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Abstract 

In recent years, outsourcing large amount of data in cloud and how to manage the data 

raises many challenges with respect to privacy. The concerns of privacy can be addressed if 

cloud users encrypt the data deployed in the cloud. Among the various cryptographic 

encryption schemes, homomorphic scheme allow to perform meaningful computations on 

encrypted data. In this context, the research deals with homomorphic encryption scheme for 

maintaining privacy and security in cloud by detecting the error incurred while transferring 

data using RSA cryptosystem. Three types omomorphic error detection schemes proved that 

preserving privacy seems to be efficient using Map-Reduce Model. 
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1. Introduction 

Cloud computing is started off with Grid Computing, where large number of systems 

are used for solving scientific problem that require high levels of parallel computation. 

This technology expanded exceptionally, which eventually stimulated concerns over 

ensuring data security in public networks 

According to a recent Survey conducted by Cisco Global Cloud Networking 

Academy, it has been revealed that 72 percent of IT professionals stated that security of 

data is a major hindrance to implement the services in cloud [1]. Recent development  in 

cloud storage and the services rendered by it allows users to outsource storage. As a 

result, it allows companies or organizations to offload the task of maintaining 

datacenters. In the past few years, the security requirements for data are very strong and 

many algorithms have evolved [2]. Only a few algorithms play a comprehensive role in 

creating and maintaining a secure session over vulnerable public networks. Public key 

cryptography is one of the commonly used algorithms for this type of operation. The 

authenticity between the communicating parties is ensured by implementing this 

technique. These communicating parties share their private keys amongst them before 

exchanging information. In the case of transmitting a message over a public channel, 

the work of Diffie Helman [1] and RSA [3] provides way to encrypt a message into 

cipher text using private key. Consequently, the receiver on the other side has to read 

the cipher text by decryption with the help of their private key. The encryption scheme 

shows that the secret decryption key allows retrieving the actual text but if the secret 

key is lost, the ciphertext is of no use. In 1978, RDA [4] decided to propose a technique 

on performing arbitrary computations on encrypted data. Such techniques give rise to 

useful applications to privately perform manipulations on encrypted data in the cloud. 

The necessary data can be decrypted by performing their corresponding computations. 

Assuring privacy tend to be very critical when complex computations are performed on 

encrypted data.  
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Homomorphic encryption is evolved to solve such critical issues. The homomorphic 

properties of ciphers have been implemented in various real time applications. Some of 

them include privacy protection during electronic voting, computat ion in multiparty 

environment computation and analyzing traffic in distributed environment [3]. 

Basically, homomorphic encryption enhances the security measures of cloud data. Data 

protection is achieved through the homomorphic encryption scheme, which all ows 

additive and multiplicative operations over encrypted bits. The cloud provider accepts 

encrypted user query data to perform processing without being aware of its content. The 

results of the user query which is again an encrypted data is sent to the user. The user 

alone decrypts the data and views the result of the query.  

The public-key and private-key cryptosystems are designed with various fault attacks 

[5]. Error Detection (ED)-based countermeasures have been developed for both private-

key cryptosystems such as AES, public-key cryptosystems such as RSA[6], ECC [7][8]. 

In this research, the focus is on detecting the fault attack using public -key 

cryptography, RSA. It is identified that countermeasures for RSA can be devised. It is 

achieved through the digital signature mode which is based on CRT-RSA. 

In the past years, homomorphic Encryption allows simple computation on encrypted 

data. Such practice is known for a long time. The GM [9] encryption scheme supports 

addition of encrypted bits mod 2 (Exclusive OR function). A number of encryption 

systems that are either additively or multiplicatively homomorphic followed the suit. 

Encryption systems of ElGamal encryption scheme [10], The Paillier encryption 

scheme[11][12] and its generalization [2], a host of lattice-based encryption schemes  

and others evolved [13][14][15]. A system used in involved additive and multiplicative 

encrypted texts which has more number of additions and just one multiplication. 

