
International Journal of Hybrid Information Technology

Vol.7, No.4 (2014), pp.365-376

http://dx.doi.org/10.14257/ijhit.2014.7.4.31

ISSN: 1738-9968 IJHIT
Copyright ⓒ 2014 SERSC

An Aspect-oriented Software Architecture Description Language

AO-ADL Based on XYZ

Yanting Cao
1

, Mei Rong
2*

 and Guangquan Zhang
3,4

1
Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China

2
Shenzhen Tourism College, Jinan University, Shenzhen, 518053, China

3
School of Computer Science and Technology, Soochow University,

Suzhou 215006, China
4
State Key Laboratory of Computer Science, Chinese Academy of Science,

Beijing 100190, China

*rongmei@sz.jnu.edu.cn

Abstract

Aspect-Oriented Programming (AOP) can resolve the code tangling problem in Object-

Oriented Programming (OOP) via using the technology of separation of concerns. Software

architecture is becoming an important part in the phase of software design, it has the ability

of helping designer to handle the structure and the complexity of large software systems, and

Aspect-Oriented Software Development (AOSD) is a new paradigm proposed to manage the

complexity by crosscutting concerns in the whole software life-cycle. In order to adequately

specify aspect-oriented design, Aspect-Oriented Architecture Description Languages (AO-

ADL) are needed. XYZ/ADL is an architecture description language which is based on

temporal logic language XYZ/E. XYZ/ADL separates computation and communication into

two different architecture elements – component and connector, but lacks some appropriate

support to represent these crosscutting behaviors. So, XYZ/ADL must be extended to resolve

the problem above by adding a kind of new elements – Aspect and modifying the former

component and connector. At last, we illustrate them on an example of the Hotel Management

System (HMS) via using AO- ADL.

Keywords: Aspect-oriented programming; Software architecture; XYZ/ADL; Aspect-

oriented architecture description language

1. Introduction

OOP performs a functional decomposition but has the limitation that some concerns which

cross several structural pieces can not be located in a single module. The concerns will appear

continually in many modules of the software system, which may results in bad modules and

the high cost of the maintenance and evolution of the codes. This is called scattering. From

the perspective of reuse, a module will have a low possibility of being reused if it contains

lots of concerns (a concern is a problem needed to be resolved by the software system). The

situation that many concerns mix together is called code tangling.

AOP is proposed by Kiczales [1] as a way to apply separation of concerns in software

development to deal with the code tangling problems of OOP mentioned above. AOP

introduces a new notion of aspect, which encapsulates the crosscutting concerns. The core

concept of AOP includes two main steps. One is the implementation of aspect in a loosely

coupled way by describing different concerns of the system and the relationships among

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

366 Copyright ⓒ 2014 SERSC

them. The other is to weave the aspects into an executable program which depends on the

support mechanism of the AOP environment.

From the perspective of software development, it will be very helpful to generate codes

from early designs if the final structure of implementation can be considered in each phase of

the software development. Therefore, the separation of aspects of the system at the software

architecture level can be done in order to achieve the traceability between architectural design

and coding phase seamlessly. Recently, numerous studies, whose results show the beneficial

effects of an architectural approach, have been presented (AOSD [2] sites).

Architecture description languages (ADLs) are a sound and convenient approach to

represent software architecture. Traditional ADLs do not normally provide appropriate

support for separating any kinds of crosscutting concerns that frequently result in poor

architectures descriptions with AO. In order to adequately specify the aspect-oriented design,

AO-ADL is introduced. In this paper, we present the AO-ADL, which is an evolution of our

pervious works XYZ/ADL [3] via adding some new elements and mechanisms. XYZ/ADL is

an architecture description language which is based on temporal logic language XYZ/E [4].

The remainder of this paper is organized as follows: Section 2 XYZ/ADL is illustrated in

details. AO-ADL based on XYZ/ADL is introduced in Section 3; In Section 4, we illustrate

AO-ADL on a simple HMS example; Section 5 presents the related work on AO-ADL and

Section 6 ends this paper with conclusions and future works.

2. XYZ/E and XYZ/ADL

XYZ [5] system is a CASE environment based on temporal logic and conforming to

various ways of programming such as programming with HLL, hierarchical specification or

production rules, sequential or concurrent, textual or graphical, etc. All these programming

paradigms can be unified with a uniform framework of a temporal logic language, XYZ/E [4]

is an executable temporal logic language based on Manna-Pnueli’s Linear Time Temporal

Logic, which combines both static and dynamic semantics in a unified framework and

supports the whole procedure of stepwise refinement, i.e., from the abstract specifications to

executable codes.

