International Journal of Hybrid Information Technology
Vol.7, No.3 (2014), pp.401-412
http://dx.doi.org/10.14257/ijhit.2014.7.3.38

Analysis on Process Code schedule of Android Dalvik Virtual
Machine

Wen Hu, Yanli Zhao

School of Computer and Information Engineering
Harbin University of Commerce
Harbin, China
huwen1957@126.com

Abstract \/’

Dalvik virtual machine’s performance determines the performance Android
platform. And each Dalvikvirtual machine process Linux nd each
nk

Dalvik virtual machine thread is a Linux thread. This pap ySes and reseafches process

model of Android Dalvik virtual machine. Through rese an SIS role of Zygote
in startup process of Dalvik virtual machine and e bogt p s, we analyze the
relationship between the processes of the operating and ik processes and we
study the relationship between the Dalvik virtual<nachine pr . It answers the question
why a Dalvik virtual machine process is actu ocesst\

Keywords: Dalvik virtual machine; pr Andx

1. Introduction \A

With the development of networ e devices can develop rapidly. In the field
of mobile devices, virtu achine @ygy plays an important role. Dalvik virtual
machine is a Java wrtu@me an ik virtual machine is an important component of
the Android platfo is respo for running applications of the Android platform,
providing multi t supp@ emory garbage collection on Android platform [1].
And Dalvik achinesegn optimize applications of Android platform in each step of
executing a[@lons %d ion set of Dalvik virtual machine is based on registers.
Virtual registers store instructions from the virtual machine register get operands
and calculate in t 2 ss of execution, and finally the datais back to the register [2].

Dalvik virtual is based on the Linux kernel,and it uses Zygote process
model which is sijlar to fork process of Linux [3].

platform can be divided into 4 layers, which are application layer, the
applicati amework layer, library layer and the Linux kernel. Dalvik virtual machine is
i n the Android runtime layer. Every Android program is executed in the
irtual machine. If the program needs to use the library content, it need to call the
localprogram interface, and executive function in the library.

2. Problem analysis and related research

2.1. Problem analysis

We can discuss the virtual machine from the perspective of process and system point of
view, the virtual machines can be divided into two types: system virtual machines and process

ISSN: 1738-9968 [JHIT
Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

virtual machines. System virtual machine owns a complete multi-process
system environment. Multiple heterogeneous operating systems can be run on the system
virtual machines [4]. In the process virtual machine, the ABI (Application binary interface)
interface that runs on the operating system is replaced by virtualization software. The process
virtual machine simulates a user-level instruction set and system calls. Dalvik virtual
machine of the Android operating system belongs to the process virtual machine. Dalvik
virtual machine is derived from Java virtual machine and is mainly used in the embedded
system. Aiming at the characteristics of embedded system, it makes a great improvement in
the compilation method, memory usage and stack usage [5]. So Dalvik has the feature of high
efficiency, simple, save resources, and it is very suitable for limited resources of embedded
systems.

L 4
Dalvik virtual machine's memory management and process management are d Won
a
Y

the Linux kernel. Dalvik virtual machine makes the best of the Linux proces ent's
features, so it can run multiple processes simultaneously [6]. And every Androi lication
runs in a Dalvik virtual machine instances, and each, \irtualk mac ance is an
independent process space. Different applications run in t proce pace, and the
application of different sources use different Linux u . The waissthe greatest degree
to protect application secure and run independently. 6

Independent processes can prevent all pro s from sing” when virtual machine
collapses. Each Dalvik virtual machine pro @ Linui%ss, and each Dalvik virtual
machine thread is a Linux thread [7]. tionshjpsy between Dalvik virtual machine's
process management and Linux proce age hown in Figure 1. It indicates
Dalvik virtual machine's position in %r Cess co cation.

A\Y .¢

re i

o~ = ——
JRrocessl | ProGegs2y,Process3 BAppllcatlon
[

TS QU 55\/@\”(process
\\ Machine
OQ P anagemeqt

Linux
ocess] || Process?2 || Process3 kernel

Figure I elationship between Dalvik virtual process and Linux process

2.2. Relate@a h
The DQ irtual machine directly provides own unique API on the basis of the Java API
and achieved by calling the Linux system interface. And most of functions are
y calling the operating system interface of target machine, that is, them are realized
by ing the interface of the Linux system. For example, when we call start function in
android.os.Process class to create a process, the system will eventually call fork system to
create a process. And Linux system provides fork system. Every Android application process
has a Dalvik virtual machine instance. So an Android application process terminates
unexpectedly, will not affect the normal operation of other Android application process.

