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Abstract 

Some new simple control methods of modified function projective synchronization in two 

chaotic systems are investigated in this paper. Based on Lyapunov method, a general 

feedback error control law is proposed, which contains only feedback error term and easy to 

implement in practice. Moreover, an adaptive feedback error control scheme is proposed, in 

which the feedback gain can be automatically adapted to suitable constant. Numerical 

example is provided to show the effectiveness of proposed method.  
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1. Introduction 

Since the seminal work of Pecora and Carroll [1], in which presented a successful 

method to synchronize two identical chaotic systems, synchronization in chaotic 

dynamic systems has received a great deal of interest among scientists from various 

research fields. Up to now, many different synchronization regimes have been studied 

[2-6]. Recently a new type of synchronization, termed as modified function projective 

synchronization, have been extensively investigated in [7-13], where the drive and 

response systems could be synchronized to a desired scaling function matrix. The 

novelty feature of this synchronization phenomenon is that the scaling functions can be 

arbitrarily designed to different state variables by means of control, while the 

unpredictability of the scaling functions in MFPS can additionally enhance the security 

of communications. 

In Ref. [7], the authors gave the MFPS scheme of two coupled Lorenz systems. Ref. 

[8] investigated adaptive modified function projective synchronization of hyperchaotic 

systems with unknown parameters. Based on active control scheme, a general method 

of MFPS with time delay was investigated in Ref. [9]. Ref. [10] investigates the 

modified function projective synchronization (MFPS) of drive-response dynamical 

networks using adaptive open-plus-closed-loop control method. More general forms of 

MFPS have been extensively investigated in Refs. [11-13]. 

In most previous proposed references [7-13], the designed controllers contain some 

nonlinear terms of the systems, which is more complicated and hard to implement in 

practice. Differ from the ones proposed in [7-13], our designed controller contain only 

feedback error term, which is simple and easy to implement in practice. Furthermore, 

proposed adaptive method can achieve MFPS even not require any additional 

information regarding the drive system and the feedback gain of the closed loop control 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.3 (2014) 

 

 

58   Copyright ⓒ 2014 SERSC 

part can be automatically adapted to suitable constant. To the best of our knowledge, at 

present, there are few theoretical results about it.  

The remainder of this paper is organized as follows: In Section 2, some preliminaries 

are briefly outlined. The main theorems for MFPS are given in Section 3. In Section 4, 

we will choose two groups of examples to show the effectiveness of the proposed 

methods. Conclusions are finally drawn in Section 5. 

 

2. Preliminaries 

The drive system and the response system are defined below 

 x f x                                                (1) 

      y f y u                                             (2) 

where , x y R are the state vectors, : 
n n

f R R  are continuous nonlinear vector functions, 

u is the vector controller. We define the error vector 

 t Λe x y                                              (3) 

where  tΛ  is a n-order diagonal matrix, ))(,),(),(()(
21

tttdiagt
n
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 ( ) 0
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( 1, 2 , , ),i n is a continuously differentiable function with bounded. 

Assumption 1. The derivative of the scaling functions are bounded, that is 
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i
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Definition 1 (MFPS). For the drive system (1) and the response system (2), it is said that 

the system (1) and the system (2) are modified function projective synchronization (MFPS), if 

there exists a scaling function matrix  tΛ  such that 0)(lim 


t
t

e . 
Our goal is to design a simple controller u such that the controlled response system (2) 

could be MFPS to the drive system (1), i.e. 0)(lim 


t
t

e . 

 

3. Controller Design 

In most previous proposed references [7-13], the designed controllers contain some 

nonlinear terms of the drive and response systems, which are more complicated and 

hard to implement in practice. In this section, a general simple scheme is proposed in 

Theorem1 and an adaptive scheme is proposed in Theorem2, which contain only 

feedback error term and are easy to implement in practice. 

 

3.1. General Scheme 

Theorem 1. Suppose Assumption 1 holds. For a given synchronization scaling 

function matrix )( tΛ , if there exists a positive constant p  satisfying 

321
MMMp  , then the MFPS between the drive system (1) and the response 

system (2) will occur by the control law as below 

eeu qp  )sgn(                                         (4) 

where  t Λe x y , )
2

(
max

T

q
HH 

   and sgn(·) denotes the sign function. 
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Proof. We define the error vector as 

 t Λe x y                                                           (5) 

The time derivative of Eq. (3) is 

   t t  Λ Λe x y x                                                 (6) 

Substituting (1), (2) into (6), we have 

       t t   Λ Λe f x f y u x                                     (7)  

The vector function )( yf  is linearized as follows in the neighborhood of the goal 
value via Taylor expansions 





 )()()( zy

z

f
zfyf                                             (8) 

where xΛz )(t . Keeping the first-order terms in Eq. (8) and substituting in Eq. (7), 
we have 

xΛuHezfxfΛe )()()()( tt                                               (9) 

where
z

f
H




  is the Jacobian matrix of )( yf with respect to z . 