XYZ/ADL [3] is a software architecture description language which Based on the

executable temporal logical language XYZ/E. XYZ/ADL can not only represent the system

description at different abstract levels from formal specification to executable program which

under a unified logical framework, but also can represent both dynamic semantics and static

semantics of software architecture. XYZ/ADL, suitable for the formal description and helpful

for the refinement to the software architecture at different abstract level, can verify the

semantic consistency of the process of refinement with tools in the XYZ system. The

following are architectural units of XYZ/ADL.

(a)Simple component

Simple component contains interface and computation. Interface contains port description

and functional specification. The former shows the interactive behaviors between components

and external environment, and the later shows the function of components. A port, through

which a request can be sent from component to external environment, is represented by

channel. The syntax of port is listed as follow:

%PORT PortName = = ChannelType Declaration; [PortBchavior]

Explaining what a component can do, functional specification is a temporal logic formula,

whose syntax is in the following:

%FUNCTION = = [Function Specification]

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 367

By attaching each port into a whole, computation specification is a complete behavior

description of component, whose syntax is listed as follows:

%COMPUTATION= = [Computation Specification]

(b) Connector

Connector describes the common character of some interactive behavior, whose instance

can be used to connect different components which can satisfy the requirement. A connector

consists of two parts: interface and interactive protocol. Defined by a group of roles, interface

indicates all the external behaviors of components joining the interaction. Interactive protocol

describes how to join roles together and how to compose computation specification of

components joining the interaction. Role is represented by channel, whose syntax is in the

following:

%ROLE RoleName==DataType Declaration; [RoleBehavior]

Interactive protocol is represented by a unit of XYZ/E, whose syntax as follows:

%GLUE= = [Interact Protoco1]

(c) Compound component

The description of compound component’s port is the same with simple component, while

its behaviors are represented by connection of several components. The composing

declaration of compound components presents that which components and connector instance

it contains, whose syntax as follows:

%COMPOSITION = = [

ComInsName: ComponentName;

…

ConInsName: ConnectorName;]

The attachment definition of compound components indicates inner configuration of

architecture. The syntax is as follows:

%ATTACHMENTS = = [

ComInsName.PortName # ConInsName.RoleName;

ComInsName.PortName ## PortName;]

3. An AO-ADL Based on XYZ/ADL

For the failure of the current ADLs to separate and modularize the crosscutting function, in

this paper, the concept of aspect in AOP will be abstracted and introduced into the software

architecture. Introducing the new concept aspect into XYZ/ADL will be helpful to modularize

the crosscutting function at the software architecture level. Meanwhile, the connector in ADL

must be modified for interacting with aspect and other components.

3.1. Aspect

A crosscutting concern, which is represented by the service aspect provided can influence

many related components. To describe the crosscutting concern of ADL, we introduce an new

concept Aspect which consists of pointcut and advice. Being used to capture and recognize

the connecting point, pointcut can decide which components the aspect will be crosscut, while

advice shows the crosscutting function the aspect has.

With “and”, “or” and “not”(“&&”, “||” and “!”), represented as “∧ ”, “$V” and “~”,

pointcut is composed of several joinpoints. Joinpoint is a clearly defined position where

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

368 Copyright ⓒ 2014 SERSC

components are crosscutted by aspect when the program is executed. The syntax of pointcut

is as follows:

%POINTCUT PointcutName = Joinpoint Declaration; [∧ ; $V; ~]

Advice is a complete crosscutting behavior, and it is a specific description of crosscutting

function existed in the software architecture. It was described as follows:

%ADVICE AdviceName = [Advice Specification]

The situations when crosscutting behaviors of aspect crosscut into all the connected

components are: before the joinpoint, around the joinpoint and after the joinpoint. The

following are the semantic explanations of aspects and the relationship between them.

Definition 1 An AO-ADL description of aspect consists of pointcut and advice. Pointcut

contains a group of joinpoints, while advice is the complete crosscutting functional

description of aspect. The specification of aspect is a XYZ/E unit:

(POINTCUT1||POINTCUT2||…||POINTCUTn)|| (ADVICE1|| ADVICE2||…|| ADVICEn)

POINTCUT is the set of {Joinpoint1, Joinpoint2, … , Joinpointn}; The time sequence of

Aspect crosscutting into components is represented by temporal operator.

