
International Journal of Hybrid Information Technology 

Vol.7, No.3 (2014), pp.303-310 

http://dx.doi.org/10.14257/ijhit.2014.7.3.28 

 

 

ISSN: 1738-9968 IJHIT 

Copyright ⓒ 2014 SERSC 

Hybrid Iterative Algorithm of Asymptotically Non-expansive 

Mappings for Equilibrium Problems 
 

 

Shanshan Yang
1
 and Jingxin Zhang

2, *
 

 

1,2
Mathematics and Applied Mathematics, Harbin University of Commerce,  

Harbin, 150028, China 

 

E-mail: yangshsh@hrbcu.edu.cn,  

 zhjx_19@163.com 

 

Abstract 
 

Optimization problems, variational inequalities, minimax problems can be formulated as 

equilibrium problems. The iterative algorithms of fixed points are often applied to finding the 

solution of equilibrium problems. In this paper, we introduce a new hybrid iterative algorithm 

for finding a common element of the set of fixed points of asymptotically nonexpansive 

mappings and the set of solutions of an equilibrium problem in Hilbert spaces. Besides, an 

example of variational inequality problem is given to illustrate the efficiency and 

performance of the newly algorithm. 

 

Keywords: Equilibrium problem; Hybrid algorithm; Strong convergence; Asymptotically 

nonexpansive mapping 

 

1. Introduction 
The classical Variational Inequality Problem is to find a vector such that 

ˆ ˆ( ) , 0 ,   F x y x y C                                                         (1.1) 

The problem (1.1) was first introduced by Hartman and Stampacchia [1] in 1966. The 

primary goal is to compute the stationary points for nonlinear programs. It is widely used in 

the study of optimization and equilibrium problems and finding the numerical solution for 

many practical problems. It has a wide range of applications in engineering, operations 

research, economics etc. Many practical problems process for seeking better or best 

alternative solution from a number of possible solutions. However, the analytical optimal 

solution is difficult to obtain even for relatively simple application problems. Researchers 

instead study the numerical optimization algorithm arises from almost every field, such as 

engineering design, systems operation, decision making, and computer science for example 

[2-4].  

The equilibrium problem is to find x̂ C  such that 

                                 ˆ( , ) 0,   f x y y C                                                              (1.2) 

The set of solutions of the above inequality is denoted by E P ( )f . Let ( , ) ( ) ,f x y F x y x  , 

then (1.1) can be regarded as an equilibrium problem. The concept of equilibrium, which has 

long been connected with maximization or minimization, plays a central role and provides a 

valuable benchmark against which an existing state of such complex systems can be 
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compared. S. Dafermos [5] showed that a network equilibrium conditions were a finite-

dimensional variational inequality and then utilized the theory to establish both existence and 

uniqueness results of the equilibrium problems as well as to propose an algorithm with 

convergence results.   

The theoretical and practical challenge in solving equilibrium problem is due mainly to the 

fact that no natural objective is available and therefore monitoring the convergence of an 

iterative process to an equilibrium solution is difficult. For instance, iterative methods that 

proceed by solving a sequence of optimization problems rely for convergence on theoretical 

conditions difficult to verify in practice.  

Asymptotically non-expansive mapping was first introduced and studied by W.A. Kirk [6] 

in 1972. From that moment on, many researchers further studied the properties of 

asymptotically non-expansive mappings.  

In this paper, we adopt a different point of view and propose a new hybrid iterative 

algorithm for the fixed point of asymptotically non-expansive mapping and the solution of an 

equilibrium problem. The algorithm reduces the projection region at each iteration progress 

and monitors the convergence of an iterative process by the distance from an iterative element 

to the projection set which reduces gradually with the iterative progress. Besides, we give an 

example of variational inequality problem to illustrate the efficiency and performance of the 

newly algorithm. 

 

2. Preliminaries 
   There have been many methods proposed in the literature to study the equilibrium problem, 

among of which we think the projection method is one of the best ways. We first present the 

projection ant its equivalent description. 
Throughout this paper, let H be a real Hilbert space,  ,     denote the inner product. Let C  

be a nonempty closed convex subset of H . Then for any x H , there exists a unique nearest 

point in C , denoted by ( )
C

P x , such that || ( ) || || ||,   
C

x P x x y y C     . Such a mapping 
C

P  is called 

the metric projection of H  onto C . Furthermore [7], for x H  and z C , 

( )
C

z P x   if and only if , 0 ,   x z z y y C     . 

