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Abstract

*
Optimization problems, variational inequalities, minime Ie ca formulated as
equilibrium problems. The iterative algorithms of fixg ints are f’t?a%wlied to finding the

solution of equilibrium problems. In this paper, we i @' cean id iterative algorithm
for finding a common element of the set of fixed points of asymptotically nonexpansive
mappings and the set of solutions of an equilib@h probb@Hilbert spaces. Besides, an
example of variational inequality prob e@s given toNiflustrate the efficiency and
performance of the newly algorithm. %

.\
Keywords: Equilibrium probl m@ﬁrid algo& Strong convergence; Asymptotically
nonexpansive mapping A 0\%
1. Introduction @ %TQ
The classical Variati\@\ equality\Probiiem is to find a vector such that
(Ry

>0, VyeC (1.1)

The probl as first ingroduced by Hartman and Stampacchia [1] in 1966. The

primary goal(is tdycomp tationary points for nonlinear programs. It is widely used in
the study of Optifnizatio quilibrium problems and finding the numerical solution for

many practical probl% has a wide range of applications in engineering, operations
research, economi . Many practical problems process for seeking better or best
alternative soluti@m a number of possible solutions. However, the analytical optimal
solution is (difficult to obtain even for relatively simple application problems. Researchers
instead st numerical optimization algorithm arises from almost every field, such as
engineeti esign, systems operation, decision making, and computer science for example

[24
#@ equilibrium problem is to find x < ¢ such that

f(X,y)20, VyeC 1.2)
The set of solutions of the above inequality is denoted by ep(f) . Let f(x.y)=(F(x).y-x),

then (1.1) can be regarded as an equilibrium problem. The concept of equilibrium, which has
long been connected with maximization or minimization, plays a central role and provides a
valuable benchmark against which an existing state of such complex systems can be
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compared. S. Dafermos [5] showed that a network equilibrium conditions were a finite-
dimensional variational inequality and then utilized the theory to establish both existence and
uniqueness results of the equilibrium problems as well as to propose an algorithm with
convergence results.

The theoretical and practical challenge in solving equilibrium problem is due mainly to the
fact that no natural objective is available and therefore monitoring the convergence of an
iterative process to an equilibrium solution is difficult. For instance, iterative methods that
proceed by solving a sequence of optimization problems rely for convergence on theoretical
conditions difficult to verify in practice.

Asymptotically non-expansive mapping was first introduced and studied by W.A. Kirk [6]
in 1972. From that moment on, many researchers further studied the properties of
asymptotically non-expansive mappings.

In this paper, we adopt a different point of view and propose a new hyb

algorithm for the fixed point of asymptotically non-expansive mapping and t on of an
equilibrium problem. The algorithm reduces the projection region at each | progress
and monitors the convergence of an iterative process by the,distance fro ive element
to the projection set which reduces gradually with the iter, gr ss es, we give an
example of variational inequality problem to illustr |C|ency rformance of the

newly algorithm.

2. Preliminaries Q . Q

There have been many methods propos @e IiteratureXs udy the equilibrium problem,
among of which we think the prmecﬂon%’wd is @w best ways. We first present the
projection ant its equivalent descnpﬂor&H s%e\

Throughout this paper, let H ilbert spa ) denote the inner product. Let ¢

be a nonempty closed conve t of or any x < H , there exists a unique nearest
point inc , denoted by . (x) uch that | X I<lx-yll. vyec .Suchamapping r, is called
the metric projection of c.Fu t re[7],forxen and zec,
O(X) if Onlylf x—zz—y>>0 YyeC .
A mapping T : Sald tc@ ptotically nonexpansive if for each n < N, there exists
anonnegaﬂv@ mber «,#8gtisfying 1im «, -1 such that

|T "x-T y||<k Ix-yl, Vx,yeC .
We denote by r¢ xeH:Tx=x} the set of fixed points of v+ . If T:H > H IS

asymptotically n(@nsive, the r(T) IS nonempty convex.
For solving thé,equilibrium problem, let us assume that a bifunction £ satisfies the
following cﬁiﬂpns [8]:
(Al) y=0,forall xec ;
Q IS monotone, i.e., f(x,y)+ f(y,x)<o0,forall x,yec;
or each X,y,z2eC, limsup f (tz+ (1-t)x,y)< F(X,y) .

t>0"

(A4) foreach x<c , f(x,-) isconvex and lower semi-continuous.

