International Journal of Hybrid Information Technology
Vol.7, No.4 (2014), pp.365-376
http://dx.doi.org/10.14257/ijhit.2014.7.4.31

An Aspect-oriented Software Architecture Description Language
AO-ADL Based on XYZ

Yanting Cao', Mei Rong?” and Guangquan Zhang**

Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
2Shenzhen Tourism College, Jinan University, Shenzhen, 518053, China
3School of Computer Science and Technology, Soochow University,
Suzhou 215006, China
“State Key Laboratory of Computer Science, Chinese Academy of Scienc\/‘
Beijing 100190, China

*rongmei@sz.jnu.edu.cn QE
Abstract \% ‘
e

Aspect-Oriented Programming (AOP) can resolyg %1 t ngWoblem in Object-
Oriented Programming (OOP) via using the technf sepa?ss concerns. Software
architecture is becoming an important part in t@ e of software design, it has the ability

of helping designer to handle the structure and ‘the‘somplexjtiuefylarge software systems, and
Aspect-Oriented Software Development (AQ @, IS a new paradigm proposed to manage the

complexity by crosscutting concerns in Wiole s¢ t life-cycle. In order to adequately
specify aspect-oriented design, Aspeog‘l' nted ure Description Languages (AO-
itecture iption language which is based on

ADL) are needed. XYZ/ADL is a@

temporal logic language XYZL% ADL.s tes computation and communication into
two different architecture elements’— co nd connector, but lacks some appropriate
support to represent these scutting viors. So, XYZ/ADL must be extended to resolve
the problem above Ly a kind, of mew elements — Aspect and modifying the former
component and con t last, ustrate them on an example of the Hotel Management
System (HMS) via‘&Q O-A

Keywords: ect-ori programming; Software architecture; XYZ/ADL; Aspect-
oriented architecture d? ion language

1. Introductioé \
OOP perfoyms a*functional decomposition but has the limitation that some concerns which
Cross seve ctural pieces can not be located in a single module. The concerns will appear
continya .ﬁ many modules of the software system, which may results in bad modules and
thg *oﬂo ost of the maintenance and evolution of the codes. This is called scattering. From
'@@ spective of reuse, a module will have a low possibility of being reused if it contains
lots ®f concerns (a concern is a problem needed to be resolved by the software system). The
situation that many concerns mix together is called code tangling.

AOP is proposed by Kiczales [1] as a way to apply separation of concerns in software
development to deal with the code tangling problems of OOP mentioned above. AOP
introduces a new notion of aspect, which encapsulates the crosscutting concerns. The core
concept of AOP includes two main steps. One is the implementation of aspect in a loosely
coupled way by describing different concerns of the system and the relationships among

ISSN: 1738-9968 [JHIT
Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

them. The other is to weave the aspects into an executable program which depends on the
support mechanism of the AOP environment.

From the perspective of software development, it will be very helpful to generate codes
from early designs if the final structure of implementation can be considered in each phase of
the software development. Therefore, the separation of aspects of the system at the software
architecture level can be done in order to achieve the traceability between architectural design
and coding phase seamlessly. Recently, numerous studies, whose results show the beneficial
effects of an architectural approach, have been presented (AOSD [2] sites).

Architecture description languages (ADLs) are a sound and convenient approach to
represent software architecture. Traditional ADLs do not normally provide appropriate
support for separating any kinds of crosscutting concerns that frequently result in poor
architectures descriptions with AO. In order to adequately specify the aspect—oriente%qa,
AO-ADL is introduced. In this paper, we present the AO-ADL, which is an evolut our
pervious works XYZ/ADL [3] via adding some new elements and mechanis i

an architecture description language which is based on temporal logic lang

The remainder of this paper is organized as follows: Sectigm\2 XY Z/. lustrated in
details. AO-ADL based on XYZ/ADL is introduced in S ; In_Sec , we illustrate
AO-ADL on a simple HMS example; Section 5 preser{S\th relatedw on AO-ADL and
Section 6 ends this paper with conclusions and futur

S.