A mapping :T C C  is said to be asymptotically nonexpansive if for each n  N , there exists 

a nonnegative real number 
n

k  satisfying lim 1
n

n

k
 

  such that 

|| || || ||,   ,
n n

n
T x T y k x y x y C     . 

We denote by  ( ) :F T x H T x x    the set of fixed points of T . If :T H H  is 

asymptotically nonexpansive, the ( )F T  is nonempty convex.   

For solving the equilibrium problem, let us assume that a bifunction F  satisfies the 

following conditions [8]: 

(A1)  ( , ) 0f x x  , for all x C ; 

(A2) f  is monotone, i.e., ( , ) ( , ) 0f x y f y x  , for all ,x y C ; 

(A3) for each , ,x y z C ,  
0

lim su p (1 ) , ( , )

t

f tz t x y F x y




   . 

(A4) for each x C , ( , )f x   is convex and lower semi-continuous. 

To prove the strong convergence of our algorithm later, the following two lemmas are 

presented here. 

Lemma 1
[9]

 Let C  be a nonempty closed convex subset of H , and let :f C C  R  

satisfying (A1)-(A4). And let 0r  , and x H . Then, there exists z C  such that 
1

( , ) , 0 ,   f z y y z z x y C
r

      . 
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Further, define a mapping :
r

T X C as follows: 

1
( ) : ( , ) , 0 ,   

r
T x z C F z y y z J z J x y C

r

 
        
 

, 

for all z H . Then, the following hold: 

1) 
r

T  is single-valued; 

2) 
r

T  is firmly nonexpansive, i.e., 
2

|| || , ,   ,
r r

T x T y T x T y x y x y H      ; 

3) ( )= E P ( )
r

F T f ; 

4) E P ( )f  is closed and convex. 

Lemma 2
[9]

 Let C  be a nonempty closed convex subset of H , and let :f C C  R  

satisfying (A1)-(A4). Let 0r  , for x H and ( )
r

q F T , then 2 2 2
|| || || || || ||

r r
q T x T x x q x     . 

 

3. Hybrid iterative algorithm for asymptotically nonexpansive mappings 

and equilibrium problems 
In this section, we introduce a new hybrid iterative algorithm for the fixed point of 

asymptotically nonexpansive mapping and the solution of an equilibrium problem and analysis 

the strong convergence of the proposed method. In fact, we prove a strong convergence 

theorem for finding a common element of the set of zero points of asymptotically 

nonexpansive mapping and the set of solutions of an equilibrium problem in a Hilbert space. 

Let C  be a nonempty bounded closed convex subset of a real Hilbert space H , let 

:f C C  R  be a functional, satisfying (A1)-(A4). Let :T C C  be a asymptotically 

nonexpansive mapping with 
n

k ,  such that ( ) E P ( )F T f   .  

Now, we introduce a new projection method for equilibrium problem as follows: 

 

Hybrid Algorithm 
1) Given 

0
0  (error bound), 

0
0r  , 0 1a  . Let 

0
C C , choose arbitrarily 

0 0
x C ;  

2) Generate 
n

y by Mann’s Iteration of T : 

(1 )  
n

n n n n n
y x T x    , 

where 0 1
n

a   for all n  N ; 

3) Solve the  equilibrium problem 
1

 ( , ) , 0 ,   
n n n n

n

f u y y u u y y C
r

       

and obtain the solution 
n

u C , where { } ( 0 , )
n

r   such that
0

lim in f 0
n

n

r r
 

  ; 

4) Reduce the projection region by dividing the distance  equally: 

 
2 2

:|| || || ||
n n n n

C z C u z x z        

where  
22

(1 )( 1) d iam ( ) 0
n n n

k C     , as n   ; 

5) Reduce the projection region using Acute Angle Principle: 

 0
: , 0

n n n
Q z C x z x x     ; 

6) Take the projection on the object point-set as the next iteration point: 

1 0
( )

n n
n C Q

x P x


 ; 

If 
1 0

|| ||
n n

x x 


   then stop; otherwise, set : 1n n  go to 2). 
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Figure 1. Hybrid algorithm diagram 

 

Convergence analysis 
In the following, we prove the strong convergence of the proposed method. 
Theorem The sequence { }

n
x  generated by the above algorithm converges strongly to 

*

( ) ( ) 0
( )

F T E P f
x P x , which is a common element of the set of zero points of asymptotically  

nonexpansive mapping T and the set of solutions of Equilibrium Problem (1.2). 

