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Abstract

Some new simple control methods of modified function projective synchropi a@ﬁn two
chaotic systems are investigated in this paper. Based on Lyapunov e@ general
feedback error control law is proposed, which contains on back ergortert and easy to
oRcontrol sch S proposed, in

d ® suitabwﬂstant. Numerical

methOt\\/
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1. Introduction \%\ ’%Q
Since the seminal work of 3 @ and‘C s\[

method to synchronize t systems, synchronization in chaotic
dynamic systems has received a gre of interest among scientists from various
research fields. Up to %rlany dif t synchronization regimes have been studied
[2-6]. Recently a e@e of synchronization, termed as modified function projective
synchronization, haweNbeen ly investigated in [7-13], where the drive and
response systeqs, could be monized to a desired scaling function matrix. The

implement in practice. Moreover, an adaptive feedback e
which the feedback gain can be automatically adag
example is provided to show the effectiveness of pro

roll™[1], in which presented a successful

novelty feat iss nization phenomenon is that the scaling functions can be
arbitrarily designed tof different state variables by means of control, while the
unpredictability of t ing functions in MFPS can additionally enhance the security

of communicationg®

In Ref. [7], t thors gave the MFPS scheme of two coupled Lorenz systems. Ref.
[8] investi d adaptive modified function projective synchronization of hyperchaotic
systems Wi

th time delay was investigated in Ref. [9]. Ref. [10] investigates the
m'ffunction projective synchronization (MFPS) of drive-response dynamical
nks using adaptive open-plus-closed-loop control method. More general forms of
MFPS have been extensively investigated in Refs. [11-13].

In most previous proposed references [7-13], the designed controllers contain some
nonlinear terms of the systems, which is more complicated and hard to implement in
practice. Differ from the ones proposed in [7-13], our designed controller contain only
feedback error term, which is simple and easy to implement in practice. Furthermore,
proposed adaptive method can achieve MFPS even not require any additional
information regarding the drive system and the feedback gain of the closed loop control
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part can be automatically adapted to suitable constant. To the best of our knowledge, at
present, there are few theoretical results about it.

The remainder of this paper is organized as follows: In Section 2, some preliminaries
are briefly outlined. The main theorems for MFPS are given in Section 3. In Section 4,
we will choose two groups of examples to show the effectiveness of the proposed
methods. Conclusions are finally drawn in Section 5.

2. Preliminaries
The drive system and the response system are defined below

k=t (x) (1)

y:f(y)+u (2)

where x, y e R are the state vectors, f :R" > R" are contmuxnonlmear \@ unctions,

u is the vector controller. We define the error vector
(3)

where A (t) is a n-order diagonal matrix, A(t) 2 (a (1), XV:}: () and «,(t) =0
(i=1,2,,n),is acontinuously differentiable fungtion Wlth bound
Assumption 1. The derivative of the scali ctions af ded, that is

3 (t)| |_1;\®

forall te R, where a’ e R" isthe |m|t of
Definition 1 (MFPS). For the system and the response system (2), it is said that
ZZ?& m

the system (1) and the system odifi tion projective synchronization (MFPS), if
there exists a scaling functi atrix a @r that tim _ [e(t)]|=o0.

Our goal is to de5|g ple coptroNer u such that the controlled response system (2)

could be MFPS tot syste je lim, __ f|ewm|=o0.

3. Control@

In most preVious prdpo%ed references [7-13], the designed controllers contain some
nonlinear terms of t gydrive and response systems, which are more complicated and
hard to impleme practice. In this section, a general simple scheme is proposed in
Theoreml and daptlve scheme is proposed in Theorem?2, which contain only
feedback e?%term and are easy to implement in practice.

e=A(t)x

3.1.G Scheme

@orem 1. Suppose Assumption 1 holds. For a given synchronization scaling
funttion matrix a() , if there exists a positive constant p satisfying
p>M_ +M_ +M_, then the MFPS between the drive system (1) and the response
system (2) will occur by the control law as below

u=psgn(e)+qe 4)

H+H' . .
where e=A(t)x-y, qa=4_( i ) and sgn(-) denotes the sign function.
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Proof. We define the error vector as

e=A(t)x-y ()
The time derivative of Eq. (3) is
6= A(t)x—y+A(t)x (6)
Substituting (1), (2) into (6), we have
€= A (1) F(x)= F(y)-u+A(t)x )

The vector function f(y) is linearized as follows in the neighborhood of the goal

value via Taylor expansions \/0
of

f(y)=f@)+—(y-2)+- 0; (8)
0z

where z = 4(t)x . Keeping the first-order terms in Eq Jsub@yg in Eq. (7),

we have \/
¢ =A(t) f(x)~ f(z)- He @t(t)x \\/ ©)
where H = — is the Jacobian matrix of f@Qﬁ respe@