"9

ased om;n}oral logic and conforming to

mm \a LL, hierarchical specification or
k;

2. XYZ/E and XYZ/ADL O

XYZ [5] system is a CASE environ
various ways of programming such as
production rules, sequential or con

, textual phical, etc. All these programming

paradigms can be unified with a frameywor a temporal logic language, XYZ/E [4]
is an executable temporal lo guage b’m@n Manna-Pnueli’s Linear Time Temporal
Logic, which combines both static a ic semantics in a unified framework and
supports the whole proc f stepwi inement, i.e., from the abstract specifications to

executable codes. . *
XYZ/IADL [3] A \softw chitecture description language which Based on the
executable te gical lang XYZ/E. XYZ/ADL can not only represent the system

description a rent a evels from formal specification to executable program which

under a unifieti0gical f ork, but also can represent both dynamic semantics and static

semantics of software cture. XYZ/ADL, suitable for the formal description and helpful

for the refinemen software architecture at different abstract level, can verify the

semantic consisl@ of the process of refinement with tools in the XYZ system. The
h

following a‘% itectural units of XYZ/ADL.
(a)Sim@ ponent

@ omponent contains interface and computation. Interface contains port description
ctional specification. The former shows the interactive behaviors between components
and ‘¥xternal environment, and the later shows the function of components. A port, through
which a request can be sent from component to external environment, is represented by
channel. The syntax of port is listed as follow:

%PORT PortName = = ChannelType Declaration; [PortBchavior]

Explaining what a component can do, functional specification is a temporal logic formula,
whose syntax is in the following:

%FUNCTION = = [Function Specification]

366 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

By attaching each port into a whole, computation specification is a complete behavior
description of component, whose syntax is listed as follows:
%COMPUTATION= = [Computation Specification]

(b) Connector

Connector describes the common character of some interactive behavior, whose instance
can be used to connect different components which can satisfy the requirement. A connector
consists of two parts: interface and interactive protocol. Defined by a group of roles, interface
indicates all the external behaviors of components joining the interaction. Interactive protocol
describes how to join roles together and how to compose computation specification of
components joining the interaction. Role is represented by channel, whose syntax is in the
following:

Interactive protocol is represented by a unit of XYZ/E, whose syntax as fol

%GLUE= = [Interact Protocol] @

(c) Compound component

The description of compound component’s port IQ \?p component, while
its behaviors are represented by connection of eral co ents. The composing
declaration of compound components presents t hICh C.or@ents and connector instance
it contains, whose syntax as follows: . 0

%COMPOSITION ==
ComlnsName: ComponentName; @ s&@
ConinsName: Connectoqume!, @

The attachment definition omp@ponents indicates inner configuration of

%ROLE RoleName==DataType Declaration; [RoleBehavior] ®? ’

architecture. The syntax is llows:
%ATTACHMENTS
ComlnsName.Po\ Conlneb\me.RoleName,
ComlinsN tName #@orgame;]

ect

A crosscutting concern, which is represented by the service aspect provided can influence
many related components. To describe the crosscutting concern of ADL, we introduce an new
concept Aspect which consists of pointcut and advice. Being used to capture and recognize
the connecting point, pointcut can decide which components the aspect will be crosscut, while
advice shows the crosscutting function the aspect has.

With “and”, “or” and ‘“not”(“&&”, “||” and “!”), represented as “A 7, “$V” and “~”,
pointcut is composed of several joinpoints. Joinpoint is a clearly defined position where

Copyright © 2014 SERSC 367

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

components are crosscutted by aspect when the program is executed. The syntax of pointcut
is as follows:

%POINTCUT PointcutName = Joinpoint Declaration; [A ; $V; ~]

Advice is a complete crosscutting behavior, and it is a specific description of crosscutting
function existed in the software architecture. It was described as follows:

%ADVICE AdviceName = [Advice Specification]

The situations when crosscutting behaviors of aspect crosscut into all the connected
components are: before the joinpoint, around the joinpoint and after the joinpoint. The
following are the semantic explanations of aspects and the relationship between them.

Definition 1 An AO-ADL description of aspect consists of pointcut and advice. Pointcut
contains a group of joinpoints, while advice is the complete crosscutting functional
description of aspect. The specification of aspect is a XYZ/E unit: .