To prove the strong convergence of our algorithm later, the following two lemmas are
presented here.

Lemma 1 Let ¢ be a nonempty closed convex subset of w , and let :cxc - R

satisfying (A1)-(A4). And let r~o0,and xe n . Then, there exists z < c such that

1
f(Z,Y)+7<y—z,z—x>20, vyeC.
r
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Further, define a mapping T, : x - ¢ as follows:

1
Tr(x):{ZeC:F(z,y)+7<y—z,Jz—Jx>20, Vyec},
r

forall z<w . Then, the following hold:
1) . issingle-valued;
2) 7, isfirmly nonexpansive, i.e.,
ITx =Ty P<(Tx-Ty,x—y), Vx,yeH ;
3) F(T)=EP(f);
4) ep(t) isclosed and convex.
Lemma 2 Let ¢ be a nonempty closed convex subset of + , and let + cxcﬁ

satisfying (A1)-(A4). Let r>o,for xen and qe r(r.), then jq-1.x1F +17.x - x IF<||
gppmgs

3. Hybrid iterative algorithm for asymptotlcally nonexpans e

and equilibrium problems
In this section, we introduce a new hybrid iterativ r hm for fixed point of

asymptotically nonexpansive mapping and the soluti uilipriu blem and analysis
the strong convergence of the proposed method. t, we strong convergence
|nts of asymptotically

nonexpansive mapping and the set of solutions quilibri oblem in a Hilbert space.

theorem for finding a common element of %e of zero
Let ¢ be a nonempty bounded closed @ X subset a real Hilbert space w , let

f:cxc—»Rr be a functional, satlsfyl A )( t T:c>c be a asymptotically
nonexpansive mapping with «, such at (™)N x

Now, we introduce a new p OJ ethod |I|br|um problem as follows:
Hybrid Algorithm

1) Given ¢, >o (erro >0, o x1. Let ¢, =c , choose arbitrarily x, < c,

2) Generate y, Itera

n—ax +(1- a)Tx y
wher@ a<1for
3) Solv thbr@ oblem
y)+r y—-u,u, -y, >>0, vVyeC

and obtai olutlon u, ec ,where {r1c (0,») such thatnm infr, =r,>0;

4) R projection region by dividing the distance equally
C, —{ZEC qlu, -z IP<lix, —zIf +6 }

@9!’60" =(-a,)(k —l)(diam(C)) —>0,a85 n-> o,
@Reduce the projection region using Acute Angle Principle:
Q,={zecC :<xn—z,x0—xn>20};
6) Take the projection on the object point-set as the next iteration point:
Xoo = Peng, (X6)

If 1x,., - x, I< &, then stop; otherwise, set n:=n+1go to 2).

+1

Copyright © 2014 SERSC 305



International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

\,‘
Figure 1. Hybrid algorithm diagram 0;

Convergence analysis %’ %
In the following, we prove the strong convergence of t ed meth

Theorem The sequence ¢x,3 generated by the@ gorithm erges strongly to
X = PLnesen, (%), Which is @ common element of t of z&\ nts of asymptotically

nonexpansive mapping t and the set of solutiond o quilibri\%roblem 1.2).
Proof. Firstly, ¢ and o, are closed and (@ for eac \5 .
Secondly, F(r)NEer(f)cc,NQ,, vne