3.2. Aspectual Connector

Aspect encapsulated the crosscutting concerns, but, it needs to crosscut to the appropriate

components. Therefore, the connector in XYZ/ADL should be modified in order to build

connection among components and between aspect and components which have crosscutting

relationship with the aspect. The connector consists of interface and interactive protocol.

Interface is defined by a group of roles which contain: (1) BaseRole, which connects the ports

of components, (2) AspectRole, which connects Aspect. Interactive protocol also needs to be

modified The sentence with the word “glue” represents the interactive protocol not only

among components but also between aspect and component. The corresponding syntax is as

follows:

%ASPECTUALCONNECTOR AspectualConnectorName= [

%BASEROLE BaseRoleName=Data Type Declaration; [BaseRole Behavior]

%ASPECTROLE AspectRoleName = Data Type Declaration; [AspectRoleBehavior]

%GLUE= = [Interact Protocol]]

The specification semantic explanation of Aspectual Connector is listed as follow.

Definition 2 Aspectual Connector is defined by a group of BaseRole BR1BR2…BRn,

AspectRole AR1AR2…ARm and the definition of interactive protocol GLUE, in which, the

behaviors of each BaseRole BRi are described as BRBehaviori(i=1,2,…,n), while the

behaviors of each AspectRole ARi are described as ARBehaviori (i=0,1,…,m). The

specification of AC is a unit of XYZ/E as follows:

GLUE || (BRBehavior1|| BRBehavior2|| … ||BRBehaviorn)||(ARBehavior0||

ARBehavior1||…||ARBehaviorm)

The channel set appeared in the GLUE is {R1, R2,…, Rn}.

3.3. Component

Because some components have a crosscutting relationship with aspects, a special port

(Joinpoint) should be defined in order to represent the position into where aspect crosscut.

Components are divided into two kinds: one requests services, and the other provides

services. The components which have crosscutting relationships with aspects request the

functions of aspect, and were considered as requesting services component. The joinpoint of

component is represented by a group of channels, the syntax is listed as follows:

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 369

%JOINPOINT JoinpointName= =FunctionName Declaration;

The normative semantic explanation of component is listed as follows:

Definition 3 A component DC consists of two parts: interface description and computing

specification, Interface description contains a group of ports, a qualitative description and a

group of Joinpoints. The jointpoint showing the position where aspect crosscut into

component, the number of jointpoint is zero indicates that this component has no crosscutting

relationship with other aspects. Computing specification is the full abstract behavioral

description of a component. If a DC has k ports, with behavioral description being

PBehavior1, Pbehavior2, …, PBehaviork, functional section being f and computing

specification being ComSpec, then the relationship among them is that PBehaviori

(i=1,2,…,k) is the refinement of variable set which does not contain control variable appeared

in each port of ComSpec, and that ComSpec logically entails f, namely ComSpec⇒ f.

3.4. The Composition between Aspect and Component

The composition between aspect and component means that the crosscutting function of

aspect will take effect in a certain position of a component with the help of Aspectual

Connector. The compound component makes the function of aspect embedded into the

corresponding component. The compound component has new entire functions by

compositing original functions and crosscutting functions of aspect; its ports do not change

but the number of joinpoints reduces by one. A compound component can be treated as a new

simple component. The syntax of compound component which consists of component and

aspect is listed as follows:

%COMPOSITION= = [

ComponentInstanceName: ComponentName;

…

 AspectInstanceName: AspectName;

…

 AspectualConnectorInstanceName:

AspectualConnectorName;

…]

4. Modeling and Analysis of HMS

A HMS is mainly aimed at business data processing and provides a platform for managing

all the businesses of the hotel. The main function of HSM consists of Booking rooms,

Registering rooms and Settling accounts.

(a) Booking rooms

If there are rooms available for meeting the customer’s demands, we create the reservation

for customer. Otherwise, if customer wants to wait, we record the room type and add the

customer to the waiting queue of booking rooms. If the customer does not agree to wait, then

ending the booking schedule.

(b) Registering rooms

After recording the detail information of customer, then we allocate a room and create a

blank accountant bill for customer. If the customer has booked the room, then the booking

record must be deleted.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

370 Copyright ⓒ 2014 SERSC

(c) Settling accounts

Firstly, we settle a bill for the customer. If there are other customers waiting for the rooms,

assign the room to the first customer of the waiting queue. If there are no waiting customers,

add the room into idle queue.

In order to model the Aspect-Oriented architecture of HMS, crosscutting concerns of

system should be extracted from the main function module. In this paper, we extract the

crosscutting concerns as the Table 1 shown.