(POINTCUTI||POINTCUT?2]|...|[POINTCUTn)|| (ADVICE1|| ADVICE2]...||

POINTCUT is the set of {Joinpointl, Joinpoint2, ... , Joinpointn}; The ti uence of
Aspect crosscutting into components is represented by temporal operator 6

3.2. Aspectual Connector @

Aspect encapsulated the crosscutting concerns, b ds t to the appropriate
components. Therefore, the connector in XYZ/AD uld b 0Xdﬁed in order to build
connection among components and between as and compenents’which have crosscutting
relationship with the aspect. The connector, i ts of fr@e and interactive protocol.
Interface is defined by a group of roles whi ole, which connects the ports

of components, (2) AspectRole, which eractive protocol also needs to be
modified The sentence with the w % ue” r % s the interactive protocol not only

among components but also bet pect a onent. The corresponding syntax is as
follows:
%ASPECTUALCON RAspe onnectorName [
%BASEROLE Bas ame= Type Declaration; [BaseRole Behavior]
%ASPECTROL tRoI Data Type Declaration; [AspectRoleBehavior]
%GLUE= Protoc

Def|n|t|0n Aspect nector is defined by a group of BaseRole BR1IBR2...BRn,
AspectRole AR1AR2 ¢ d the definition of interactive protocol GLUE, in which, the
behaviors of each ole BRi are described as BRBehaviori(i=1,2,...,n), while the
behaviors of e pectRole ARi are described as ARBehaviori (i=0,1,...,m). The

The speC| Qn em@lanaﬂon of Aspectual Connector is listed as follow.
an

specification gf ACris a unit of XYZ/E as follows:
GLUE haviorl|| BRBehavior?|| ... |[IBRBehaviorn)||(ARBehaviorQ||
ARBe .|JARBehaviorm)
2 nnel set appeared in the GLUE is {R1, R2,..., Rn}.
omponent

Because some components have a crosscutting relationship with aspects, a special port
(Joinpoint) should be defined in order to represent the position into where aspect crosscut.
Components are divided into two kinds: one requests services, and the other provides
services. The components which have crosscutting relationships with aspects request the
functions of aspect, and were considered as requesting services component. The joinpoint of
component is represented by a group of channels, the syntax is listed as follows:

368 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

%JOINPOINT JoinpointName= =FunctionName Declaration;
The normative semantic explanation of component is listed as follows:

Definition 3 A component DC consists of two parts: interface description and computing
specification, Interface description contains a group of ports, a qualitative description and a
group of Joinpoints. The jointpoint showing the position where aspect crosscut into
component, the number of jointpoint is zero indicates that this component has no crosscutting
relationship with other aspects. Computing specification is the full abstract behavioral
description of a component. If a DC has k ports, with behavioral description being
PBehaviorl, Pbehavior2, ..., PBehaviork, functional section being f and computing
specification being ComSpec, then the relationship among them is that PBehaviori
(i=1,2,...,k) is the refinement of variable set which does not contain control variable appeared
in each port of ComSpec, and that ComSpec logically entails f, namely ComSpec= f.

3.4. The Composition between Aspect and Component

aspect will take effect in a certain position of a com ith the of Aspectual
Connector. The compound component makes the o of asp bedded into the

corresponding component. The compound co t has Wntlre functions by
compositing original functions and crosscutting func ohs of asm ts ports do not change

but the number of joinpoints reduces by one. A ound co%nent can be treated as a new
simple component. The syntax of compoun@ ponent consists of component and

aspect is listed as follows:
& QP

%COMPOSITION= = [

ComponentinstanceName: %@HNW%
Aspectlnstanc@ne Asp \@e

Aspectua nectorlns«%eName.
AspectualConn me;

o]
4. Modeling and % 1S of HMS
d

A HMS is mainl at business data processing and provides a platform for managing
all the business he hotel. The main function of HSM consists of Booking rooms,
S

Registerin ms dnd Settling accounts.
(@) rooms

2t@are rooms available for meeting the customer’s demands, we create the reservation
us

The composition between aspect and component mea E the crogsc t functlon of

fi omer. Otherwise, if customer wants to wait, we record the room type and add the
c er to the waiting queue of booking rooms. If the customer does not agree to wait, then
ending the booking schedule.

(b) Registering rooms

After recording the detail information of customer, then we allocate a room and create a
blank accountant bill for customer. If the customer has booked the room, then the booking
record must be deleted.

Copyright © 2014 SERSC 369

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

(c) Settling accounts

Firstly, we settle a bill for the customer. If there are other customers waiting for the rooms,
assign the room to the first customer of the waiting queue. If there are no waiting customers,
add the room into idle queue.

In order to model the Aspect-Oriented architecture of HMS, crosscutting concerns of
system should be extracted from the main function module. In this paper, we extract the
crosscutting concerns as the Table 1 shown.

