the superblocks without any difficulty.   

Nowadays the size of genomic reads which need to be analyzed has already reached to 

Terabytes. The above G-SQZ and DSRC algorithms are both serial and the performance 

could be limited by the single processor and the memory in a single computer, which would 

affect the processing and analyzing of these mass data. With the rapid development of high 

performance computing, utilizing the powerful computing performance coming from the 

multi computing nodes and the multi cores of each node could real-time compress and 

decompress these data, improve the processing speed and could promote more applications of 

these genomic data. Unfortunately, up to now, the parallel algorithms about the above serial 

algorithms have not been proposed.  

We propose the methods for parallel compression and decompression of DNA sequence 

reads in FASTQ format, which could change the above serial G-SQZ and DSRC algorithms 

into parallel algorithms. Most importantly, these methods could also be applied to other serial 

compressing algorithms of DNA sequence reads in FASTQ format only if they have the traits 

of index and superblocks. The experimental results of the parallel DSRC algorithm which 

combines these proposed methods with DSRC algorithm show that it could achieve 

performance speedups of up to 40~62x in 10 nodes on cluster of Tianhe-1A with the parallel 

programming tool of MPI combined with OpenMP.  Test results on the SMP machine are 

also pleasant. 

 

2. Methods 

Aiming at the DNA sequence reads in FASTQ format, we propose parallel 

compression and decompression methods based on the parallel computer architectures 

of the cluster and the SMP. Utilizing data parallelism, the circular dual queues of 

buffers, memory mapping integrated with superblocks, pipeline parallelism with multi 

threads, and a two-dimension array recording reading and writing order, the parallel 

compression and decompression of DNA sequence reads in FASTQ format with multi 

processes and multi threads within each process become true. These methods could 

make the best use of the powerful computing resources from the multi computing nodes 

and the multi cores of each node, and could eliminate the performance limits of single 

processor and memory when using the serial algorithm. Not only the parallel 

programming tool of MPI combined with OpenMP could be used, but the tool of MPI 

combined with Pthreads could be used as well. 

In the following subsections we briefly present the techniques used for the parallel 

compression and decompression methods. 

 

2.1. Data Parallelism 

Because FASTQ data can naturally be perceived as ordered collections of records, 

each consisting of three streams: title information, DNA sequence (read), and quality 

scores, it is beneficial to allocate the FASTQ data to multi processes. The FASTQ 

format was fully discussed in paper [3]. Any FASTQ data parser must not read a line 

starting with ‘@’ as indicating the start of the next record because the ‘@’ marker 

character may occur anywhere in the quality string, including at the start of any of the 

quality lines. Most tools output FASTQ files without line wrapping of the sequence and 

quality string. This means that in most cases each record consists of exactly four lines, 

which is ideal for a very simple parser to deal with. According to this convention on 

output of four lines within each record, in the parallel compression, the FASTQ data are 
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divided nearly averagely into multi data sections which could be compressed 

concurrently in multi processes. Based on the number of the compressing processes and 

the total FASTQ file size, the allocated data size of each process could be computed. In 

addition, the data start could be computed in each process. However, this start position 

might not be the start of a record. The first ‘@’-started line after the above computed 

position should be found further. The second line closely after the above ‘@’-started 

line should also be found. If this second line doesn’t start with ‘@’, the first ‘@’-started 

line would be the tile line, and otherwise, this second line would be the tile line. The 

start of this tile line would be the exact start in this FASTQ fi le in this process. In this 

way, the processing range of the assigned data in each process is computed precisely, 

which lays the foundation of the data parallelism in compression. This data assigning 

and paralleling methods get rid of the communications between different processes and 

different nodes; therefore, the parallel efficiency and speedup could be improved. Each 

process forms a separate compressed file. 

In the parallel decompression, the number of processes is determined by the number of the 

compressed file, and the sequence of the decompressed file is the same as the compressed 

file. Each decompressing process has a separate decompressed file. There is also no 

communication between different processes and different nodes. The decompressing process 

could obtain the exact compressed data location of each superblock via the index in the 

compressed file, which could facilitate the data parallelism in each decompressing process. 

 

2.2. Circular Dual Queues of Buffers 

Whether in compressing process or in decompressing process, each process contains multi 

threads: one reading thread, one writing thread, and several working threads (the number of 

working threads could be set). The circular dual queues of buffers are the linkers between 

these threads. For the sake of easy description, we call the circular dual queues of buffers a 

circular-queues-linker. Each working thread has two circular-queues-linkers: one input 

circular-queues-linker, one output circular-queues-linker. These two types of circular-queues-

linker have slightly different structures according to the difference of the data stored in them 

for the purpose of use. Despite of this, they have the same working mechanism. This 

mechanism has been showed in the Figure 1. 