Table 1. The Crosscutting Concerns of HMS

Crosscutting concerns The description of crosscutting concerns

Verification of Identity
Before the input of the customer’s waiting record into the waiting

queue, we should verify the customer’s identity.

Time crosscutting

Crosscutting time after successful deal with the information of

booking rooms, waiting rooms, successful waiting room, customer check

in and customer check out, which record the time message of customer’s

activities

Database anomalies

Database processing without taking into account the issue of handling

exception. Database anomalies are added to the database when abnormal

operation appeared.

The core concerns of HMS are as shown as Table 2 below:

Table 2. The Core Concerns of HMS

Core concerns Function description

Manage room information

Manage the serial number, price, type, interior equipment information

of room, etc. Provide the information of room for customers and

managers.

Apply for booking

Receive the booking application from customers; customers choose

room type and apply it when the room available. Otherwise, waiting for

booking.

Save the booking message Deal with the successful booking information for customers

Deal with booking waiting Give the available room to the first customer in the waiting queue.

Check in
Deal with the information of customer. Delete the booking record if the

customer has booked the room, build blank bill for the customer.

Check out bill Deal with the check out bill procedure for customer.

Manage customer

information

Mange the customer information such as: the basic information of

customer, the room number, reserve time, check in time, check out time,

accommodation status and the consume bill, and so on.

Manage room status
There are three status of a room: idle, booked and reside. Deal with the

status of the room, inquire and set the status of the rooms.

Manage database Query, insert, delete and maintain database.

We mapped the core concerns of the HMS to the components of architecture, the

crosscutting concerns to Aspects via separating concerns of the HMS. The behaviors of port

and role consist of inputting data and outputting data in this system. So we define two types

of port in this paper.

%PORTTYPE IN (DT, vn) = = DT;

□[LB=Start$OIN?vn$OLB = L1;

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 371

LB=L1~(vn = EOF)$OIN?vn$OLB = L1;

LB=L1(vn = EOF)$OLB = STOP]

/* the description of IN port */

%PORTTYPE OUT (DT, vn) = = DT;

□[LB = Start$OLB=L1;

LB = L1~(vn=EOF)$OOUT!vn$OLB = L1;

LB = L1(vn=EOF)$OOUT!EOF$OLB = STOP]

/* the description of OUT port */

DT is the parameter of the data type, vn is the parameter of variable name. EOF is close

signal.

4.1. Aspects of HMS

There are some Aspects in HMS: TAspect deals with time crosscutting, VAspect hands

verification of customer’s identity. DBAspect deals with database anomalies operation.

Because of the space limited, we just take TAspect as an example. The description of the

TAspect with AO-ADL is as follows:

TAspect: it crosscut into Reservation, Waiting, Check in, Check out component, the

components execute Advice after the corresponding Joinpoint executed. So we use After

Advice. The description of TAspect is blow:

%ASPECT TAspect= =[

%POINTCUT getTime= =JpName;

□[LB1 = START  $OLB1 = DetectJp;

LB1=DetectJp  $OJpName = CkJp$OLB1= DetectJp;

LB1 = DetectJp  $OJpName = RoomWtJp3$OLB1

= DetectJp;

LB1=DetectJp$OJpName=RoomRvJp2$OLB1=DetectJp;

LB1 =DetectJp$OJpName=RoomWtJp1$OLB1

=DetectJp;

LB1=DetectJp $OJpName=CoJp$OLB1= DetectJp;

LB1= DetectJp $OJpName=EOF$OLB1= End;

LB1=End$OLB=STOP]

/*Aspect executed by component when the component execute the Joinpoint */

%ADVICE getTime= =After;

□[LB1=START$OLB1=StartAdvice;

LB1= StartAdvice !![

JpName =CkJp |> Checkin. setCkininfo()$OLB1=End,

JpName = RoomWtJp3|>Waiting.setWaitingsucc()$OLB1

= Get_Time,

JpName=RoomRvJp2|>Reservation.setReservesucc()

$OLB1= Get_Time,

JpName= RoomWtJp1|> Waiting.setCustomerer()$OLB1= Get_Time,

JpName=CoJp|>Checkout.setCkoutinfo()$OLB1

=Get_Time];

LB1= Get_Time setTime()$OLB1 = End;

LB1= End$OLB1=STOP]]

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

372 Copyright ⓒ 2014 SERSC

4.2. Connectors of HMS

Aspectual Connector is used to describe the common features of certain interactive

behaviors in AO-ADL. Instants of it can be used to connect the different components and

Aspects. There are two main types of Aspectual Connector in HMS.