Constructing an encryption scheme that is both additively and multiplicatively 

homomorphic remained a major challenge [16]. The additive and multiplicative 

homomorphisms form a complete set of operations. The scheme enables performing any 

polynomial-time computation on encrypted data. Later, Gentry[16] constructed a fully 

homomorphic encryption which allows evaluation of arbitrary number of additions and 

multiplications on encrypted data [17][18]. Rivest et al [19] Gentry and Halevi[16], 

Diffie and Hellman[20] proposed the RSA with multiplicative and additive 

homomorphism respectively. 

 

2. Fault Attack on Cryptographic Implementations 

Cryptographic algorithms like symmetric ciphers, asymmetric ciphers, and hash functions 

are designed with a set of primitives that meet specific objectives (Guan et al 2013). The 

Cryptographic implementations on evaluation show their resistivity against attacks. It is 

necessary to determine countermeasures against such attacks and evaluate the feasibility and 

applicability of such attacks. Side channel attacks assist in breaking the  hardware or software 

implementations of many cryptosystems including block ciphers (DES, AES), stream ciphers 

(RC4, RC6), public key ciphers (RSA-type ciphers, ElGamal-type ciphers, ECC, XTR, etc.), 

to break the implementations of signature schemes, chunk authentication code schemes, 

cryptographic protocols, cryptosystems, and networking systems. Side channel faults are of 

two kinds. The first kind of fault is induced during cryptographic computation. These faults 

are either random or intentional, caused by a voltage manipulation. The second kinds of faults 

occur by intentionally injecting corrupted input data. This research focuses on such 

computation wherein the receiver while noticing a mismatch identifies that the chunk is 

faulty.  
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3. Fault attack on RSA  

There are many formal definitions for public key cryptosystems such as RSA and Pailler 

cryptosystem. Public-key cryptography is asymmetric since one of the participants has a 

secret key, while the others have access to the public key that matches the secret key. But, the 

symmetric system has only one key which should be shared between the two participants. The 

complexity of the systems indicates that the computation of public key systems is time 

consuming. The objective is to exchange data between two users without sharing a common 

secret.RSA Labs embarked on an effort to differentiate the security level of symmetric key 

and the RSA key size (Yu et al 2013b). The security of RSA depends on the key size. In 

integer factorization problem-based algorithms, the security depends on the difficulty to 

factorize a large number to obtain large primes.  

   

3.1. RSA Encryption Scheme 

A public-key encryption scheme E1 is a tuple which is represented as (Enc; Dec, KeyGen). 

The key generation algorithm (Enc, Dec, KeyGen) takes the security parameter k1 as input 

and outputs a pair of keys (pubk; seck). pubk refers to public key and seck refers to private 

key or secret key. pubk and seck each have length at least k1, and that k1can be determined 

from pubk; seck.  
(1) Key Generation: Choose two distinct prime numbers p1 and q1. For 

security purposes, the integers p1 and q1 should be chosen at random, and 

should be of similar bit length. Prime integers can be efficiently found 

using a primality test. 

 Compute n1 = p1*q1. n is used as the modulus for both the public and 

private keys. Its length, usually expressed in bits, is the key length.  

 Compute φ(n1) = φ(p1)φ(q1) = (p1 − 1)(q1 − 1), where φ is Euler's 

totient function.  

 Choose an integer e1 such that 1 < e1 <φ (n) and gcd (e1, φ (n1)) = 1; 

i.e e1 and φ(n1) are co-prime. e1 is released as the public key 

exponent. e1 having a short bit-length. 

 Determine the multiplicative inverse of e1 (modulo φ(n1) as d1−1 ≡ e1 

(mod φ (n1)), i.e., d1 is the multiplicative inverse of e1). This is more 

clearly stated as: solve for d given d1⋅e1 ≡ 1 (mod φ (n1)). This is 

computed using the extended Euler function. d1 is kept as the private 

key exponent. The public key consists of the modulus n1 and the public 

(or encryption) exponent e1. The private key consists of the modulus 

n1 and the private (or decryption) exponent d1, which must be kept 

secret. p1, q1, and φ(n1) must also be kept secret because they can be 

used to calculate d1. 

(2) Encryption process is a technique to convert the plaintext into ciphertext. 

Public key is used for encryption process. Public key pair is given as (n, e). 

Message encryption process is done using the value of (n,e) and is 

represented as : 
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                                C=M
e
(mod n)                                  

(1) 

 M denotes the input message. C denotes ciphertext. 