% eN , lﬁ@ Lemma 1, we have 1 _ is relatively

Let pcr(m)NEer(f). Putting u, =7 é

nonexpansive hence nonexpansia, or ngN X
? 2 2
llu, - *T,"yn—pllx =T pll<ly, - pI .
Since 5&
W e, 1x, Ap I ‘

—a")(T"x" - p)

\ sL\Q— Fr@-a )k X, - p I
Q <[ x, - +6,
we have ||un||x"— p +é)thus pec, . Hence F(r) Nep(t)ycc,. FOr n-o, we have

F(T)NEP(f)cC =Q,. thatr(ryNer(f)cq,, then o = F(T)NEP(f)c c, Nq, and there
exists a unique ele L ec,Nq,suchthat x ,ep, ., (x,).Then

+1

<x"+1— Z,X, = x"+1>2 0, VzeC, ﬂQ" .

In particula%
<x"+1— p,X, — x"+1>2 0, Vpe F(T)n EP(f) .

0

It foll ;at F(m)NEep(f)cq,,. By induction, F(m)N Epr(f)cq
I1-defined.
dly, ¢x,3 is bounded and i1im |jx, - Tx, |0 .

vneN . This means that

n

It follows from the definition of o, that x - ¢, (x,), thus
lx, - x, I<llz-x, Il YzeQ,, vneN (3.1)
1eF(M)NEP(F)cQ,, vneN,then jx, - x,I<iz-x, 1.
On the other hand, from «x,
(Ix, - x, It IS nondecreasing. Since c is bounded, we obtain that tim |, = x, | exists. This

= Pong (X)eQ, , We have |x, - x,l<lix,, - x,Il. vneN .SO
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implies that ¢x,3 is bounded. Noticing again that x  -r

L= Peng (x)eQ, and x, = P, (x,), We have
<><n+1 - X, X, - x0>2 o.Thus, forall nen,

2 2
Xy = %, =10 = %) = (X, = X)) I

=l X I = = X 1P =2 (%, = %, %, = X, )
Xy = %o P = 1%, = %, IF - (3.2)
This implies that
fim 1, = x, [l 0 (3.3)
Since x,., =P, o, (x)eQ, , then jju —x _, IF<ix, -x,, I +6, - o.Hence
fim {1, = u, [ 1im [1x, =, |+ lim |, = u, > 0 (3.4)

For peF(T)m EP(f)ccC,, WE have ||u"—p|| S||><n—p|| +6, .

Since u, =7, y,, by Lemma 2, we get that ?y

lu, =y, =0T, y, =y, |
<hy,-plF =IT, vy, - pIf $ @
<lix, = pIF+6,~llu, - pIF> QQ \/ (3.5)

Since «, <a<1, vnen , then by (3.4) and (3.5) , we \\/

%, = T"x, =

1 1
n " Iy, = x, ||S@/ -u, ||+||
l-a,
Put k, =sup{k,:n=1,2,"3}<+0 , WE have O

—> 0.

*

ITx, - x, < Tx, -T""*

X, I+ 1T " x % ot ||;® X T+ 1%, = x|l
<k, I, =T %, l1+( & sl 0.
Finally, {x,3 convergence stron I@ Pe nge

Since ¢x 3 is bounded, there ts a s nce {x, 3 of {x) such that x, —*-w'. By
Demiclosed Principle, we w'e F(T) We ShOW w'e EP(f) .
From (3.4 and (3 5) that u\—*>'w', y, —*>w. Since u =7 vy, replacingn by n_,

from Condition (A ( Q

Let k > « , sm;nm |nf r y (3 5) and Condition (A4), we get that ¢ (y.w) <o, vyec .

For te(o,1),yecc —ty+@-tw', then y ec , thus (y,,wy) <o . By Condition (Al), we
get that

>*f(unk,y)2 f(yu,) VyeC.