 

 

Figure 1. Circular Dual Queues of Buffers 
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Each circular-queues-linker has two queues: one input queue, and one output queue. 

Within each circular-queues-linker, the input queue and the output queue have the same 

structure. The work mechanism of the circular-queues-linker is as follows: 

(1) Initialization: instantiate the input queue as a queue with certain number of empty 

buffers (Each buffer has the same structure) and the output queue as zero buffer. 

Then the following steps progress circularly: 

(2) An empty buffer is popped up from the front of the input queue and then is filled with 

data by the thread which uses this buffer.  

(3) The above buffer with filled data is pushed to the back of the out queue. 

(4) A buffer with data is popped up from the front of the output queue and then the data in 

the buffer is processed by the thread which uses them. 

(5) After the data in the picked buffer in step (4) have been processed, this buffer is 

cleaned and pushed to the back of the input queue. 

In order to avoid the conflict in using this circular-queues-linker between different threads, 

we use the lock. In addition, the task of each buffer in each queue is to store superblock data 

(the original data or the compressed data of a superblock) and other information (such as the 

data length, the No. of the superblock, et. al.)  

This mechanism effectively alleviates the delay caused by the mismatch of processing 

speeds between different types of threads, and could increase the parallel efficiency between 

these threads. 

 

2.3. Pipeline Parallelism with Multi Threads 

Whether in compressing process or in decompressing process, each process implements the 

pipeline parallelism with multi threads: one reading thread, multi working threads, and one 

writing thread. The Figure 2 gives the frame of this mechanism.  
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Figure 2. Pipeline Parallelism with Multi Threads 

Just as we have said, each working thread has two circular-queues-linkers: one input 

circular-queues-linker, and one output circular-queues-linker. The input circular-

queues-linker in each working thread is the data interface between this working thread 
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and the reading thread, and the output circular-queues-linker in each working thread is 

the data interface between this working thread and the writing thread. In order to 

guarantee that the order of processed data between these superblocks in the writing 

thread is the same as the order in the reading thread, a two-dimension array is used to 

record the reading and writing order by signifying the ID of working thread processing 

each superblock and whether each superblock has been processed or not. These threads 

may use the array at the same time, so another lock is used to avoid conflict between 

these threads.  

Using the above components, these three types of threads conduct the pipeline 

parallelism in each process. The concrete steps are as follows: 

(1) The reading thread continually read the data of a superblock (In compression, 

they would be the original data, and in decompression, they would be the compressed 

data.), and it search circularly the input queue of each input circular -queue-linker in 

each working thread until an empty buffer is found in a specific working thread. Then 

this buffer is popped out from the front of the input queue and is filled with the above 

data of a superblock. After that, this buffer is pushed to the back of the out queue of the 

input circular-queue-linker in the above specific working thread. The above procedure 

carries out continually until all the assigned data of this process are finished reading 

out. The two-dimension array records the ID of working thread processing each 

superblock. 

(2) Each working thread continually searches the output queue of its input circular-

queue-linker until a buffer is found. Then this buffer is popped out from the front of the 

out queue, and then the data in it are processed (compressed or decompressed). After 

that, this buffer is cleaned and pushed to the back of the input queue. 

Then the following important step is that this working thread continually searches the 

input queue of its output circular-queue-linker until an empty buffer is found. Then this 

buffer is popped out from the front of the input queue, and is filled with the above 

processed data of a superblock. After that, this buffer is pushed to the back of the out 

queue of this output circular-queue-linker in this working thread. 

The above procedure carries out continually until all the assigned data of this process 

are finished being processed. After a superblock has been processed, the finishing tag is 

assigned in the two-dimension array. 

(3) According to the order and processing progress of superblocks stored in the two-

dimension array, the writing thread continually find the specific data of superblock in a 

specific working thread sequentially and write these data to a file according to the same 

order as the reading thread. The writing thread searches the output queue of the output 

circular-queue-linker in the specific working thread until a buffer is found. Then this 

buffer is popped out from the front of the out queue, and the data in it are written to the 

file. After that, this buffer is cleaned and pushed to the back of the input queue. The 

above procedure carries out continually until all the data of supper blocks in this 

process are written to the file. 