Table 1. The Crosscutting Concerns of HMS

Crosscutting concerns The description of crosscutting concerns

Before the input of the customer’s waiting record into
queue, we should verify the customer’s identity.

Verification of Identity

Time crosscutting in and customer check out, which

activities

kiftg into accodpt the issue of handling

Database processing w
Database anomalies exception. Database ano e adde abase when abnormal
operation appeared.
g

The core concerns of HMS are as shown as 2 belo
Table 2. The@e oncer fHMS
Core concerns Furm&dﬁ%rlptlonX\\
the serial pumber, price, type, interior equipment information
Manage room information f rOpm,etc. Provi% information of room for customers and
manabers. , m

b Receiv o0king application from customers; customers choose
Apply for booking Q)oom type an ly it when the room available. Otherwise, waiting for
23 (\ booking

Save the book@ﬁ\?e M the successful booking information for customers

Deal Wltm waiting . GiVe the available room to the first customer in the waiting queue.
«

C\heE{in Deal with the information of customer. Delete the booking record if the
customer has booked the room, build blank bill for the customer.
Check out il Deal with the check out bill procedure for customer.
b Mange the customer information such as: the basic information of

Manage ctstorner . o .
i EO gl atio customer, the room number, reserve time, check in time, check out time,

accommodation status and the consume bill, and so on.

There are three status of a room: idle, booked and reside. Deal with the
status of the room, inquire and set the status of the rooms.

, “Manage database Query, insert, delete and maintain database.

e room status

mapped the core concerns of the HMS to the components of architecture, the
crosscutting concerns to Aspects via separating concerns of the HMS. The behaviors of port
and role consist of inputting data and outputting data in this system. So we define two types
of port in this paper.

%PORTTYPE IN (DT, vn) ==
O[LB=Start=3$0IN?vnA$OLB = L1;

370 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

LB=L1A~(vn = EOF)=$0OIN?vnA$OLB = L1,
LB=L1A(vn = EOF)=$0LB = STOP]

/* the description of IN port */

%PORTTYPE OUT (DT, vn) ==DT,

o[LB = Start=$0LB=L1,;

LB = L1A~(vn=EOF)=$00UT!vnA$OLB = L1,

LB = L1A(vn=EOF)=$0O0OUTIEOFA$OLB = STOP]
/* the description of OUT port */

DT is the parameter of the data type, vn is the parameter of variable name. EOF is close

signal.
*
4.1. Aspects of HMS V

There are some Aspects in HMS: TAspect deals with time crosscutting, #7Aspect hands
verification of customer’s identity. DBAspect deals with database a @ operation.
Because of the space limited, we just take TAspect as a s%pﬂe. T@nption of the
TAspect with AO-ADL is as follows:

TAspect: it crosscut into Reservation, Waiting Qn, heNt component, the
components execute Advice after the correspondi@npointwd. So we use After
Advice. The description of TAspect is blow:

NN

%POINTCUT getTime= =JpName; \ ‘\Q

o[LB1 = START = $OLB1 = Det % GS}

LB1=Detectlp = $OJpName : (@/\$OLB = DétectJp;

LB1 = Detectlp = $OJpN Roomwht OLB1

%ASPECT TAspect= =[

= DetectJp;
LB1=Detectlp=$0Jp RoomR $OLB1=Detectlp;
LB1 =Detectlp= me:Rom/thl/\$OLBl

=DetectJp; \
LB1=Dete % pName&x&OLBlz DetectJp;
LB1= Det$OJ EOFA$OLB1= End;
LB1=End=%0 LB=ST§

/*Aspect executed ponent when the component execute the Joinpoint */
%ADVICE get >=After;

o[LB1=STA OLB1=StartAdvice;

="RoomW1tJp3|>Waiting.setWaitingsucc()A$OLB1

ime,

me=RoomRvJp2|>Reservation.setReservesucc()A

$0OLB1= Get_Time,

JpName= RoomW1tJp1|> Waiting.setCustomerer()A$OLB1= Get_Time,
JpName=CoJp|>Checkout.setCkoutinfo()A$OLB1

=Get_Time];

LB1= Get_Time asetTime()=$OLB1 = End;

LB1= End=$0LB1=STOP]]

Copyright © 2014 SERSC 371

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

4.2. Connectors of HMS

Aspectual Connector is used to describe the common features of certain interactive
behaviors in AO-ADL. Instants of it can be used to connect the different components and
Aspects. There are two main types of Aspectual Connector in HMS.

