
International Journal of Hybrid Information Technology

Vol.7, No.3 (2014), pp.401-412

http://dx.doi.org/10.14257/ijhit.2014.7.3.38

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2014 SERSC

Analysis on Process Code schedule of Android Dalvik Virtual
Machine

Wen Hu, Yanli Zhao

School of Computer and Information Engineering
Harbin University of Commerce

Harbin, China
huwen1957@126.com

Abstract

Dalvik virtual machine’s performance determines the performance of the Android

platform. And each Dalvik virtual machine process is a Linux process, and each

Dalvik virtual machine thread is a Linux thread. This paper analyses and researches process

model of Android Dalvik virtual machine. Through research and analysis the role of Zygote

in startup process of Dalvik virtual machine and the Zygote boot process, we analyze the

relationship between the processes of the operating system and the Dalvik processes and we

study the relationship between the Dalvik virtual machine processes. It answers the question

why a Dalvik virtual machine process is actually a process of Linux.

Keywords: Dalvik virtual machine; process; Android.

1. Introduction

With the development of mobile network, mobile devices can develop rapidly. In the field

of mobile devices, virtual machine technology plays an important role. Dalvik virtual

machine is a Java virtual machine and Dalvik virtual machine is an important component of

the Android platform. It is responsible for running applications of the Android platform,

providing multi-threading support and memory garbage collection on Android platform [1].

And Dalvik virtual machine can optimize applications of Android platform in each step of

executing applications. Instruction set of Dalvik virtual machine is based on registers.

Virtual registers store operands, instructions from the virtual machine register get operands

and calculate in the process of execution, and finally the data is back to the register [2].

Dalvik virtual machine is based on the Linux kernel, and it uses Zygote process

model which is similar to fork process of Linux [3].

The Android platform can be divided into 4 layers, which are application layer, the

application framework layer, library layer and the Linux kernel. Dalvik virtual machine is

running on the Android runtime layer. Every Android program is executed in the

Dalvik virtual machine. If the program needs to use the library content, it need to call the

local program interface, and executive function in the library.

2. Problem analysis and related research

2.1. Problem analysis

We can discuss the virtual machine from the perspective of process and system point of

view, the virtual machines can be divided into two types: system virtual machines and process

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

402 Copyright ⓒ 2014 SERSC

virtual machines. System virtual machine owns a complete multi-process

system environment. Multiple heterogeneous operating systems can be run on the system

virtual machines [4]. In the process virtual machine, the ABI (Application binary interface)

interface that runs on the operating system is replaced by virtualization software. The process

virtual machine simulates a user-level instruction set and system calls. Dalvik virtual

machine of the Android operating system belongs to the process virtual machine. Dalvik

virtual machine is derived from Java virtual machine and is mainly used in the embedded

system. Aiming at the characteristics of embedded system, it makes a great improvement in

the compilation method, memory usage and stack usage [5]. So Dalvik has the feature of high

efficiency, simple, save resources, and it is very suitable for limited resources of embedded

systems.

Dalvik virtual machine's memory management and process management are dependent on

the Linux kernel. Dalvik virtual machine makes the best of the Linux process management's

features, so it can run multiple processes simultaneously [6]. And every Android application

runs in a Dalvik virtual machine instances, and each virtual machine instance is an

independent process space. Different applications run in different processes space, and the

application of different sources use different Linux user to run. The way is the greatest degree

to protect application secure and run independently.

Independent processes can prevent all programs from closing when virtual machine

collapses. Each Dalvik virtual machine process is a Linux process, and each Dalvik virtual

machine thread is a Linux thread [7]. The relationship between Dalvik virtual machine's

process management and Linux process management is shown in Figure 1. It indicates

Dalvik virtual machine's position in the process communication.

Linux

kernel

Application

process
Process1 Process2 Process3

...Process3Process2Process1

Dalvik virtual

Machine

management

...

Figure 1. The relationship between Dalvik virtual process and Linux process

2.2. Related research

The Dalvik virtual machine directly provides own unique API on the basis of the Java API

and most are achieved by calling the Linux system interface. And most of functions are

achieved by calling the operating system interface of target machine, that is, them are realized

by calling the interface of the Linux system. For example, when we call start function in

android.os.Process class to create a process, the system will eventually call fork system to

create a process. And Linux system provides fork system. Every Android application process

has a Dalvik virtual machine instance. So an Android application process terminates

unexpectedly, will not affect the normal operation of other Android application process.