 

2.4. Memory Mapping Integrated with Superblocks 

In the reading thread for the parallel compression and the writing thread for the 

parallel decompression, voluminous data of DNA sequence reads should be dealt with; 

therefore, the memory mapping integrate with superblocks is used in order to improve 

the I/O speed of large file. 
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In the reading thread of parallel compression, according to the page size of the 

memory, the size of mapping space, and superblocks of original DNA sequence reads in 

the FASTQ file, the location of each superblock in the memory mapping space are 

computed, as well as the time when to release and remap the memory mapping. One 

evident advantage of memory mapping is that the data could be read and written 

directly with much less data copy when compared with the I/O functions of fread and 

fwrite. 

In the writing thread of parallel decompression, a memory mapping file with specific 

sufficient size is created according to the number of the superblocks needed to be 

decompressed in the process. The decompressed data of each superblock are stored into 

the memory mapping space in turn with the same order as they are read in the reading 

thread. During this procedure, based on the page size of the memory, the location of the 

memory mapping space which is needed to be filled, the size of mapping space, the 

current offset of the memory mapping file, and the threshold of remapping, when to 

release and remap the memory mapping are determined, as well as the new threshold of 

remapping. What should be emphasized is that there is null space in the back of the 

memory mapping file because this file size is set at the start of this writing thread . 

 

3. Implementation and Results 

In order to demonstrate the efficiency of these methods, we implemented the parallel 

compression and decompression by integrating the proposed methods with the DSRC 

algorithm via the parallel programming tool of MPI combined with OpenMP. This 

implementation is called PDSRC (Parallel DSRC). The MPI [4] is used as the tool for 

the interaction between different processes, and the OpenMP [5] is used for the multi 

threads in each process. The experimental results of PDSRC on cluster of Tianhe -1A 

and the SMP machine respectively have shown the efficiency of the methods for 

parallel compression and decompression. 

 

3.1. Experimental Results on Cluster of Tianhe-1A 

The test data comprise some files from 1000 Genomes Project  

(www.1000genomes.org). The test machine was the cluster of Tianhe-1A super 

computer [6]. All the computing nodes and I/O nodes are interconnected with high-

speed network. Each computing node is deployed with dual Intel Xeon X5670 2.93 GHz 

processors, 6 cores in each processor and 24GB memory. In addition, each computing 

node has the SMP (Symmetric Multiprocessor, SMP) architecture. The detailed 

experiments are described as follows. What should be emphasized is that for all the 

tests, time measurements were performed with the Unix  time command and each time 

value is the average of many tests. 

Whether in compression or in decompression, the number of working threads could 

be set through parameter. The compressing time and decompressing time with different 

numbers of working threads were compared using the test data SRR099458_2.filt.fastq 

(25.91 GB) and SRR013951_2.filt.fastq (3.19 GB) in 1 and 10 computing nodes with all 

the 12 cores of each node. The test results showed that each node with 3 processes and 

each process with 2 working threads has the least compressing time, and each node with 

3 processes and each process with 10 working threads has the least decompressing time. 

The following tests used these parameters. 

The parallel compressing time and decompressing time were tested using different 

data and different nodes from 1 node to 10 nodes. All the 12 cores of each node were 
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fully used. The test data are three FASTQ files: SRR099458_2.filt.fastq (25.91GB), 

SRR027520_1.filt.fastq (4.81 GB), and SRR013951_2.filt.fastq (3.19GB). For all tested 

parallel compression and decompression, we present the parallel speedups for nodes 

from 1 to 10 nodes and for the three files. The Figure 3 and Figure 4 show the results. 

We could see that typically the speedup increases with the increase of nodes count, 

which means that the best speedups are got mostly with the 10 nodes. The best 

speedups vary from 46 to 62 for parallel compression and vary from 40 to 58  for 

parallel decompression on the cluster of Tianhe-1A. 

 

 

Figure 3. Speedups on Different Numbers of Nodes for Parallel 
Compression 

 

Figure 4. Speedups on Different Numbers of Nodes for Parallel 
Decompression 

3.2. Experimental Results on SMP Machine 

The test data and test method are the same as the above test. However, this test 

machine is SMP architecture, which has 8 Intel Xeon X7550 2.0 GHz processors, 8 

cores in each processor and 512 GB memory. What should be emphasized is that this 
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machine uses the Hyper-Threading technology and the above cluster of Tianhe-1A 

doesn’t use this technology. The detailed experiments are described as follows.  

The compressing time and decompressing time with different numbers of working 

threads were compared by experiments. Experimental results show that each process 

with 3 working threads has the least compressing time and decompressing time. The 

following tests used these parameters. 