 Encryption algorithm (Enc) uses a public-key pubk and a string m1 called 

the message from some underlying message space (M1) as input. It 

produces a ciphertext c1 from an underlying ciphertext space (C1). 

(3) Decryption process is a technique to convert the ciphertext into plaintext. 

Private key is used for decryption process. Decryption algorithm uses a 

private-key pair(n1,e1) and a ciphertext C1 as input and produces an output 

message M1. 

 It is represented as: 

      M=C
e 
(mod n)                                                     

(2) 

 M denotes the output message. C denotes the ciphertext messages. 

 

3.2. RSA Homomorphic Property 

A partially or fully homomorphic system requires another algorithm to perform operations 

on ciphertexts(He et al 2012). The public-key encryption scheme E = (Enc, Dec, KeyGen) is 

homomorphic if for all k and all (pk; sk) output from KeyGen(k), it is possible to define 

groups M,C so that: The plaintext space M, and all ciphertexts output by Enc pk are elements 

of C. For any m1, m2€M   and c1, c2 € C  with m1 = Dec sk (c1) and m2 = Dec sk (c2) it holds 

that: Dec sk (c1 *c2) = m1 * m2 where the group operations * are carried out in C and M, 

respectively. and c1, c2 € C1 with  

m1 = Dec seck (c1) and m2 = Dec seck (c2) it holds that: Dec seck(c1 *c2) =  

m1 * m2. 
 

3.3. Paillier Encryption Scheme 

As discucced above, public-key encryption scheme tuple E is represented as (Enc, Dec, KeyGen)  

(1) Key Generation: The key generation algorithm is similar to RSA 

which follows the steps as: 

 Choosing two large prime numbers p1 and q1 randomly and 

independently of each other such that gcd(p1q1,(p1-1) (q1-

1))=1. This property is assured if both primes are of 

equivalent length, i.e.,   for security 

parameter. 

 Computation of n1=p1*q1 and . 

 Selecting random integer g1 where  which 

ensure that n1divides the order of g1 by checking the 

existence of the following modular multiplicative inverse: 

                         (3) 
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  where function L1 is defined as   . 

  Note that the notation  does not denote the modular multiplication of a1 

times the modular multiplicative inverse of b1 but rather the quotient of  

a1 divided by b1, i.e., the largest integer value v  to satisfy the 

relation  a  

 The public (encryption) key is (n1, g1) 

 The private (decryption) key is ( ) 

 If using p, q of equivalent length, a simpler variant of the above key 

generation steps would be to 

set  and where 

. 

(2) Encryption process is a technique to convert the plaintext into ciphertext. 

Encryption algorithm (Enc) uses a public-key pubk and a string m1 called 

the message from some underlying message space (M1) as input. It 

produces a ciphertext  from an underlying ciphertext space (C1). 

 Let m be a message to be encrypted where m  

 Select random r1 where r  

 Compute cipher text as:  c1= . 

Public key is used for encryption process. Public key pair is given as (n1, 

g1). Message encryption process is done using the value of (n1,g1) and is 

represented as : 

       =                          

(4) 

 m denotes the input message. 1 denotes ciphertext. r1 denotes random 

number.  

(3) Decryption process is a technique to convert the ciphertext into plaintext. 

Private key is used for decryption process. Let c1 be the cipher text to 

decrypt, where c . Decryption algorithm uses a private-key pair 

( , ) and a ciphertext   as input and produces an output message M1. 

 It is represented as: 

             M1= l1 ( ).                 (5)               

 M1 denotes the output message. 11 denotes the ciphertext messages. 
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3.4. Paillier Homomorphic Property  

The other algorithm to support the homomorphic property of pailler cryptosystem is 

explained. A public-key encryption scheme E = (Enc, Dec, KeyGen) is homomorphic if for 

all k and all (pk; sk) output from KeyGen(k), it is possible to define groups M,C so that: The 

plaintext space M1, and all ciphertexts output by Enc pk are elements of C. For any m1, 

m2€M   and c1, c2 € C with   m1 = Dec sk (c1) and m2 = Dec sk (c2) it holds that: Dec sk (c1 *c2) 

= m1 + m2 where the group operations + are carried out in C and M, respectively and c1,c2 € 

C1 with m1 = Dec seck (c1) and m2 = Dec seck (c2) it holds that: Dec seck(c1*c2) = 

m1+m2.The addition of two ciphertexts will be equal to encrypt to the sum of their 

corresponding plaintexts.  