Construct Lyapunov function 

ee
T

V
2

1
                                                                 (10) 

With the choice of Eq. (5) the time derivative of V along the trajectories of Eq. (9) is 
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where )
2

(
max

T

HH 
  is the maximum eigenvalue of the matrix 

2

T

HH 
.  

Because chaos systems and the scaling functions are bounded, x, and z are bounded. 

Furthermore, f is a continuously vector function, there exist the positive constants 

1
M and 

2
M  satisfying 

1
)()( Mt xfΛ , 

2
)( Mzf . Because Assumption 1 is held, 

there exists a positive constant 
3

M  satisfying 
3

)( Mt xΛ .                       

     T

pMMMV e)(
321
                                                    (12) 

Note that the condition of Theorem 1 holds 
321

MMMp  , we obtain 

0V                                                                     (13) 

According to the Lyapunov stability theorem, 0e  with t . The MFPS is achieved 

under the certain chosen controller u in Eq. (4). This completes the proof. 
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3.2. Adaptive Scheme 

Although the proposed control law in Theorem1 is simple, the feedback gain is hard 

to achieve. In this subsection, we will further investigate adaptive  feedback gain 

scheme. 

Theorem 2. Suppose Assumption 1 holds. For a given synchronization scaling 

function matrix  tΛ , the MFPS between the drive system (1) and the response system 

(2) will occur by the control law as below 

)sgn( eu p                                          (14) 

                            )sgn( ee
T

kp                                        (15) 

where  t Λe x y , k is a arbitrary positive constant and sgn(·) denotes the sign 

function.  

Proof. Construct Lyapunov function 

 
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T
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  e e                                                   (16) 

With the choice of Eq. (14) and Eq. (15) the time derivative of V along the trajectories of 
Eq.(9) is 

TT

T

TT

T

TTT

TT

T

ptt

ptt

pptt

ppp
k

V

ee
HH

xΛzfxfΛ

eeee
HH

xΛezfexfΛe

eexΛuHezfxfΛe

ee

))
2

()()()()((

)sgn()
2

()()()()(

)sgn()())()()()((

)(
1

*

max

*

max

*

*



























           (17) 

where )
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.  

Because chaos systems and the scaling functions are bounded, x, and z are bounded. 

Furthermore, f is a continuously vector function, there exist the positive constants 

1
M and 
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1
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T
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According to the Lyapunov stability theorem, e  is bounded. Since the states of chaotic 

systems are bounded and Assumption 1 is held, e is bounded, i.e. 


 Le . According to Eq. 

(19), we have 
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So, 
2

Le . According to Barbalat's Lemma, 0e  with t . The MFPS is achieved under 

the certain chosen controller u in Eq. (14). This completes the proof. 

 

4. Illustrative Examples  

In this section, we choose chaotic Lü system as an example to show the effectiveness of 

the proposed method.  

We take Lü system as the drive system, which is described by 

 
1 2 1

2 1 3 2

3 1 2 3

x a x x

x x x c x

x x x b x

 


  


 



                                       (21) 

where 
1 2 3
, ,x x x are state variables, , ,a b c are system parameters. When three real parameters 

3 6 , 3, 2 0a b c   , the system shows chaotic behavior. Figure 1 depicts the chaotic attractor 

of Lü system. 
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Figure 1. The Chaotic Attractor of Lü System in 3
R  

The controlled Lü system, as the response system, is described as 

 
1 2 1 1

2 1 3 2 2

3 1 2 3 3

y a y y u

y y y c y u

y y y b y u

  


   


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

                                     (22) 

where 
1 2 3
, ,y y y  are state variables, 

1 2 3
, ,u u u are the controllers.  

The controller 
1 2 3
, ,u u u  can be designed by Theorem 2 as follows 

 

 

 

1

2

3

sg n

sg n

sg n

p e

p e

p e

 

 
  
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 

u                                      (23) 

      
1 1 2 2 3 3

sg n sg n sg np k e e e e e e                          (24) 
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In numerical simulation, we take  0 1, 4 0 0 0p k  . The initial states take 

   0 9 6 1 8
T

x ,    0 6 8 9
T

  y . The scaling functions take    
1

0 .5 s in / 6 1t t   , 

   
2

s in / 6 2t t   ,    
3

0 .5 s in / 6 1t t    . The simulation result is shown in Figure 2 

and Figure 3. 
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Figure 2. The Synchronized Attractors of Two Chaotic Lü Systems in 3
R  
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Figure 3. The Synchronization Errors of Two Chaotic Lü  Systems 

Figure 2 displays the synchronized attractor in 3
R . The time evolution of the MFPS errors 

are depicted in Figure 3, which displays 0e  with t   . Thus, the required 

synchronization has been achieved with our designed control law (23). 

 

5. Conclusion 

In this paper, some feedback error control schemes of modified function projective 

synchronization are proposed. The proposed controllers contain only feedback terms 

and easy to implement in practice. Moreover, proposed adaptive method can achieve 
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MFPS even not require any additional information regarding the drive system and the 

feedback gain can be automatically adapted to suitable constant. The proposed schemes 

can also be used in various synchronization. 
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