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Abstract
Large volumes of short reads of genomic data \q%ra d gh-throughput
sequencing instruments. The FASTQ format is Wlde|Q asthe ormat of genomic

reads and has presented challenges in data st g man W and transfer. The
performance of this type of serial algorithms such SQZX SRC is limited by the
single processor and the memory in a sml<| ?omputes izing data parallelism, the
circular dual queues of buffers, memory p ng mteg with superblocks, pipeline
parallelism with multi threads, and u the parallel compression and
decompression methods for DNA se read Q format based on the parallel
computer architectures of the Cgu the S xperimental results for the parallel
DSRC algorithm clearly show,the\effielency,o g the powerful computing resources from
multi computing nodes and mu
parallel compression and v,

res of ode. The speedups vary from 46 to 62 for
from 40 &e r parallel decompression by using 10 nodes of
the cluster in Tianhe- 1 computer. Test results on the SMP machine are also pleasant.
The methods could lied to an%ial compressing algorithms of DNA sequence reads
in FASTQ format if they ha its of index and superblocks.

Keywords@gh-per e Computing, Data Intensive Computing, Parallel
Compression

1 Introductlo§

Large valumes of short reads of genomic data are generated by high-throughput sequence
instrumen FASTQ format is the widely accepted input format of genomic reads
becausg ared with other formats (such as the FASTA format), it could contain the
a (like quality scores denoting uncertainties in sequence identification processes),
r%entifications and other descriptions (e.g., unique instrument name) at the same time.
However, this characteristic of FASTQ format has presented challenges in data storage,
management, and transfer.

Considering the compression of the FASTQ file, the G-SQZ [1] and DSRC [2] are two
important compression and decompression algorithms proposed in recent years with excellent
performance. These two algorithms both use the index to locate and access the specific reads
quickly without decoding the whole compressed file. What’s more, the DSRC algorithm
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divides the whole file data into many superblocks, and the G-SQZ algorithm could also use
the superblocks without any difficulty.

Nowadays the size of genomic reads which need to be analyzed has already reached to
Terabytes. The above G-SQZ and DSRC algorithms are both serial and the performance
could be limited by the single processor and the memory in a single computer, which would
affect the processing and analyzing of these mass data. With the rapid development of high
performance computing, utilizing the powerful computing performance coming from the
multi computing nodes and the multi cores of each node could real-time compress and
decompress these data, improve the processing speed and could promote more applications of
these genomic data. Unfortunately, up to now, the parallel algorithms about the above serial
algorithms have not been proposed.

We propose the methods for parallel compression and decompression of DNA sequenee
reads in FASTQ format, which could change the above serial G-SQZ and DSR Mms
into parallel algorithms. Most importantly, these methods could also be applie C%serial

compressing algorithms of DNA sequence reads in FASTQ format only if the traits
of index and superblocks. The experimental results of t llel D ithm which
combines these proposed methods with DSRC algorj show tha could achieve
performance speedups of up to 40~62x in 10 nodes op=eliiste? of Tian with the parallel

programming tool of MPI combined with OpenMP! resulWe SMP machine are
also pleasant.

2. Methods

Aiming at the DNA sequence @ format, we propose parallel
compression and decompression base e parallel computer architectures

of the cluster and the SMP. ng dat arallelism, the circular dual queues of
buffers, memory mapping i ted W|th blocks, pipeline parallelism with multi
threads, and a two-dimension array g reading and writing order, the parallel
compression and deco @lon of equence reads in FASTQ format with multi
processes and multi s wit each process become true. These methods could
make the best use \ pow 0 putlng resources from the multi computing nodes
and the mu each no nd could eliminate the performance limits of single
processor *emor using the serial algorithm. Not only the parallel
programming*“teol of mbmed with OpenMP could be used, but the tool of MPI
combined with Pthre Id be used as well.

In the followi ections we briefly present the techniques used for the parallel
compression and«leCompression methods.