When Android system is startup, Dalvik virtual machine has been also started, and a
system service process is created by the fork semantics. Dalvik virtual machine processes

402 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

correspond to the processes of the operating system. When the Android system performs an
application, Zygote will use fork mechanism of Linux to produce a child process to perform
the application. Not only we can create Android application process quickly, but also all of
the Android Application processes share the same set of core Java libraries which is
beneficial to save memory space [8]. As shown in Figure 2 the relationship between
Dalvik virtual machine between processes.

DalvikvVm . DalvikVm DalvikVm
Dalvikvim Ordinary APK Ordinary APK
Zygote process gystemServer Process Process Process
ot classes APK own APK own X
Socket server ; processes and processes and
and private resOUrees o
- resources
Framework Framework Frz;rrr]r:;/ggrk | Same
Shared Shared classes and \ ; physical
classes and classes and shared | memory
shared resources shared resources rces | space
- D —— resoureg)RS |

:’ ‘Scoket Client j;

= &
the first program of eram of \
zygote started ote star
Figure 2. The relationship be@alvrk chine between processes

In figure 2, we know that the Android system, Dalvik virtual
machine processes are hatc t. AII of m service process SystemServer and the

application processes are b byt e Z cess So the zygote process can be treated as
a generator of process W plrcatr alvrk virtual machine need to generate a new
process, we can call serV|ce e zygote mainly consists of two modules: (1) Socket
server. Itis used e co whrch start a new Dalvik process. (2) Shared classes

and share re ramewor hen zygote process is started, it will load some shared

classes and A 0 em, shared classes are defined in preload-classes file, and
shared resour s are defl reload-resources file.
3. Zygote start Dalvik startup

3.1. Zygot

' em is based on the Linux kernel, and in the Linux system, all processes are
desce @ process of the init process. All processes are directly or indirectly fork out by the
ing OCEss including Zygote process. When Zygote process starts, it will complete the

Jization of the virtual machine, loading the library, loading the preset library and
initialized operation and so on. And when the system needs a new virtual machine instance,
Zygote can copy itself and provide instance system as rapidly as possible. In addition, for
some read-only system libraries, all virtual machine instances and Zygote are sharing a
memory region and saving the memory overhead.

Zygote process is responsible for follow-up other processes to create and start in Android
application framework layer. Firstly, a SystemServer process is created (forked) by Zygote

Copyright © 2014 SERSC 403

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

process. Secondly, SystemServer process is responsible for booting the system critical
services, such as packet managed services PackageManagerService and application
components management services ActivityManagerService. When we need to start an
Android application, ActivityManagerService notifies Zygote process of creatinga new
process for the application through interprocess communication mechanism of Socket. Zygote
process hatched the first Dalvik called SystemServer, and SystemServer is just the process
alias. And the concrete process corresponding program is still an app_process, because
SystemServer is hatched from app_process. These functions are completed in Zygote startup.

In the Dalvik virtual machine, Zygote supplies zygote interface to access to the Dalvik
virtual machine. The interface wraps the fork function Linux system, it is used to create a new
virtual machine instance processes. And ZygoteConnection is a socket connection jo
management and analytical parameters. When other Actvitiy establish process %%Ahe

socket will send command parameters to Zygote. The Zygotelnit is the main n-of the
Zygote entrance. As shown in Figure 3the zygote process model. The Da provides
dalvik.system.Zygote class, the class provides three static K s for credli cesses:

(1) fork(),create a zygote process,

(2) forkAndSpecialize(), create a non-zygote proc@Q

(3) forkSystemServer(), create a system servi 0Cess.
The fork () method will re-generate a ;gote prc%@ The new process replicates

the father process resources, mcludlng co t task_struct content. During the
copying process, the child process co e par @ss task_struct, system stack space
and page table. And when the ch d s chang er process variables, the program will
create a new copy of the mvo% n write, and the new zygote processes can
also generate a child process Dal

%s machine threads are corresponding to the
C

operating system threads, e Dalvil ses are corresponding to operation processes.

Request service

Q
&@eceive socket connection
@» Choose fd and

@ read Parameters
Fork

Figure 3. The zygote process model

The forkAndSpecialize () differs from fork (). The forkAndSpecialize () produces child
which is not a zygote process. This is, forkAndSpecialize function’s child process can’t
produce a new process.

404 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

forkSystemServer()’s child process is not also zygote process. When forkSystemServer()’s
child process is end, its father is also end. The following steps are process code
schedule of Zygote promoter.

(1) Through Zygote.forkSystemServer function the Zygote process creates a new process
in order to start SystemServer components.