(a) C_CCon Aspectual Connector, which connects components with other components,

the description is listed as follows:

%ASPECTUAL CONNECTOR C_CCon = = [

%BASEROLE Source = = OUT(DT, vn);

%BASEROLE Sink = = IN(DT, vn);

%GLUE = = []]

(b) C_ACon Aspectual Connector, which connects components with Aspects, the

description is listed as follows:

%ASPECTUAL CONNECTOR C_ACon = =[

%ASPECTROLE ASource = = OUT(DT, vn);

%BASEROLE BSink = = IN(DT, vn);

%GLUE= =[]]

4.3. Components of HMS

We mapped the core concerns into the components of the HMS, which consists of Room,

RoomReserve, Check in, Check out, State, Customers, DBoper. Due to the space limited,

we just take RoomReserve as an example. RoomReserve is a compound component, which

consists of three child components: Reserve makes a request for room booking, Reservation

saves the booking information, Waiting waits for booking.

The compound component RoomReserve described with AO-ADL is listed as follows:

%COMPONENT RoomReserve = = [

%PORT RoomIn1 = = IN(ROOM, rooms);

%PORT RoomIn2 = = IN(ROOM, allStates);

%PORT RoomIn3 = = IN (ROOM, room);

%PORT RoomOut1 = = OUT(CUSTOMERER, baseInfo);

%PORT RoomOut2 = = OUT(ROOM, roomRsv);

%PORT RoomOut3 = = OUT(CUSTOMERER, reserveSucc);

%PORT RoomOut4 = = OUT(ROOM, roomWt);

%PORT RoomOut5 = = OUT(CUSTOMERER, waitingSucc);

%JOINPOINT RoomRvJp1 = = setReservesucc();

%JOINPOINT RoomWtJp1 = = setCustomerer() ;

%JOINPOINT RoomWtJp3 = = setWaitingsucc();

%COMPOSITION = = [

 Reserve: reserve;

 Reservation: reservation;

 Waiting: waiting;

 VAspect: vAspect;

%ATTACHMENTS = [

reserve.RsOut1#AC21.Source;

reservation.RvIn#AC21.Sink;

reserve.RsOut1#AC17.Source;

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 373

waiting.WtIn1#AC17.Sink;

reservation.RvJp1#AC19.BSink;

vAspect.Pointcut#AC19.Asource;

waiting.RvJp1#AC20.BSink;

vAspect.Pointcut#AC20.Asource;

reserve.RsIn1## RoomIn1;

reserve.RsIn2## RoomIn2;

waiting.WtIn2## RoomIn3;

reserve.RsOut3## RoomOut1;

reservation.RvOut1## RoomOut2;

reservation.RvOut2## RoomOut3;

waiting.WtOut1## RoomOut4;

waiting.WtOut2## RoomOut5;

reservation.RvJp1## RoomRvJp1;

waiting.WtJp1## RoomWtJp1;

waiting.WtJp3## RoomWtJp3]]

5. Related Works

Recently, there are many aspect-oriented architecture description languages proposed by

researchers. Some of them are extensions of traditional ADLs, but others are new languages.

All the proposals introduce aspects into ADLs in different ways: component views, connector

views, or aspect views, either a symmetric or an asymmetric approach.

PRISMA ADL [6] is a highly evolved language created to describe systems developed in

the framework of the PRISMA architectural model [7], in which aspects are a new abstraction

used to define the internal structure of both components and connectors. It takes the

symmetric approach to provide PRISMA with a very natural way of dealing with

crosscutting.

FuseJ [8] is an asymmetric approach that combines components and aspects and includes

the concept of XML-based configurations to specify the weaving information. AO-Rapide [9]

is an extension of Rapide ADL, taking an asymmetric approach with aspects as components.

An XML-based aspect-oriented architecture description language [10] is taking an

asymmetric approach, which defines the component as the architectural block to model both

functionality and aspectual behavior and extends semantics of connectors to specify aspectual

composition information. Aspect LEDA [11] is taking an asymmetric approach with aspects

being components, which based on the formal ADL - LEDA .It allows the architecture

obtained to be evaluated and checked.

Aspectual Acme [12] is an AO-ADL extension of the Acme language in which the concept

of aspectual connector is defined to connect aspects with components, instead of using

components to play the role of aspects.

In this paper, we introduce a symmetric AO-ADL, which based on XYZ/ADL. We

consider Aspect to be a first-class entity which differs from Component and Connector, and

separate the crosscutting concerns which are modularized of system from software

architecture in order to avoid scattering and tangling of codes.