2.1. Data

ASTQ data can naturally be perceived as ordered collections of records,
isting of three streams: title information, DNA sequence (read), and quality
it is beneficial to allocate the FASTQ data to multi processes. The FASTQ
format was fully discussed in paper [3]. Any FASTQ data parser must not read a line
starting with ‘@’ as indicating the start of the next record because the ‘@’ marker
character may occur anywhere in the quality string, including at the start of any of the
quality lines. Most tools output FASTQ files without line wrapping of the sequence and
quality string. This means that in most cases each record consists of exactly four lines,
which is ideal for a very simple parser to deal with. According to this convention on
output of four lines within each record, in the parallel compression, the FASTQ data are
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divided nearly averagely into multi data sections which could be compressed
concurrently in multi processes. Based on the number of the compressing processes and
the total FASTQ file size, the allocated data size of each process could be computed. In
addition, the data start could be computed in each process. However, this start position
might not be the start of a record. The first ‘@’-started line after the above computed
position should be found further. The second line closely after the above ‘@’-started
line should also be found. If this second line doesn’t start with ‘@’, the first ‘@’ -started
line would be the tile line, and otherwise, this second line would be the tile line. The
start of this tile line would be the exact start in this FASTQ file in this process. In this
way, the processing range of the assigned data in each process is computed precisely,
which lays the foundation of the data parallelism in compression. This data assig ning
and paralleling methods get rid of the communications between different processes a
different nodes; therefore, the parallel efficiency and speedup could be impr

process forms a separate compressed file.

In the parallel decompression, the number of processes |s de ermined byt er of the
compressed file, and the sequence of the decompressed fj the sa ompressed
file. Each decompressing process has a separate dec essed re is also no
communication between different processes and dn"f ent\potles. The&vﬂwpressmg process
could obtain the exact compressed data location h sup \y ia the index in the
compressed file, which could facilitate the data % in eac ompressing process.

\

pr s@cess, each process contains multi
ead, a% ral working threads (the number of
working threads could be set). | queues of buffers are the linkers between
these threads. For the sake o!ﬁ%descrlptf call the circular dual queues of buffers a

2.2. Circular Dual Queues of Buffers « O

Whether in compressing process or i
threads: one reading thread, one writi

circular-queues-linker. Each,_ working as two circular-queues-linkers: one input
circular-queues-linker, one ut circu eues linker. These two types of circular-queues-
linker have slightly di structure§ according to the difference of the data stored in them
for the purpose of esp is, they have the same working mechanism. This
mechanism h wed int gure 1.
inp e output queue
Lock
<Q. uffer buffer
N buffer buffer
buffer buffer
empty data
OO i buffer i buffer
i data i empty
' buffer ' buffer
buffer buffer

Figure 1. Circular Dual Queues of Buffers
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Each circular-queues-linker has two queues: one input queue, and one output queue.
Within each circular-queues-linker, the input queue and the output queue have the same
structure. The work mechanism of the circular-queues-linker is as follows:

(1) Initialization: instantiate the input queue as a queue with certain number of empty
buffers (Each buffer has the same structure) and the output queue as zero buffer.

Then the following steps progress circularly:

(2) An empty buffer is popped up from the front of the input queue and then is filled with
data by the thread which uses this buffer.

(3) The above buffer with filled data is pushed to the back of the out queue.

(4) A buffer with data is popped up from the front of the output queue and then the data in
the buffer is processed by the thread which uses them.

(5) After the data in the picked buffer in step (4) have been processed, this h@p‘ls
cleaned and pushed to the back of the input queue. ?\

In order to avoid the conflict in using this circular-queues-linker between threads,
we use the lock. In addition, the task of each buffer in each qugue isto s block data
(the original data or the compressed data of a superblock) er mfz@n (such as the
data length, the No. of the superblock, et. al.)

This mechanism effectively alleviates the dela ‘ m| atch of processing
speeds between different types of threads, and coul ease th eI efficiency between

these threads. Q
g) ’\9

2.3. Pipeline Parallelism with Multi Thre

Whether in compressing process or mpr cess, each process implements the

pipeline parallelism with multi t rm ne readi read, multi working threads, and one
writing thread. The Figure 2 gjve amepf@ mechanism.

Two- ing ThreﬁqK\
dimension
array N J Input circular-queues-linker 1 %J
recordin
: Output circular-queues-linker 1
read % P g F
writing orger : -
H‘ Input circular-queues-linker 2 F*
Output circular-queues-linker 2
Lock ﬂ P d F

J Input circular-queues-linker n F—
ﬂOutput circular-queues-linker nF

Working Thread n

Writing Thread }

Figure 2. Pipeline Parallelism with Multi Threads
Just as we have said, each working thread has two circular-queues-linkers: one input

circular-queues-linker, and one output circular-queues-linker. The input circular-
queues-linker in each working thread is the data interface between this working thread
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and the reading thread, and the output circular-queues-linker in each working thread is
the data interface between this working thread and the writing thread. In order to
guarantee that the order of processed data between these superblocks in the writing
thread is the same as the order in the reading thread, a two-dimension array is used to
record the reading and writing order by signifying the ID of working thread processing
each superblock and whether each superblock has been processed or not. These threads
may use the array at the same time, so another lock is used to avoid conflict between
these threads.