(a) C_CCon Aspectual Connector, which connects components with other components,
the description is listed as follows:

%ASPECTUAL CONNECTOR C _CCon==
%BASEROLE Source == OUT(DT, vn);
%BASEROLE Sink == IN(DT, vn);

%GLUE = =[]] \/’
(b) C_ACon Aspectual Connector, which connects components with A%, the
description is listed as follows:

%ASPECTUAL CONNECTOR C_ACon == @0

%ASPECTROLE ASource = = OUT(DT, vn);

9%BASEROLE BSink = = IN(DT, vn): Q
%GLUE= =[]] O \/

4.3. Components of HMS Q
We mapped the core concerns into theco ts of th&@& which consists of Room,

RoomReserve, Check in, Check out, stome Boper Due to the space limited,
we just take RoomReserve as an exar@)? is @ compound component, which
consists of three child components ve make quest for room booking, Reservation
saves the booking mformatlonﬁ\fﬁ‘ waits ookmg

The compound component R Rese |bed with AO-ADL is listed as follows:

%COMPONENT R rve
%PORT Rooml ms)

%PORT Room IN(R States);
%PORT Re ==IN room)
%PORT RgomDutl = CUSTOMERER, baselnfo);

%PORT RoomOut2 = T(ROOM, roomRsv);
%PORT RoomOut OUT(CUSTOMERER, reserveSucc);
%PORT Roo0 == OUT(ROOM, roomWt);

%PORT Room@ut5 = = OUT(CUSTOMERER, waitingSucc);
RoomRvJpl = = setReservesucc();
%JOI T RoomWtJpl = = setCustomerer() ;
NT RoomW1tJp3 = = setWaitingsucc();
OSITION ==

Reserve: reserve;

Reservation: reservation;

Waiting: waiting;

VAspect: VAspect;

%WATTACHMENTS = [
reserve.RsOut1#AC21.Source;
reservation.RvIn#AC21.Sink;
reserve.RsOut1#AC17.Source;

372 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

waiting. WtIn1#AC17.Sink;

reservation.RvIpl#AC19.BSink;

vAspect.Pointcut#AC19.Asource;

waiting.RvJp1#AC20.BSink;

vAspect.Pointcut#AC20.Asource;

reserve.RsIn1## Roominl;

reserve.RsIn2## RoomlIn2;

waiting.WtIn2## RoomIn3;

reserve.RsOut3## RoomOutl;

reservation.RvOutl## RoomOut?2;

reservation.RvOut2## RoomOut3;

waiting. WtOutl1## RoomOut4; .
waiting. WtOut2## RoomOut5; \/
reservation.RvJpl## RoomRvJpl; ®?~

waiting. WtJp1## RoomWtlpl;

waiting. WtJp3## RoomWtlp3]] \§ N @

5. Related Works Q

Recently, there are many aspect-oriented archite desanguages proposed by
researchers. Some of them are extensions of tre nal ADL t others are new languages.
All the proposals introduce aspects into AD fferent N omponent views, connector
views, or aspect views, eltherasymmetrlc approach.

PRISMA ADL [6] is a highly evoly, %l ua @to describe systems developed in
the framework of the PRISMA archgqra which aspects are a new abstraction
used to define the internal str of bo components and connectors. It takes the
symmetric approach to pro PRISMA \ a very natural way of dealing with
crosscutting.

FuseJ [8] is an asym pproach combines components and aspects and includes
the concept of XML~ %onfigur tigns to specify the weaving information. AO-Rapide [9]
is an extension of ADLS n asymmetric approach with aspects as components.

An XML-based “aspect-oriented“drchitecture description language [10] is taking an
asymmetric oach, whi

ines the component as the architectural block to model both
avior and extends semantics of connectors to specify aspectual
pect LEDA [11] is taking an asymmetric approach with aspects
being component based on the formal ADL - LEDA .It allows the architecture
obtained to be evéluated and checked.

Aspectu%;we [12] is an AO-ADL extension of the Acme language in which the concept

of aspect nector is defined to connect aspects with components, instead of using
compo play the role of aspects.

@ paper, we introduce a symmetric AO-ADL, which based on XYZ/ADL. We

functionality afve’aspectu
composition informati

o r Aspect to be a first-class entity which differs from Component and Connector, and
separate the crosscutting concerns which are modularized of system from software
architecture in order to avoid scattering and tangling of codes.