The homomorphic encryption on cloud store proposed in the research preserve the privacy 

of data encrypted. The large data tested using additive and multiplicative homomorphic 

property is a time consuming process. It is controlled by an efficient application of the 

process in parallel mode [22].  Hadoop's Map-Reduce discussed in the previous chapter 

seems to be an attractive cost effective solution for large scale data processing services like 

securing data in the cloud through block encryption in parallel mode [23].  
 

4. Homomorphic Based Error Detection Scheme 

The error detection scheme includes input block that contains all the input chunks. Based 

on the size of the input, chunks are created. The number of chunks decides the type of error 

detection scheme. When the count of chunks is two, the basic error detection scheme for even 

chunks is evaluated as discussed above. When the count of chunks is odd the error detection 

scheme for odd chunks is evaluated. Under this scheme a constant chunk is generated and it is 

used during encryption. The large dataset involves large number of chunks relatively of the 

order of n follow the enhancement error detection scheme. The enhanced error detection 

scheme is allowed to run in parallel framework. K denotes number of input chunks taken for 

all three schemes. Figure 1 Homomorphic error detection scheme. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Homomorphic Error Detection Scheme 

4.1. Multiplicative Property 

Basic ED scheme select two successive chunks and perform encryption of two chunks. It 

calculates the multiplication of two chunks and perform the encryption the multiplication of 

two chunks. Basic ED scheme select two successive chunks and perform encryption of two 

chunks. Then calculate the multiplication of two chunks then perform the encryption the 
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multiplication. The chunk count to be processed is odd to generate constant chunk and add 

this chunk to input chunk list. The encryption process is initiated by encryption of two input 

chunks and buffers the corresponding results. The product of two chunks is calculated 

continued by performing encryption of the calculated chunks product. All the three schemes 

are decided to check the homomorphic property. When homomorphic property is satisfied it 

indicates no mismatch between the product of ciphertexts and the ciphertext of the product of 

chunks. When the homomorphic property not satisfied, it indicates fault on the encrypted 

data. Figure 2 shows homomorphic property of RSA. 

 

 

Figure 2. Homomorphic Property of RSA 

4.2. Additive Property 

Basic ED scheme select two successive chunks and perform encryption of two chunks. It 

calculates the addition of two chunks and perform the encryption the addition of two chunks. 

The chunk count to be processed is odd to generate constant chunk and add this chunk to 

input chunk list. The encryption process is initiated by encryption of two input chunks and 

buffers the corresponding results. The addition of two chunks is calculated   by performing 

encryption of the calculated chunks  addition. All the three schemes are decided to check the 

homomorphic property. When homomorphic propery is satisfied it indicates no mismatch 

between the addition of ciphertexts and the ciphertext of the addition of chunks. Figure 3 

indicates the homomorphic property of pailler cryptosystem. 
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Figure 3. Homomorphic Property of Pailler Cryptosystem 

4.3. ED Scheme for Even Chunks 

The homomorphic error detection scheme operates on encrypted data in three steps namely 

one verification operation after three normal operations. The process starts with the 

encryption of two input messages and stores the result. The next step involves the encryption 

of the product of the two messages which occupies buffer. The comparison of the stored 

results is achieved through a comparator. The mismatch between the product of the ciphertext 

(i.e., C1× C2) and the ciphertext of the product of the chunks (C3)   shows an injection has 

occurred. Figure 2 represents the basic multiplicative homomorphic property supported by 

RSA.  

On the otherside, during such operation fault can even occur inside comparator. Such 

problem can be resolved using a self-checking comparator or a duplicate running in parallel. 

The results are stored in registers along with the secret information such as p1 and q1. This 

prevents the attacker to steal the ciphertext before verification is done. The drawback in the 

scheme is that it requires always even number of chunks. Figure 3 gives a detailed design of 

error detection scheme for even chunks. 