(2) The startVM function is called AndroidRuntime function to start Dalvik virtual
machine, and AndroidRuntime function calls the startReg to register JNI method.

(3) Calling main function of com.android.internal.os.Zygotelnit class creates a socket
interface and starts SystemServer component. Running Zygotelnit.runSelectLoopMode
function into an infinite loop and earlier created socket interface {!l wait
ActivityManagerService request to create a new application process. Now the pr a its
for ActivityManagerService to connect the Socket, then calls ZygoteCon Once
function to create a new application. é

3.2. Dalvik startup Q* @

The Zygote process will create a Dalvik virtual mst g boot time in the
Android system. Whenever Zygote hatched a ne y pllcat ess and the Dalvik
virtual machine instances are copied to ew appl jon process. Thatis, each
application process has a separate the Dalvi ual machl stance. In Zygote starting,
function AndroidRuntime.start will star mruntlme library [9]. The process
completes four things. Shown in Fig % Dalvik virtual machine startup’s

process code schedule analy5|s.A

AndroidRunT'iQ
start. | Q NS
\‘ artV %

:‘
O | \€reateJavaVM

Init Threads

4: dvareateJNlEr \Y

5 dvatartup

6:dvminitZygote

2N
~ w '
[}
2
s,
@D
«Q

@O 8:and roidSetCreateThreaéiFunc

Figure 4. Analyze Dalvik startup process

(1) The startVM function is called by AndroidRunTime to starts the virtual machine.

Copyright © 2014 SERSC 405

javascript:void(0);
javascript:void(0);

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

(2)The startVm function calls JNI_CreateJavaVM function to create (create function:
dvmCreateJNIEnv) and initialization (init function: dvmStartup) a Dalvik virtual machine
instance.

(3) Calling the startReg function registers JNI methods, loading the Java core classes and
JNI methods and they can make the main thread set up a JNI environment.

(4)Calling main function in com.android.internal.os.Zygotelnit class, finding Entrance that
can make Zygote process enter java layer, and pre-loaded a large number of Android core
classes and system resource files. The above is startup process of the Dalvik virtual machine
in Zygote process.

From the above analysis, when Zygote process creates the Android application pgocess,,it
can finish the follow process. It can will its own Dalvik virtual machine instance Whe
newly created Android application process, it can also share the core Java ¢ %droid
core classes(dex file) and their JNI method(so file) with a new creating An@ plication
process. Dex files and so files read-only code segment. Th always by Zygote
process, System processes and Android application proce us, a la mber of pre-
loaded behaviors conducted obtained value in Zygote=pfacess. So th can speed up the
boot process in System process and Android ap @ on pr , and system can save
memory consumption. 0\

4. Creation process of the Dalvi @ual r@\we process analyzes and

Instance \% s\\

4.1. Analyze creation process of r@alwk vi I machine process
The Android applicatiop,_process i through ActivityManagerService services
@n start 0 roid.os.Process class to request Zygote process.

calling a static member

Eventually Zygote éwnl create the Android application process through a static
member function f peci 0 aIV|k system.Zygote class. So we start to analyze the
creation procg %}alwk virt machine process through a static member function
forkAndSpe in Flgure 5:

@ [Dalvik |

1:forkAndSpecialize

O 2:forkAndSpecializeCommon
]

%O 3:dvm|nitAfterZygotP\U

Figure 5. The creation process of Dalvik virtual machine process

(1)The static member function forkAndSpecialize of Zygote class is a JNI method [11]. In
C++ layers the forkAndSpecialize function is implemented by
Dalvik_dalvik_system_Zygote_forkAndSpecialize function. And the

406 Copyright © 2014 SERSC

javascript:void(0);
javascript:void(0);

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

Dalvik_dalvik_system_Zygote_forkAndSpecialize function can create a Dalvik virtual
machine process by calling forkAndSpecializeCommon function.

Static member function forkAndSpecialize of Zygote class is a JNI method, which is
achieved by Dalvik_dalvik_system Zygote forkAndSpecialize function in C++ layer. Its
code is shown below:

/* native public static int fork AndSpecialize(int uid, int gid,

* int[] gids, int debugFlags);

*/

static void Dalvik_dalvik_system_Zygote forkAndSpecialize(const u4* args, JValue*
pResult)

{ L 4
pid_t pid; ~v

pid = fork AndSpecializeCommon(args, false); QE

RETURN_INT(pid);

}
& V L 4
In above code, the args parameter points to a u , Whi W‘mms all parameters
from the Java layer and it is encapsulated by the Da V|rtual ne. Another parameter

pResult is used to save the return result from J ethodca@ which is achieved through
macro RETURN_INT. .