When Android system is startup, Dalvik virtual machine has been also started, and a

system service process is created by the fork semantics. Dalvik virtual machine processes

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 403

correspond to the processes of the operating system. When the Android system performs an

application, Zygote will use fork mechanism of Linux to produce a child process to perform

the application. Not only we can create Android application process quickly, but also all of

the Android Application processes share the same set of core Java libraries which is

beneficial to save memory space [8]. As shown in Figure 2 the relationship between

Dalvik virtual machine between processes.

Socket server

SystemServer

related classes

and private

resources

APK own

processes and

resources

DalvikVm

Ordinary APK

Process

DalvikVm

Ordinary APK

Process

DalvikVm

SystemServer Process

DalvikVm

Zygote process

Framework

Shared

classes and

shared resources

Framework

Shared

classes and

shared

resources

Framework

Shared

classes and

shared resources

APK own

processes and

resources

Framework

Shared

classes and

shared resources

...

...

the first program of

zygote started

the n program of

zygote started

Same

physical

memory

space

Scoket Client

Figure 2. The relationship between Dalvik virtual machine between processes

In figure 2, we know that through the Zygote in the Android system, Dalvik virtual

machine processes are hatched out. All of system service process SystemServer and the

application processes are bred by the Zygote process. So the zygote process can be treated as

a generator of process. When applications in Dalvik virtual machine need to generate a new

process, we can call zygote service. The zygote mainly consists of two modules: (1) Socket

server. It is used to receive commands which start a new Dalvik process. (2) Shared classes

and share resources in framework. When zygote process is started, it will load some shared

classes and resources. Among them, shared classes are defined in preload-classes file, and

shared resources are defined in preload-resources file.

3. Zygote startup and Dalvik startup

3.1. Zygote startup

Android system is based on the Linux kernel, and in the Linux system, all processes are

descendant process of the init process. All processes are directly or indirectly fork out by the

init process including Zygote process. When Zygote process starts, it will complete the

initialization of the virtual machine, loading the library, loading the preset library and

initialized operation and so on. And when the system needs a new virtual machine instance,

Zygote can copy itself and provide instance system as rapidly as possible. In addition, for

some read-only system libraries, all virtual machine instances and Zygote are sharing a

memory region and saving the memory overhead.

Zygote process is responsible for follow-up other processes to create and start in Android

application framework layer. Firstly, a SystemServer process is created (forked) by Zygote

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

404 Copyright ⓒ 2014 SERSC

process. Secondly, SystemServer process is responsible for booting the system critical

services, such as packet managed services PackageManagerService and application

components management services ActivityManagerService. When we need to start an

Android application, ActivityManagerService notifies Zygote process of creating a new

process for the application through interprocess communication mechanism of Socket. Zygote

process hatched the first Dalvik called SystemServer, and SystemServer is just the process

alias. And the concrete process corresponding program is still an app_process, because

SystemServer is hatched from app_process. These functions are completed in Zygote startup.

In the Dalvik virtual machine, Zygote supplies zygote interface to access to the Dalvik

virtual machine. The interface wraps the fork function Linux system, it is used to create a new

virtual machine instance processes. And ZygoteConnection is a socket connection to

management and analytical parameters. When other Actvitiy establish process request, the

socket will send command parameters to Zygote. The ZygoteInit is the main function of the

Zygote entrance. As shown in Figure 3 the zygote process model. The Dalvik provides

dalvik.system.Zygote class, the class provides three static methods for creating processes:

(1) fork(),create a zygote process,

(2) forkAndSpecialize(), create a non-zygote process,

(3) forkSystemServer(), create a system service process.

The fork () method will re-generate a new zygote process. The new process replicates

the father process resources, including memory contents task_struct content. During the

copying process, the child process copies the parent process task_struct, system stack space

and page table. And when the child process changes father process variables, the program will

create a new copy of the involved pages by copy on write, and the new zygote processes can

also generate a child process. The Dalvik virtual machine threads are corresponding to the

operating system threads, and the Dalvik processes are corresponding to operation processes.

Avtivity Service

Receive socket connection

Fork

Choose fd and

read Parameters

New activity process

Request service

Figure 3. The zygote process model

The forkAndSpecialize () differs from fork (). The forkAndSpecialize () produces child

which is not a zygote process. This is, forkAndSpecialize function’s child process can’t

produce a new process.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 405

forkSystemServer()’s child process is not also zygote process. When forkSystemServer()’s

child process is end, its father is also end. The following steps are process code

schedule of Zygote promoter.