The homomorphic error detection scheme operates on encrypted data in three steps namely 

one verification operation after three normal operations. The process starts with the 

encryption of two input messages and stores the result. The next step involves the encryption 

of the addition of the two messages which occupies buffer. The comparison of the stored 

results is achieved through a comparator. The mismatch between the addition of the 

ciphertext (i.e., C1+ C2) and the ciphertext of the addition of the chunks (C3) shows an 

injection has occurred. Figure 4.3 represents the basic additive homomorphic property 

supported by Paillier. On the otherside, during such operation fault can even occur inside 

comparator. Such problem can be resolved using a self-checking comparator or a duplicate 

running in parallel. The results are stored in registers along with the secret information such 

as p1 and q1. This prevents the attacker to steal the ciphertext before verification is done. The 

drawback in the scheme is that it requires always even number of chunks. Figure 4 gives a 

detailed design of error detection scheme for even chunks. 
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Figure 4. Error Detection Scheme for Even chunks 

4.4. ED Scheme for ODD Chunks 

The basic ED scheme supports even chunks. Therefore to support odd chunks the next 

scheme is proposed. Here introduction of padding solves the problem. In such cases the 

simple chunk M1 has to follow the previous algorithm proposed with a constant chunk M2. 

The chunk M2 can either be a constant chunk or a random generated value. The scheme 

encrypts input chunk M1. It is followed by the encryption of chunk M1×Mcons mod n for RSA 

and encryption of chunk M1+Mcons mod n for Pailler cryptosystem. The comparison of the 

result with the product and addition of encryption of M1 and constant chunk Mcons helps to 

identify the fault. Figure 5 represents a detailed design of error detection scheme for odd 

chunks. 
 

 

Figure 5. Error Detection Scheme for Odd Chunks 

Yes 

No 

Yes 

No 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.3 (2014)  

  

 

372   Copyright ⓒ 2014 SERSC 

4.5. Enhanced ED Scheme 

This scheme is designed for the chunks which are relatively large. The previous schemes 

time overhead ranges from 50% to 100%. To reduce the time overhead further, the third 

scheme is proposed by performing the same multiplicative and additive operation using Map-

Reduce concept explained in the previous section. In this parallelized scheme, each mapper 

holds n chunks where the chunks are split based on the available number of mappers to 

compute the encrypted form of the input chunks. Mapper i..Mapper k are designed to perform 

encryption on the chunks resulting in E(Mi)..E(M j) under Mapper i to E(Mk)..E(Mp) under 

Mapper k. The leftover odd chunk follow the padding scheme of constant chunk as explained 

previously. Figure 6 represents the design of enhanced error detection scheme. 

 

 

Figure 6. Enhanced ED scheme using map-reduce 

6. Results and Discussions  

6.1. Experimental Setup 

The error detection scheme without Map-Reduce has an environment which has an 

Intel I5 processor running at 2.4 GHz, 4 GB RAM. The error detection scheme of RSA 

and pailler is implemented in Java. The scheme with Map-Reduce has an environment 

of 32 node cluster discussed in previous chapter. On examining the overall system 

performance, the proposed scheme efficiently detects fault attack on RSA and pailler 

system. Here the time overhead, hardware overhead and memory overhead are 

considered as performance metrics. Time overhead of proposed ED scheme varies 

according to the count of chunks and the number of nodes available for processing. 
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Basic ED scheme took two chunks for processing. It produces 50 % of the time 

overhead. The ED for odd chunks produces 100% of the time overhead. ED scheme 

using Map-Reduce produces minimum time overhead compared to the other two 

schemes. 