(2)The function forkAndSpecialize n can (%d to create a common Android
application process and be used to cr syste ess. In Android system, only Zygote
process has permission to createth tem process and Android application process. When
Zygote process is up and fm%g Dalvik %lal machine, the gDvm.zygote value will
be equal to true. Then the fyaction orkAh@e ializeCommon can use the system call fork to
create a new process. %

The gDvm.zygo@ill be_seidp false in the newly process, so that it can know that it
is not Zygote pro en a process uses system to call the fork to create a new process, the
former is cal@nt progess, the latter is called a child process. At this time the child and
parent proce are th address space. But when an address space is written by the
i ess, written address space will become independent between

parent process an iflg*process. This mechanism is called COW (copy on write) [12].
So, when the zygote value of newly created process is set to false by the

functionfor%rs cializeCommon, the gDvm.zygote values of Zygote process is kept true.

vik virtual machine starts, it will share the core Java classes, Android core

file) and their JNI method(so file) with the System process and

plication process.But due tothe above COW mechanism, when

ry, System process and Android application process will still make a copy of these
resources, so that t they have a separate instance of the Dalvik virtual machine.

(3)Finally, the forkAndSpecializeCommon will call the dvminitAfterZygote function and
initialize further the newly created process running on Dalvik virtual machine.

From the above analysis, the Dalvik virtual machine process is created to complete. And
we draw a conclusion: a Dalvik virtual machine process is actually a Linux process.

Copyright © 2014 SERSC 407

app:ds:conclusion

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

4.2. Instance of creating a process

Through the above, we learn that the startup process for the Android application process.
Shown in Figure 6, we can know that it is each step of process startup.

Aplication Process

¢ StartActivity

System Server

v Binder pattern

Start new process

Scoket

\ 2
Zygote 0?
y fork ‘ .
Application process

J‘
Figure 6. Step of proc@
Now we will create and start an activity which med coWample HelloActivity,

and com.jsj.example is package name. We can hree par aIyS|s

(DIn the Android system, Launcher i§ @ Actl \the application is activated by
Launcher. When you click the screen |c auncher rt correspond to the application.

a) Launcher inherits from t|vity }and Activity class implements the
startActivity function, so the % calls, t ctivity.startActivity function. Through the
rtActiv

Binder driver program enters th t% ion of ActivityManagerService.
b) Through calling the t@mningA Locked function to obtain Activity in the top of

the stack, this is Hel{eé@&ty. This c\&ée is shown below:

NS
ctivityLo@ActivityRecord prev) {

Find th@@ctivity that is not finishing.

Activi% d next = topRunningActivityLocked(null);

} @
|

C) Fir@t e ActivityThread function will use Binder to reference token into remote

int ctivityClientRecord of ActivityRecord and notify ActivityManagerService that the
as entered Paused state. ActivityManagerService can now start HelloActivity.

Ie,

d) In configuration file AndroidManifest.xml of Activity application, the system default
using package’s name as process attributes, such as "com.jsj.example”. Each application has
its own uid, therefore, the combination of uid and process can create a ProcessRecord for
each application.

e) Create a ProcessRecord variable, and stored value in the member variable
mProcessNames. Finally, call startProcessLocked method of ActivityManagerService class
for the further operation. This code is shown below:

408 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

ProcessRecord app = getProcessRecordLocked(processName, info.uid);
if (app ==null) {
app = new ProcessRecordLocked(null, info, processName);
mProcessNames.put(processName, info.uid, app);

}

(2)The ActivityManagerService operation

a) The ActivityManagerService starts a new process for the application by Process.start
function and it will pass the first parameter’s value "android.app.ActivityThread". This is the

process initialization to load Java classes. \/
b) When the Zygote starts, Dalvik virtual machine will start at the same ough
openZygoteSocketIfNeeded function Process.start class connects to Zygote ygote and

creates a Socket connection. %} %
c) Through the Zygote.forkSystemServer function §:} S creates a new

process to start the SystemServer component. And Aygote ¢ % nSelectLoopMode
in

function into an infinite loop, and earlier ‘egeated so terface will wait
ActivityManagerService request to create a ne ?lcatlon g

d) Because the Zygote has returned to tion of s t, so the program will obtain
a ZygoteConnection object and conne soc n the program can call the

ZygoteConnection.runOnce function, a%w exe&\ forkAndSpecialize. Now start
creating process. This code is shoqv@

class ZygoteConne

boolean run 0 throws@mt MethodAndArgsCaller {

p|d orkAndS%mllze(parsedArgs uid, parsedArgs.qgid,
parse ds, parsedArgs.debugFlags, rlimits);