(1) Through Zygote.forkSystemServer function the Zygote process creates a new process

in order to start SystemServer components.

(2) The startVM function is called AndroidRuntime function to start Dalvik virtual

machine, and AndroidRuntime function calls the startReg to register JNI method.

(3) Calling main function of com.android.internal.os.ZygoteInit class creates a socket

interface and starts SystemServer component. Running ZygoteInit.runSelectLoopMode

function into an infinite loop and earlier created socket interface will wait

ActivityManagerService request to create a new application process. Now the program waits

for ActivityManagerService to connect the Socket, then calls ZygoteConnection.runOnce

function to create a new application.

3.2. Dalvik startup

The Zygote process will create a Dalvik virtual machine instances during boot time in the

Android system. Whenever Zygote hatched a new application process, and the Dalvik

virtual machine instances are copied to the new application process. That is, each

application process has a separate the Dalvik virtual machine instance. In Zygote starting,

function AndroidRuntime.start will start Android system runtime library [9]. The process

completes four things. Shown in Figure 4, we can see the Dalvik virtual machine startup’s

process code schedule analysis.

AndroidRunTime Jni

start

3:JNI_CreateJavaVM

2:startVm

ThreadsInit

4:dvmCreateJNIEnv

6:dvmInitZygote
5: dvmStartup

7:startReg

8:androidSetCreateThreadFunc

Figure 4. Analyze Dalvik startup process

(1)The startVM function is called by AndroidRunTime to starts the virtual machine.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

javascript:void(0);
javascript:void(0);

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

406 Copyright ⓒ 2014 SERSC

(2)The startVm function calls JNI_CreateJavaVM function to create (create function:

dvmCreateJNIEnv) and initialization (init function: dvmStartup) a Dalvik virtual machine

instance.

(3) Calling the startReg function registers JNI methods, loading the Java core classes and

JNI methods and they can make the main thread set up a JNI environment.

(4)Calling main function in com.android.internal.os.ZygoteInit class, finding Entrance that

can make Zygote process enter java layer, and pre-loaded a large number of Android core

classes and system resource files. The above is startup process of the Dalvik virtual machine

in Zygote process.

From the above analysis, when Zygote process creates the Android application process, it

can finish the follow process. It can will its own Dalvik virtual machine instance copy to the

newly created Android application process, it can also share the core Java classes, Android

core classes(dex file) and their JNI method(so file) with a new creating Android application

process. Dex files and so files read-only code segment. They will always be shared by Zygote

process, System processes and Android application process. Thus, a large number of pre-

loaded behaviors conducted obtained value in Zygote process. So the way can speed up the

boot process in System process and Android application process, and system can save

memory consumption.

4. Creation process of the Dalvik virtual machine process analyzes and
Instance

4.1. Analyze creation process of the Dalvik virtual machine process

The Android application process is created through ActivityManagerService services

calling a static member function start of android.os.Process class to request Zygote process.

Eventually Zygote process will create the Android application process through a static

member function forkAndSpecialize of dalvik.system.Zygote class. So we start to analyze the

creation process of Dalvik virtual machine process through a static member function

forkAndSpecialize [10]. Shown in Figure 5:

Zygote Dalvik

1:forkAndSpecialize

3:dvmInitAfterZygote

2:forkAndSpecializeCommon

Figure 5. The creation process of Dalvik virtual machine process

(1)The static member function forkAndSpecialize of Zygote class is a JNI method [11]. In

C++ layers the forkAndSpecialize function is implemented by

Dalvik_dalvik_system_Zygote_forkAndSpecialize function. And the

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

javascript:void(0);
javascript:void(0);

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 407

Dalvik_dalvik_system_Zygote_forkAndSpecialize function can create a Dalvik virtual

machine process by calling forkAndSpecializeCommon function.

Static member function forkAndSpecialize of Zygote class is a JNI method, which is

achieved by Dalvik_dalvik_system_Zygote_forkAndSpecialize function in C++ layer. Its

code is shown below:

/* native public static int forkAndSpecialize(int uid, int gid,

 * int[] gids, int debugFlags);

 */

static void Dalvik_dalvik_system_Zygote_forkAndSpecialize(const u4* args, JValue*

 pResult)

{

 pid_t pid;

 pid = forkAndSpecializeCommon(args, false);

 RETURN_INT(pid);

}

In above code, the args parameter points to a u4 array, which it contains all parameters

from the Java layer and it is encapsulated by the Dalvik virtual machine. Another parameter

pResult is used to save the return result from JNI method calling, which is achieved through

macro RETURN_INT.