Using the above components, these three types of threads conduct the pipeline
parallelism in each process. The concrete steps are as follows:

(1) The reading thread continually read the data of a superblock (In compression,
they would be the original data, and in decompression, they would be the compge &d
data.), and it search circularly the input queue of each input circular-queu rin
each working thread until an empty buffer is found in a specific worki d. Then
this buffer is popped out from the front of the input queuesand is fil the above
data of a superblock. After that, this buffer is pushed toﬁck of @ queue of the
input circular-queue-linker in the above specific WOI’@ h ad\rf( ove procedure

carries out continually until all the assigned da S pr finished reading
out. The two-dimension array records the ID orklnon processing each

superblock.

(2) Each working thread continually se@ the ou y%ueue of its input circular-
queue-linker until a buffer is found. Théi buffer ji d out from the front of the
out queue, and then the data in it ar esse ressed or decompressed). After
that, this buffer is cleaned and pus he ba e input queue.

Then the following importanfs s that this working thread continually searches the
input queue of its output mmAqueue I| ntil an empty buffer is found. Then this
buffer is popped out fro he front input queue, and is filled with the above
processed data of a s k Afte thls buffer is pushed to the back of the out
gueue of this outputo r-queue-linker i |n this working thread.

The above proce arri tinually until all the assigned data of this process
are finished being pro essed a superblock has been processed, the finishing tag is
assigned in W0o-dimens rray.

(3) Accordinag to the
dimension array, the

g thread continually find the specific data of superblock in a
specific working sequentially and write these data to a file according to the same
order as the rea@\read. The writing thread searches the output queue of the output
circular-q -linker in the specific working thread until a buffer is found. Then this
buffer is out from the front of the out queue, and the data in it are written to the
file. A at, this buffer is cleaned and pushed to the back of the input queue. The
abgye cedure carries out continually until all the data of supper blocks in this
p@ are written to the file.

2.4. Memory Mapping Integrated with Superblocks

In the reading thread for the parallel compression and the writing thread for the
parallel decompression, voluminous data of DNA sequence reads should be dealt with;
therefore, the memory mapping integrate with superblocks is used in order to improve
the 1/O speed of large file.
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In the reading thread of parallel compression, according to the page size of the
memory, the size of mapping space, and superblocks of original DNA sequence reads in
the FASTQ file, the location of each superblock in the memory mapping space are
computed, as well as the time when to release and remap the memory mapping. One
evident advantage of memory mapping is that the data could be read and written
directly with much less data copy when compared with the 1/0 functions of fread and
fwrite.

In the writing thread of parallel decompression, a memory mapping file with specific
sufficient size is created according to the number of the superblocks needed to be
decompressed in the process. The decompressed data of each superblock are stored into
the memory mapping space in turn with the same order as they are read in the reading
thread. During this procedure, based on the page size of the memory, the locatiog of the
memory mapping space which is needed to be filled, the size of mappmg?w

S

current offset of the memory mapping file, and the threshold of rema en to

release and remap the memory mapping are determined, as well as th hold of
remapping. What should be emphasized is that there I $pace h ack of the
memory mapping file because this file size is set at th thl wr thread.

3. Implementation and Results O
In order to demonstrate the efficiency O@Qmethqd%e implemented the parallel

compression and decompression by integ the pro methods with the DSRC
algorithm via the parallel programmi I\@ bined with OpenMP. This
implementation is called PDSRC (P MPI [4] is used as the tool for
the interaction between different Sses, ar’wk penMP [5] is used for the multi
threads in each process. The e ental ults’ of PDSRC on cluster of Tianhe-1A
and the SMP machine res ely have %Nn the efficiency of the methods for

parallel compression and @ompress@

3.1. Experimental @m Clustefof Tianhe-1A

he test comp files from 1000 Genomes Project
(WWW 1000 e est machlne was the cluster of Tianhe-1A super
computer [ I the ing nodes and I/O nodes are interconnected with high-
speed network. Each ing node is deployed with dual Intel Xeon X5670 2.93 GHz