 

6.2. ED Scheme for Even Chunks 

The homomorphic evaluation of the basic scheme involves various metrics which are 

measured against memory, latency and running time. The memory overhead is due to the 

values of the buffers that hold the ciphertexts. While running the basic ED scheme the time 

overhead incurred includes computation of product of the chunks (M1×M2), encrypting the 

product E(M1×M2 mod n), computation of the product of the ciphertexts of the two chunks 

(C1×C2) and comparing the results. But in pailler scheme, the time overhead incurred includes 

computation of addition of the chunks (M1+M2), encrypting the addition E(M1+M2 mod n), 

computation of the addition of the ciphertexts of the two chunks (C1+C2) and comparing the 

results. The time overhead due to addition of messages are negligible when compared to the 

evaluation of encryption of addition of chunks. It results in 50% time overhead in the case of 

basic error detection scheme. But the time overhead incurred due to multiplications is 

relatively high when compared to the RSA sytem. It results in 50% time overhead in the case 

of basic error detection scheme. Fault detection latency which is defined as the time delay 

between the time of fault occurrence and the time of its detection is high when the fault 

occurs on the first chunk. It is therefore equal to the time cost of the three encryptions (i.e., 

E(M1), E(M2) and E(M1×M2 mod n) for RSA and cost incurred for E(M1), E(M2) and 

E(M1+M2 mod n ) for Pailler. The output latency of both the schemes are high since the 

ciphertext comes out only after the verification.  

While running the basic ED scheme fault detection latency which is defined as the time 

delay between the time of fault occurrence and the time of its detection is high when the fault 

occurs on the first chunk. It is therefore equal to the time cost of the three encryptions in both 

the cryptosystems (i.e. The output latency of the scheme is high) where the ciphertext comes 

out only after the verification. 

 

6.3. ED Scheme for Odd Chunks 

In the error detection scheme for odd number of chunks, the introduction of constant chunk 

has the advantages of holding the constant value in the buffer. It saves time of creating a 

random value whenever it is required by the comparator. Rather than generating the second 

chunk value and encrypting the buffer each and everytime it can hold it permanently and 

hence saves the overall running time. The cipher text of the constant chunk can be 

precomputed, Instead of generating randomly whenever required. The time overhead for 

encryption of product of single chunk is 100 percent.  But such overhead due to the last chunk 

has little impact as the size of chunk increases. This methodology gives similar results in both 

the cryptosystems.  

 

6.4   ED Scheme Using Map-Reduce 

Due to parallelization, the time overhead incurred in computing encrypted form of each 

chunk is considerably reduced. The time taken to compute c1,c2.. cn using Mappers relatively 

reduce the 50% overhead incurred before. However after computing the above ciphertext for 

n chunks the product of the chunks when calculated inside mapper i (M i×M j) and mapper k 
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computing (M k ×M p) gives the result which when iterated yields the result of mapper i × 

mapper j. Similarly Pailler cryptosystem yields addition of the chunks when calculated inside 

mapper i (Mi+Mj) and mapper k computing  

(Mk+Mp) gives the result which when iterated yields the result of  

mapper i + mapper j. The time overhead due to multiplications and additions is negligible 

when running Map-Reduce on compute clusters with large number of nodes. This results in 

less than 20% time overhead which varies with the number of nodes of cluster. The memory 

overhead involves the usage of buffers to store the results of mappers. The worst case 

scenario of fault detection latency happens when the fault occurs on the first chunk. When 

compared to the other two schemes here the fault detection latency cost is reduced to two 

encryptions. (i.e., one-time encryption calculation of all chunks c1.. cn and E(M i ×..×M k) for 

RSA and E(M i +..+M k). The output latency is relatively low even when it comes after 

verification as the parallel computation yields one-time calculation of encryption of chunks. 

When the homomorphic property not satisfied, it indicates fault on the encrypted data. Figure 

7 gives an evaluation of RSA and Pailler for varied chunk sizes. It shows that Pailler 

consumes relatively more time than RSA. The enhanced scheme consumed relatively equal 

time for varied chunk sizes. 

 

 

Figure 7. RSA Vs Pailler Cryptosystem 

7. Conclusion  

In this research, an effective low-cost and high-performance error detection scheme that 

uses additive homomorphic property of RSA and Paillier is introdued. The time overhead for 

the error detection scheme for odd and even chunks varied from 50% to 100%. The one-time 

encryption of individual chunks using Map-Reduce algorithm has significantly improved the 

fault detection latency in both RSA and Pailler cryptosystem. The memory overhead depends 

on the mapper output values that are stored in buffers. All the schemes support for output 

latency is relatively low as the verification to find the fault occurs only after comparing the 

output of the mapper. 
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