6. Conclusions and Future Works

This paper promotes the concept of AOP at coding phase up to software architecture by

adding Aspect into XYZ/ADL and adding aspect role in connector for dealing with the

interaction between aspect and component, and proposes the related composition mechanism

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

374 Copyright ⓒ 2014 SERSC

so as to form the Aspect-Oriented Architecture Description Language (AO-ADL). When we

model the software architecture, the crosscutting concerns can be separated, which is helpful

for the smooth transition from software architecture to code and reinforcing the modular

degree of software system. Our future work is to verify the correctness of the architecture

described by extended XYZ/ADL via tools provided in XYZ systems.

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China

(61100074), the Natural Science Foundation of Jiangsu Province (BK2011281), Applied

Basic Research Program of Suzhou (SYG201241).

References

[1] G. Kiczales, “Aspect-Oriented Programming”, ACM Computing, Surveys, vol. 28, (4es), (1996), pp. 154.

[2] J. Fabry, A. Kellens, S. Denier and S. Ducasse, “Aspect Maps: Extending Moose to Visualize AOP

Software”, Science of Computer Programming, vol. 79, (2014), pp. 6-22.

[3] G. Q. Zhang, H. Shi, M. Rong and H. J. Di, “ Model Checking for Asynchronous Web Service Composition

Based on XYZ/ADL”, Lecture Notes in Computer Science, LNCS, vol. 6988, (2011),pp. 428-435.

[4] M. Rong, C. Liu and G.Q. Zhang, “Modeling Aspect-Oriented Software Architecture Based on ACME”,

ICCSE, (2011), pp. 1159-1164.

[5] Z. S. Tang, “The Design Philosophy of XYZ System”, Journal of Software, vol. 1, no. 1, (1990), pp. 47-55.

[6] J. Perez, I. Ramos, J. Jaen, P. Letelier and E. Navarro, “PRISMA: Towards Quality, Aspect-Oriented and

Dynamics of Software Architectures”, Proceedings of 3rd IEEE International Conference on Quality Software

(QSIC03), Dallas, USA, (2003) November 6-7.

[7] J. Perez, E. Navarro, P. Letelier and I. Ramos, “A Modeling Proposal for Aspect-Oriented Software

Architectures”, Proceedings of 13th IEEE Conference on the ECBS, IEEE Computer Society Press, Postdam,

Germany, (2006) March.

[8] D. Suvee, B. DeFraine and W. Vanderperren, “A Symmetric and Unified Approach Towards Combining

Aspect-Oriented and Component-Based Software Development”, CBSE2006, LNCS, Springer, Heidelberg,

vol. 4063, (2006), pp. 114-122.

[9] K. Palma, Y. Eterovic and J. M. Murillo, “Extending the Rapid ADL to Specify Aspect-Oriented Software

Architectures”, TR, University of Extremadura, Spain, (2005).

[10] M. Pinto, and L. Fuentes, “AO-ADL: An ADL for Describing Aspect-Oriented Architectures”, Early Aspects

2007 Workshop, LNCS4765, Springer-Verlag, Berlin Heidelberg, (2007), pp. 94-114.

[11] A. Navasa, M. A. Prez-Toledano and M. Murillo, “An ADL Dealing with Aspects at Software Architecture

Stage”, Information and Software Technology, vol. 51, (2009), pp. 306-324.

[12] T. atista, C. havez, A. arcia, U. ulesza, C. SantAnna and C. Lucena, “Aspectual Connectors: Supporting the

Seamless Integration of Aspects and ADLs”, Proceedings of the XX Brazilian Symposium on Software

Engineering (ABES’06), (2006) October.

Authors

Yanting Cao, she obtained her MS in Computer Software

Engineering from the School of Computer Science and Technology,

Soochow University in 2007.At the same time, she is serving as a full

time faculty in the School of Computer & Software, Suzhou

Polytechnic Institute of Agriculture. Her research interest includes

software engineering, high performance computing.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

http://dict.youdao.com/w/high/
http://dict.youdao.com/w/performance/
http://dict.youdao.com/w/computing/

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 375

Mei Rong (corresponding author), she received the PhD degrees

in Computer Science from Chongqing University, in 1998, respectively.

She is currently an associate professor in the Shenzhen Tourism

College, Jinan University, China, and is the member of CCF. Her

research interests include software engineering, formal methods, cloud

computing and Cyber Physical Systems.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.4 (2014)

376 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