(2)The function forkAndSpecializeCommon can be used to create a common Android

application process and be used to create the system process. In Android system, only Zygote

process has permission to create the system process and Android application process. When

Zygote process is up and running Dalvik virtual machine, the gDvm.zygote value will

be equal to true. Then the function forkAndSpecializeCommon can use the system call fork to

create a new process.

The gDvm.zygote value will be set to false in the newly process, so that it can know that it

is not Zygote process. When a process uses system to call the fork to create a new process, the

former is called a parent process, the latter is called a child process. At this time the child and

parent processes share the same address space. But when an address space is written by the

parent process or child process, written address space will become independent between

parent process and child process. This mechanism is called COW (copy on write) [12].

So, when the gDvm.zygote value of newly created process is set to false by the

functionforkAndSpecializeCommon, the gDvm.zygote values of Zygote process is kept true.

When the Dalvik virtual machine starts, it will share the core Java classes, Android core

classes(dex file) and their JNI method(so file) with the System process and

Android application process. But due to the above COW mechanism, when

necessary, System process and Android application process will still make a copy of these

resources, so that t they have a separate instance of the Dalvik virtual machine.

 (3)Finally, the forkAndSpecializeCommon will call the dvmInitAfterZygote function and

initialize further the newly created process running on Dalvik virtual machine.

From the above analysis, the Dalvik virtual machine process is created to complete. And

we draw a conclusion: a Dalvik virtual machine process is actually a Linux process.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

app:ds:conclusion

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

408 Copyright ⓒ 2014 SERSC

4.2. Instance of creating a process

Through the above, we learn that the startup process for the Android application process.

Shown in Figure 6, we can know that it is each step of process startup.

Aplication Process

System Server

Start new process

Zygote

Application process

StartActivity

Binder pattern

Scoket

fork

Figure 6. Step of process startup

Now we will create and start an activity which is named com.jsj.example.HelloActivity,

and com.jsj.example is package name. We can have three parts analysis.

(1)In the Android system, Launcher is also a Activity， the application is activated by

Launcher. When you click the screen icon, Launcher will start correspond to the application.

a) Launcher inherits from the Activity class, and Activity class implements the

startActivity function, so the program calls the Activity.startActivity function. Through the

Binder driver program enters the startActivity function of ActivityManagerService.

b) Through calling the topRunningActivityLocked function to obtain Activity in the top of

the stack, this is HelloActivity. This code is shown below:

resumeTopActivityLocked(ActivityRecord prev) {

 // Find the first activity that is not finishing.

 ActivityRecord next = topRunningActivityLocked(null);

}

c) Firstly, the ActivityThread function will use Binder to reference token into remote

interface ActivityClientRecord of ActivityRecord and notify ActivityManagerService that the

Activity has entered Paused state. ActivityManagerService can now start HelloActivity.

d) In configuration file AndroidManifest.xml of Activity application, the system default

using package’s name as process attributes, such as "com.jsj.example". Each application has

its own uid, therefore, the combination of uid and process can create a ProcessRecord for

each application.

e) Create a ProcessRecord variable, and stored value in the member variable

mProcessNames. Finally, call startProcessLocked method of ActivityManagerService class

for the further operation. This code is shown below:

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 409

ProcessRecord app = getProcessRecordLocked(processName, info.uid);

......

if (app == null) {

 app = new ProcessRecordLocked(null, info, processName);

 mProcessNames.put(processName, info.uid, app);

 }

(2)The ActivityManagerService operation

a) The ActivityManagerService starts a new process for the application by Process.start

function and it will pass the first parameter’s value "android.app.ActivityThread". This is the

process initialization to load Java classes.

 b) When the Zygote starts, Dalvik virtual machine will start at the same time. Through

openZygoteSocketIfNeeded function Process.start class connects to Zygote, starts Zygote and

creates a Socket connection.

c) Through the Zygote.forkSystemServer function the Zygote process creates a new

process to start the SystemServer component. And the Zygote calls the runSelectLoopMode

function into an infinite loop, and earlier created socket interface will wait

ActivityManagerService request to create a new application process.

d) Because the Zygote has returned to the connection of socket, so the program will obtain

a ZygoteConnection object and connect the socket. Then the program can call the

ZygoteConnection.runOnce function, and execute forkAndSpecialize. Now start

creating process. This code is shown below:

class ZygoteConnection {

 boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {

......

 pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,

parsedArgs.gids, parsedArgs.debugFlags, rlimits);

......