processors, 6 core h processor and 24GB memory. In addition, each computing
node has the @ ymmetric Multiprocessor, SMP) architecture. The detailed
experiment cribed as follows. What should be emphasized is that for all the
tests, time N&wrements were performed with the Unix time command and each time
value is t rage of many tests.
Wh n compression or in decompression, the number of working threads could
ough parameter. The compressing time and decompressing time with different
nu rs of working threads were compared using the test data SRR099458 2 filt.fastq
(25.91 GB) and SRR013951_2 filt.fastq (3.19 GB) in 1 and 10 computing nodes with all
the 12 cores of each node. The test results showed that each node with 3 processes and
each process with 2 working threads has the least compressing time, and each node with
3 processes and each process with 10 working threads has the least decompressing time.
The following tests used these parameters.
The parallel compressing time and decompressing time were tested using different
data and different nodes from 1 node to 10 nodes. All the 12 cores of each node were
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fully used. The test data are three FASTQ files: SRR099458_2.filt.fastq (25.91GB),
SRR027520_1.filt.fastq (4.81 GB), and SRR013951 2 filt.fastq (3.19GB). For all tested
parallel compression and decompression, we present the parallel speedups for nodes
from 1 to 10 nodes and for the three files. The Figure 3 and Figure 4 show the results.
We could see that typically the speedup increases with the increase of nodes count,
which means that the best speedups are got mostly with the 10 nodes. The best
speedups vary from 46 to 62 for parallel compression and vary from 40 to 58 for
parallel decompression on the cluster of Tianhe-1A.

Speedups of different data on different numbers of nodes in parallel compression
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3.2. Experimental Results on SMP Machine

The test data and test method are the same as the above test. However, this test
machine is SMP architecture, which has 8 Intel Xeon X7550 2.0 GHz processors, 8
cores in each processor and 512 GB memory. What should be emphasized is that this
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machine uses the Hyper-Threading technology and the above cluster of Tianhe-1A
doesn’t use this technology. The detailed experiments are described as follows.

The compressing time and decompressing time with different numbers of working
threads were compared by experiments. Experimental results show that each process
with 3 working threads has the least compressing time and decompressing time. The
following tests used these parameters.

The parallel compressing time and decompressing time were tested using the above
three FASTQ files and different numbers of processes from 1 to 25. The different
numbers of processes from 1 to 25 use different numbers of cores from 2.5 to 62.5
respectively. For all tested parallel compression and decompression, we present the
speedups on different numbers of cores. The figure 5 and figure 6 show the results. We
could see that the best speedups vary from 26 to 30 for parallel compression agd vawsy
from 13 to 27 for parallel decompression on this SMP machine. a\/

Speedups on Different Numbers of Cores for Parallel Comprassion
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What should be highlighted here is that the outputs of parallel compression are multi
compressed files. Compared with the serial compressed file, the total size of these multi
compressed files vary from -0.0014% to 0.0013%, -0.0126% to 0.0088% and -0.0216%
to 0.0191% for SRR099458 2 filt.fastq (25.91 GB), SRR027520_1.filt.fastq (4.81 GB)
and SRR013951_2.filt.fastq (3.19GB) respectively.

4. Discussion

What should be emphasized here is that these methods could also be applied to other
serial compressing algorithms of DNA sequence reads in FASTQ format only if they
have the traits of index and superblocks. Because many details of the G-SQZ algorithm
can not be inferred from the paper [1] and we were unable to obtain program sources
although basically it uses the index mechanism and applies order-0 Huffman.co
combined bases and respective qualities, the parallel G-SQZ was n r%knted
However, with the index mechanism of G-SQZ, it is evident that parallé could
also be implemented easily using these methods proposed€\in this ntegrating
the superblocks with the index if we get more details ab ?&fg are sure that
some pleasant results would be gotten for th mpression and
decompression.

5. Conclusion
We presented the parallel compreS%n@and d ohression methods for DNA
t

sequence reads in FASTQ format ba he, | computer architectures of the
cluster and the SMP. Experimental for clearly showed the efficiency of

these parallel methods. The s e ary from 46 to 62 for parallel compression and
vary from 40 to 58 for par mpr y using 10 nodes of cluster in Tianhe-
1A super computer. Test results n th achine are also pleasant.

These methods could e the b e of the powerful computing resources from
the multi computing and t | cores of each node, and could eliminate the
limits of smgle pr r an when using the serial algorithm. Not only the
parallel progra ooI of blned with OpenMP could be used, but also the
tool of MP @o hreads could be used. In addition, the proposed parallel
methods could.afso b to other serial compressing algorithms of DNA sequence
reads in FASTQ for if they have the traits of index and superblocks.
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