0z

Construct Lyapunov function \@
& A

With the choice of Eq. (5) t@time derl\s@v along the trajectories of Eq. (9) is

V =e'é

=e (A(t)é\\f(z) */l(t)x) (11)

(x)”&%(zﬂh ' H+ AM(H +2HT)eTe— p”eT”—que

where 2 e maximum eigenvalue of the matrix
2
Because chaoé;tems and the scaling functions are bounded, x, and z are bounded.
Furthermo is a continuously vector function, there exist the positive constants
M and 0 isfying |4(t) f (x)|<™m,, |f(2)|<m,. Because Assumption 1 is held,

(10)

t s a positive constant w , satisfying [ x|<m .
(12)
Note that the condition of Theorem 1 holds p > M + M, + M, we obtain
V<0 (13)

According to the Lyapunov stability theorem, e — 0 with t - « . The MFPS is achieved
under the certain chosen controller u in Eq. (4). This completes the proof.
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3.2. Adaptive Scheme

Although the proposed control law in Theoreml is simple, the feedback gain is hard
to achieve. In this subsection, we will further investigate adaptive feedback gain
scheme.

Theorem 2. Suppose Assumption 1 holds. For a given synchronization scaling
function matrix a (t), the MFPS between the drive system (1) and the response system
(2) will occur by the control law as below

u=psgn( e) (14)
p = ke  sgn( e) (15)

where e= A (t)x -y, K is a arbitrary positive constant and sgn(-) denot gn
function.
Proof. Construct Lyapunov function

V:%eeJr— - \* @ (16)

With the choice of Eg. (14) and Eq. (15) the tlme‘atlve cﬁ\ g the trajectories of
Eq.(9) is

\/:ee+—(p—p)p OQ \6
e (A(t) F(x)- f(z)-He —-u %x)+ \@sgn( e)
%@\ H+H' 17)

IN

Ye'e — pe sgn( e)

< £ o+ @ HA(”XH\

e . . H+H'
where 1 (—- H Qm eigenvalue of the matrix
—\\ g ;
Because tems the€ scaling functions are bounded, X, and z are bounded.
Furthermor i sly vector function, there exist the positive constants

m and m  satisfyin f(x)|<™,, |f@]<m, . Because Assumption 1 is held,

there exists a posi nstant m , satisfying |4(t)x|<w .

\l \/S(M1+MZ+M3+ﬂm(H+H (18)
Takin@QA1+Mz+Ma+ﬂm(H +H
@ Vs fe]<o (19)

According to the Lyapunov stability theorem, e is bounded. Since the states of chaotic
systems are bounded and Assumption 1 is held, ¢ is bounded, i.e. ¢ e L_. According to Eq.

(19), we have

Jetedt = ] o [at <[

0

eT”dt]zS[f I:V.dt]zS[VZ(O)fvz(oo)]2<oo (20)
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So, e e L, . According to Barbalat's Lemma, e - 0 with t - « . The MFPS is achieved under
the certain chosen controller u in Eq. (14). This completes the proof.

4. lustrative Examples

In this section, we choose chaotic Li system as an example to show the effectiveness of
the proposed method.
We take LU system as the drive system, which is described by

[x ( 2 - Xl)

[ = xxeen 1)

|sz = x,x, - bx, V‘
where x , x,,x, are state variables, a,b,c are system parameters. When three rameters
a=36,b=23,c=20, the system shows chaotic behavior. Figure1 deplct% C attractor

O&

of Lu system.
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The contro U sys the response system, is described as

y,=a(y,-vy)+uy,
:—y]ya+Cyz+U2 (22)
3 = ylyZ - byS + u3

O

. are state variables, u_,u_,u_ are the controllers.
@ troller u ,u,,u, can be designed by Theorem 2 as follows

i)
=| psgn(e,) | (23)

Lpsane,))
p=k(esgn(e)+e sgn(e,)+e sgn(e,)) (24)
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In numerical simulation, we take p(o)=1k=4000 . The Iinitial states take

x(0)=[9 6 18], y(0)=[-6 -8 9] .The scaling functions take « (t)=05sin(zt/6)+1,
a,(t)=sin(zt/6)+2, a, (t)=-0.5sin(zt/6)-1. The simulation result is shown in Figure 2

and Figure 3.

40

20

g r r r r r
Time

F@k 3. The Synchronization Errors of Two Chaotic Li Systems

displays the synchronized attractor in r*. The time evolution of the MFPS errors
ar picted in Figure 3, which displays e —» o0 with t—» « . Thus, the required
synchronization has been achieved with our designed control law (23).

5. Conclusion

In this paper, some feedback error control schemes of modified function projective
synchronization are proposed. The proposed controllers contain only feedback terms
and easy to implement in practice. Moreover, proposed adaptive method can achieve
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MFPS even not require any additional information regarding the drive system and the
feedback gain can be automatically adapted to suitable constant. The proposed schemes
can also be used in various synchronization.
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