 }

 }

e) Initializing runtime library for the newly created process. The parameter className is

assigned to "android.app.ActivityThread" by ClassLoader.loadClass and load value of

className into a process.

f) Execute main function of android.app.ActivityThread class. Firstly, create the

ActivityThread object in the process, and enter the message loop. Then you can start Activity

or the Service in the process.

(3) Run Activity in onCreate method

a) Retrieve previous created ProcessRecord and assigned to the app. The

ActivityManagerService calls mMainStack.realStartActivityLocked to get need to bootable

Activity, and the return value is HelloActivity.

b) The ActivityThread calls performLaunchActivity function to load the Activity class

which is com.jsj.example.HelloActivity and call HelloActivity’s onCreate function.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

410 Copyright ⓒ 2014 SERSC

According to the Activity life cycle, complete HelloActivity class loading and object creation

and so on. The HelloActivity startup is complete.

5. Conclusion

With respect to the terms of the Linux kernel, the Android system is merely a Linux

application. In Android system, each android application has a separate instance of the Dalvik

virtual machine. The Dalvik virtual machine can regard the local operating system process as

own process and it can use the process scheduling mechanism of the Linux kernel to dispatch

its processes and threads. So it can realize high efficiency and fairness. In this paper, we

analyze process code schedule of Android Dalvik Virtual Machine, Dalvik virtual machine

startup process and Zygote startup process. We can know that the Dalvik work and run

process. It is beneficial to study and improved the model of processes and threads of the

Dalvik virtual machine.

6. ACKNOWLEDGEMENTS

The author would like to thank the anonymous referees for their valuable suggestions. This

work was supported by Graduate Innovation Fund of Heilongjiang Province (YJSCX2012-

232HSD).

References

[1] Y. Pengxiang, “Research on the structure and performance of Dalvik virtual machine”, JinLin

university, (2011).

[2] D. Ehringer, “The Dalvik Virtual Machine Architecture [EO/OL]”

http://www.kiddai.com/NCTU/ebl/dex/The_Dalvik_Virtual_Machine.pdf. (2010).

[3] Z. Yimin, C. Rong, “Analysis about Process in Dalvik Virtual Machine”, computer technology and

development, vol. 20, no. 2, (2010).

[4] J. E. Smith and R. Nair, “Virtual Machines: Versatile Platforms for Systems and Processes”, China

Machine Press, (2009).

[5] L. Shengyang, “Android system source code Scenario Analysis”, Publishing House of Electronics

Industry, (2012), pp. 611-641.

[6] N. Matthew and R. Stones, “Beginning Linux Programming 2
nd

 Edition”, China Machine Press,

(2002).
[7] Y. Fengsheng, “Android Internals: System”, China Machine Press, (2011).

[8] K. Yuandan, “Android kernel analysis”, Publishing House of Electronics Industry, (2011).

[9] L. Shengyang, “The boot process analysis of Dalvik virtual machine [EB/OL]”,

http://blog.csdn.net/luoshengyang/article/details/8923484, (2013).

[10] L. Shengyang, “Analysis about creation process of processes and threads of Dalvik virtual

machine [EB/OL]”, http://blog.csdn.net/luoshengyang/article/details/8885792, (2013).

[11] B. Cheng and Bill Buzbee, “ A JIT Compiler for Android's Dalvik VM [EB/OL]”,

http://www.kandroid.org/board/data/board/AndroidBeginner/file_in_body/1/android-jit-compiler-

androids-dalvik-vm.pdf, (2010).

[12] Wikipedia. Copy-on-write [EB/OL], http://en.wikipedia.org/wiki/Copy-on-write, (2013).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

app:ds:conclusion
javascript:void(0);
http://www.kiddai.com/NCTU/ebl/dex/The_Dalvik_Virtual_Machine.pdf
http://search.china-pub.com/s/?key1=(%c3%c0)James+E.+Smith
http://blog.csdn.net/luoshengyang/article/details/8885792

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 411

Authors

Wen Hu, master instructor, president of School of the Computer and

Information Engineering, Harbin University of Commerce, backup leader

of “Electronic Commerce” provincial key discipline echelon and

academic leader of secondary doctoral discipline “electronic commerce

and information service” in first-class doctoral discipline “business

administration”. His main research fields include computer network and

communication, electronic commerce, embedded technology.

Yan li Zhao, Master, student of School of the Computer and

Information Engineering, Harbin University of Commerce. Her main

research fields include embedded technology.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol.7, No.3 (2014)

412 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