6. Conclusions and Future Works

This paper promotes the concept of AOP at coding phase up to software architecture by
adding Aspect into XYZ/ADL and adding aspect role in connector for dealing with the
interaction between aspect and component, and proposes the related composition mechanism

Copyright © 2014 SERSC 373

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

so as to form the Aspect-Oriented Architecture Description Language (AO-ADL). When we
model the software architecture, the crosscutting concerns can be separated, which is helpful
for the smooth transition from software architecture to code and reinforcing the modular
degree of software system. Our future work is to verify the correctness of the architecture
described by extended XYZ/ADL via tools provided in XYZ systems.

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China
(61100074), the Natural Science Foundation of Jiangsu Province (BK2011281), Applied
Basic Research Program of Suzhou (SYG201241).

References

[1] G. Kiczales, “Aspect-Oriented Programming”, ACM Computing, Surveys, vol. 28, (4es), %

[2] J. Fabry, A. Kellens, S. Denier and S. Ducasse, “Aspect Maps Extendlng Mo e@ alize AOP
Software”, Science of Computer Programming, vol. 79, (2014), pp

[3] G. Q. Zhang, H. Shi, M. Rong and H. J. Di, “ Model Checking for ronous

Sgrvice Composition

Based on XYZ/ADL”, Lecture Notes in Computer Science, LN 1),pp¥428-435.

[4] M. Rong, C. Liu and G.Q. Zhang, “Modeling Aspect-O rchl re Based on ACME”,
ICCSE, (2011), pp. 1159-1164. V

[5] Z.S. Tang, “The Design Philosophy of XYZ System”, Jour fSoftware no. 1, (1990), pp. 47-55.

[6] J. Perez, I. Ramos, J. Jaen, P. Letelier and E. Nav ONPRISMA rds Quality, Aspect-Oriented and
Dynamics of Software Architectures”, Proceedln d I EE Inte I Conference on Quality Software
(QSICO03), Dallas, USA, (2003) November 6- 7

[7] J. Perez, E. Navarro, P. Letelier and I. Proposal for Aspect-Oriented Software
Architectures”, Proceedings of 13" IEEE nce 0 , IEEE Computer Society Press, Postdam,
Germany, (2006) March.

m

[8] D. Suvee, B. DeFraine and W ren mmetric and Unified Approach Towards Combining

Aspect-Oriented and Compon ed Softwal e@opment”, CBSE2006, LNCS, Springer, Heidelberg,
vol. 4063, (2006), pp. 114-122.

[9] K. Palma, Y. Eterovic and Murillo, @wg the Rapid ADL to Specify Aspect-Oriented Software
Architectures”, TR, Uni f Extremadurawbpain, (2005).

[10] M. Pinto, and L. F -ADL: DL for Describing Aspect-Oriented Architectures”, Early Aspects
2007 Workshop, i g, Berlin Heidelberg, (2007), pp. 94-114.

[11] A. Navasa M . Murillo, “An ADL Dealing with Aspects at Software Architecture
Stage”, In and Soft Technology, vol. 51, (2009), pp. 306-324.

[12] T. atista, t Z, A. arc sza C. SantAnna and C. Lucena, “Aspectual Connectors: Supporting the
Seamless Integration of ts and ADLs”, Proceedings of the XX Brazilian Symposium on Software

Engineering (ABES’ 6) October.
Authors

Yantlng Cao, she obtained her MS in Computer Software
Engineering from the School of Computer Science and Technology,
Soochow University in 2007.At the same time, she is serving as a full
time faculty in the School of Computer & Software, Suzhou
Polytechnic Institute of Agriculture. Her research interest includes
software engineering, high performance computing.

374 Copyright © 2014 SERSC

http://dict.youdao.com/w/high/
http://dict.youdao.com/w/performance/
http://dict.youdao.com/w/computing/

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

Mei Rong (corresponding author), she received the PhD degrees
in Computer Science from Chongging University, in 1998, respectively.
She is currently an associate professor in the Shenzhen Tourism
College, Jinan University, China, and is the member of CCF. Her
research interests include software engineering, formal methods, cloud
computing and Cyber Physical Systems.

Copyright © 2014 SERSC 375

International Journal of Hybrid Information Technology
Vol.7, No.4 (2014)

376 Copyright © 2014 SERSC