@66

e) Initiahzmg@e library for the newly created process. The parameter className is
assigned to, "android.app.ActivityThread" by ClassLoader.loadClass and load value of
className_i process.

main function of android.app.ActivityThread class. Firstly, create the
read object in the process, and enter the message loop. Then you can start Activity

(3) Run Activity in onCreate method

a) Retrieve previous created ProcessRecord and assigned to the app. The
ActivityManagerService calls mMainStack.realStartActivityLocked to get need to bootable
Activity, and the return value is HelloActivity.

b) The ActivityThread calls performLaunchActivity function to load the Activity class
which is com.jsj.example.HelloActivity and call HelloActivity’s onCreate function.

Copyright © 2014 SERSC 409

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

According to the Activity life cycle, complete HelloActivity class loading and object creation
and so on. The HelloActivity startup is complete.

5. Conclusion

With respect to the terms of the Linux kernel, the Android system is merely a Linux
application. In Android system, each android application has a separate instance of the Dalvik
virtual machine. The Dalvik virtual machine can regard the local operating system process as
own process and it can use the process scheduling mechanism of the Linux kernel to dispatch
its processes and threads. So it can realize high efficiency and fairness. In this paper, we
analyze process code schedule of Android Dalvik Virtual Machine, Dalvik virtual machine
startup process and Zygote startup process. We can know that the Dalvik work4and ryn
process. It is beneficial to study and improved the model of processes and thr%%ﬁhe

Dalvik virtual machine. 0

6. ACKNOWLEDGEMENTS *’

The author would like to thank the anonymous ref; oPtheir vawe suggestions. This
work was supported by Graduate Innovation Fund i ongjiwwince (YJSCX2012-
232HSD).

References . ()Q ‘\%

[1] Y. Pengxiang, “Research on the struct @ erfo m\ Dalvik virtual machine”, JinLin
university, (2011). &
tu

[2] D. Ehringer, “The Dalvik Virtu e Architec EO/OL]”
http://www.kiddai.com/NCTN% /The_ i) Virtual_Machine.pdf. (2010).

[3] Z.Yimin, C. Rong, “Analysis ab0ut Pro {\ vik Virtual Machine”, computer technology and
development, vol. 20, no. 010). t >

[4] J. E. Smith and R. Naiy< al MachineswVersatile Platforms for Systems and Processes”, China
Machine Press, (\

[5] L. Shengyang, “Ag syste
Industry, (28

[6] N. Matthe
(2002).

[7] Y. Fengsheng, “Androj

[8] K. Yuandan, “A i

[9] L. Shengyang
http://blog.csdn?

m®ce ode Scenario Analysis”, Publishing House of Electronics
pp* 611-641.

R. Stones, inning Linux Programming 2™ Edition”, China Machine Press,

ernals: System”, China Machine Press, (2011).

ernel analysis™, Publishing House of Electronics Industry, (2011).
e oot process analysis of Dalvik virtual machine [EB/OL]”,
t/luoshengyang/article/details/8923484, (2013).

[10]L. Shen “Analysis about creation process of processes and threads of Dalvik virtual
machi /OL]”, http://blog.csdn.net/luoshengyang/article/details/8885792, (2013).
[11]B. nd Bill Buzbee, “ A JIT Compiler for Android's Dalvik VM [EB/OL]”,

.kandroid.org/board/data/board/AndroidBeginner/file_in_body/1/android-jit-compiler-
roids-dalvik-vm.pdf, (2010).
ikipedia. Copy-on-write [EB/OL], http://en.wikipedia.org/wiki/Copy-on-write, (2013).

410 Copyright © 2014 SERSC

app:ds:conclusion
javascript:void(0);
http://www.kiddai.com/NCTU/ebl/dex/The_Dalvik_Virtual_Machine.pdf
http://search.china-pub.com/s/?key1=(%c3%c0)James+E.+Smith
http://blog.csdn.net/luoshengyang/article/details/8885792

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

Authors

Wen Hu, master instructor, president of School of the Computer and
Information Engineering, Harbin University of Commerce, backup leader
of “Electronic Commerce” provincial key discipline echelon and
academic leader of secondary doctoral discipline “electronic commerce
and information service” in first-class doctoral discipline “business
administration”. His main research fields include computer network and
communication, electronic commerce, embedded technology.

Information Engineering, Harbin University of Commerce. ain
research fields include embedded technology.

Yan li Zhao, Master, student of School of the Cmgs nd

Copyright © 2014 SERSC 411

International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

412 Copyright © 2014 SERSC