The parallel compressing time and decompressing time were tested using the above 

three FASTQ files and different numbers of processes from 1 to 25. The different 

numbers of processes from 1 to 25 use different numbers of cores from 2.5 to 62.5 

respectively. For all tested parallel compression and decompression, we present the 

speedups on different numbers of cores. The figure 5 and figure 6 show the results. We 

could see that the best speedups vary from 26 to 30 for parallel compression and vary 

from 13 to 27 for parallel decompression on this SMP machine. 

 

 

Figure 5. Speedups on Different Numbers of Cores for Parallel 
Compression 

 

Figure 6. Speedups on Different Numbers of Cores for Parallel 
Decompression 
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What should be highlighted here is that the outputs of parallel compression are multi 

compressed files. Compared with the serial compressed file, the total size of these multi 

compressed files vary from -0.0014% to 0.0013%, -0.0126% to 0.0088% and -0.0216% 

to 0.0191% for SRR099458_2.filt.fastq (25.91 GB), SRR027520_1.filt.fastq (4.81 GB) 

and SRR013951_2.filt.fastq (3.19GB) respectively. 

 

4. Discussion 

What should be emphasized here is that these methods could also be applied to other 

serial compressing algorithms of DNA sequence reads in FASTQ format only if they 

have the traits of index and superblocks. Because many details of the G-SQZ algorithm 

can not be inferred from the paper [1] and we were unable to obtain program sources 

although basically it uses the index mechanism and applies order -0 Huffman coding on 

combined bases and respective qualities, the parallel G-SQZ was not implemented. 

However, with the index mechanism of G-SQZ, it is evident that parallel G-SQZ could 

also be implemented easily using these methods proposed in this paper by integrating 

the superblocks with the index if we get more details about the G-SQZ. We are sure that 

some pleasant results would be gotten for the parallel G-SQZ compression and 

decompression. 

 

5. Conclusion 

We presented the parallel compression and decompression methods for DNA 

sequence reads in FASTQ format based on the parallel computer architectures of the 

cluster and the SMP. Experimental results for PDSRC clearly showed the efficiency of 

these parallel methods. The speedups vary from 46 to 62 for parallel compression and 

vary from 40 to 58 for parallel decompression by using 10 nodes of cluster in Tianhe-

1A super computer. Test results on the SMP machine are also pleasant. 

These methods could make the best use of the powerful computing resources from 

the multi computing nodes and the multi cores of each node, and could eliminate the 

limits of single processor and memory when using the serial algorithm. Not only the 

parallel programming tool of MPI combined with OpenMP could be used, but also the 

tool of MPI combined with Pthreads could be used. In addition, the proposed parallel 

methods could also be applied to other serial compressing algorithms of DNA sequence 

reads in FASTQ format only if they have the traits of index and superblocks. 

 

Acknowledgements 

This paper is supported by the Natural Science Foundation of China (61100073), and the 

Cloud Computing Technology Development and Industrialization Special of Guangzhou, 

China (2013Y2-00076). 

 

References 

[1] W. Tembe, J. Lowey and E. Suh, “G-SQZ: Compact Encoding of Genomic Sequence and Quality Data”, 

Bioinformatics, vol. 26, no. 17, (2010), pp. 2192–2194. 

[2] S. Deorowicz, and S. Grabowski, “Compression of DNA Sequence Reads in FASTQ Format”, 

Bioinformatics, vol. 27, no. 6, (2011), pp. 860-862.  

[3] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer and P. M. Rice, “The Sanger FASTQ File Format for 

Sequences with Quality Scores, and the Solexa/Illumina FASTQ Variants”, Nucleic Acids Research, vol. 38, 

no. 6, (2010), pp. 1767–1771 

[4] MPI, http://www.mpich.org/. 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

http://www.mpich.org/


International Journal of Hybrid Information Technology 

Vol.7, No.4 (2014) 

 

 

100   Copyright ⓒ 2014 SERSC 

[5] OpenMP, http://openmp.org/wp/. 

[6] Tianhe-1A Super Computer, https://vpn.nscc-tj.cn/svpn/domain1/www/login/index.htm. 

 

Authors 
 

Jingjing Zheng, obtained her Ph. D. degree of Computer Science and 

Technology from Institute of Computing Technology, Chinese Academy 

of Sciences in July 2009. Now she works in Parallel Software and 

Computational Science Lab of Institute of Software, Chinese Academy 

of Sciences. Her major research areas are parallel computing, data 

compression and decompression, and the processing of spatial data. 

 

 

 

 

Ting Wang, achieved her Ph. D. degree of Computing 

Mathematics in Shandong University, Shandong, China. Now she is 

Associate professor in Institute of Software Chinese Academy of 

Sciences. She is interested in high performance computing, parallel 

software and big data. E-mail: wangting@iscas.ac.cn 

 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.