0= f(y,y)<th(y,y)+@-)f(y,w)<tf(y,y)
Dividing \EVVe have f(y,.y)>0, vyec . Let t» o, from Condition (A3), we obtain that
QEC . Therefore, w'<ep(f).

W= Py e (%) - SINCE x =P

1 c, N,

f(w'y
(x,), we F(T) Nep(fycc,Nq,,then

%oy = %o lI<llw = %o |1

n+1

Since the norm is weakly lower semi-continuous, we have

fw—=x, [I<llw'= x, [I< Iireri:f I X, = X, [I< limsup || X, = X, [I<llw = x Il .

k— o

Hence 1im jx, - x, I=llw'- x, [=lw - x, | . Using the Kadec-Klee property of w , we get
limx, =w'=w. Since {x 3 is an arbitrary subsequence of (x3, we can conclude that ¢«

k— o

converges strongly to » . The proof is complete.

F(T)ﬂEP(f)
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Remark The space =" is a Hilbert space with the inner product defined by (x.y)-
Zﬂf% , wWhere x=(s..¢), y=@." ), and the corresponding norm is jxi-(x.x)"

—(¢2++¢7) . Hence, the above algorithm holds under the framework of & " .

Terminal condition
Inequality (3.3) shows that our algorithm is terminable. Let us estimate the terminal
condition of our iterative scheme. By (3.1), we have
lIx, = %, I < dist(x,,Q,)" ,

where dist(x,.Q,) = inf{d (x,.y): y € Q,} . SINCE {lIx, - x, I} IS nondecreasing, by (3.2) we obtain

2 . 2 2
X, = %, IF<dist(xg, Q) = Il X, = X, II" «

+1

L 4
So if n satisfies dist(x,,Q,)* <2+ 1%, - x, I, then terminate the iterative progress. \/

4. Numerical Examples 0
In this section, we test the proposed iterative sche *ﬁ%/a’n ex%of variational
inequality problem. All computations were done using ithaDualGdre Intel Core i5
rogr m&/s implemented in

430M, 2533 MHz and with 4GByte of RAM.
MATLAB R2010b.

Throughout the computational experiment, thesgarameters ip.Hybrid Algorithm were set as
£,=10"°, a=0098, {«,}are uniformly distribu%om n in 0,a1, and r, =r =100 for
simplicity. *

»%OX3 +2x, -2 }

3x7 4 x, X2+2x3+9x4—9‘.
®+ 2%, +3x, -3 J
Consider variational Lngt@ problem: % e ¢ such that

X-%)20, VxeC.

Example. The Kojshin problem was u \Pan a?h@riel [10]. Let
(@ 2x1x2+2xxx XA—G\
) | 1 1‘+

+ X

This prob@@‘ one degertefate solution (\/6_/2,0,0,1/2)T and one non-degenerate

solution (1,0 The cal results are listed in Table 1 using different initial
points (SP). The ast ) denotes that the limit point generated by the algorithm is
the degenerate.
(Qfable 1. Numerical results for Example 1

SP ot Iter. Error CPU

(0,0,0,0)" 176 8.54¢-007 0.0208

11, 184 9.47¢-007 0.0213

@, 79* 7.81e-007 0.0106

68* 8.32e-007 0.0098
3,6)" 191 8.72e-007 0.0208

5. Conclusions

A new iterative algorithm based on hybrid method is proposed in this paper. The
algorithm not only reduces the projection region at each iteration progress by
directional and distance relations, but also monitors the convergence of an iterative
process by the distance from an iterative element to the projection set which reduces
gradually with the iterative progress. This method overcomes the difficulty of
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monitoring the contraction argument for convergence. Besides, some examples are
given to illustrate the efficiency and performance of the newly algorithm. Although the
algorithm might not be competitive with other codes for solving optimization and
variational inequality problems, it possesses several theoretical and practical
advantages over current algorithms. There are still some imperfections and need to be
improved further, such as how to select {3 to raise iterative efficiency, comparing

with other algorithms, etc.
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