Proof. Firstly,  
n

C  and 
n

Q  are closed and convex for each n  N .  

Secondly, ( ) E P ( ) ,   
n n

F T f C Q n   N . 

Let ( ) E P ( )p F T f . Putting 
n

n r n
u T y , n  N  , by 2) of Lemma 1, we have 

n
r

T  is relatively 

nonexpansive hence nonexpansive, then for any n  N , 
2 2 2 2

|| || || || || || || ||
n n n

n r n r n r n
u p T y p T y T p y p       . 

Since  

 
2

2 2
|| || || || (1 )

n

n n n n n
y p x p T x p        

                                               2 2 2
|| || (1 ) || ||

n n n n n
x p k x p       

                                             2
|| ||

n n
x p    ,           

we have 2 2
|| || || ||

n n n
u p x p     , thus

n
p C . Hence ( )F T  E P ( )

n
f C . For 0n  , we have 

0
( ) E P ( )F T f C Q  . Suppose that ( ) E P ( )

n
F T f Q , then ( ) E P ( )F T f    

n n
C Q and there 

exists a unique element 
1n n n

x C Q

 such that 

1 0
( )

n n
n C Q

x P x

 . Then 

1 0 1
, 0 ,   

n n n n
x z x x z C Q

 
     . 

In particular, 

1 0 1
, 0 ,   ( ) E P ( )

n n
x p x x p F T f

 
     . 

It follows that 
1

( ) E P ( )
n

F T f Q


 . By induction, ( )F T  E P ( )
n

f Q , n  N . This means that 

{ }
n

x  is well-defined. 

Thirdly, { }
n

x  is bounded and lim || || 0
n n

n

x T x
 

  .  

It follows from the definition of 
n

Q  that 
0

( )
n

n Q
x P x , thus  

                         
0 0

|| || || ||,   ,  
n n

x x z x z Q n       N                                               (3.1) 

( ) E P ( )
n

z F T f Q  , n  N , then 
0 0

|| || || ||
n

x x z x   .  

On the other hand, from 
1 0

( )
n n

n C Q n
x P x Q


  , we have 

0 1 0
|| || || ||,   

n n
x x x x n


     N .So 

 0
|| ||

n
x x  is nondecreasing. Since C  is bounded, we obtain that 

0
lim || ||

n
n

x x
 

  exists. This 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC  307 

implies that { }
n

x  is bounded. Noticing again that 
1 0

( )
n n

n C Q n
x P x Q


   and 

n
x   

0
( )

n
Q

P x , we have 

1 0
, 0

n n n
x x x x


   . Thus, for all n  N , 

2 2

1 1 0 0
|| || || ( ) ( ) ||

n n n n
x x x x x x

 
      

2 2

1 0 0 1 0
|| || || || 2 ,

n n n n n
x x x x x x x x

 
        

2 2

1 0 0
|| || || ||

n n
x x x x


    .                                                            (3.2) 

This implies that  

1
lim || || 0

n n
n

x x


 

                                                                    (3.3) 

Since 
1 0

( )
n n

n C Q n
x P x Q


  , then 2 2

1 1
|| || || ||

n n n n n
u x x x 

 
      0 . Hence 

         
1 1

lim || || lim || || lim || || 0
n n n n n n

n n n

x u x x x u
 

     

                                               (3.4) 

For ( ) E P ( )
n

p F T f C  , we have 2 2
|| || || ||

n n n
u p x p     .  

Since 
n

n r n
u T y , by Lemma 2, we get that  

2 2
|| || || ||

n
n n r n n

u y T y y    

              2 2
|| || || ||

n
n r n

y p T y p     
2 2

|| || || || 0
n n n

x p u p      .                                                  (3.5) 

Since 1
n

a   , n  N , then by (3.4) and (3.5) , we have 

 
1 1

|| || || || || || || || 0
1 1

n

n n n n n n n n

n

x T x y x y u u x
a

       
 

. 

Put su p { : 1, 2 }
n

k k n

   ， , we have 

1 1 1 1

1 1 1 1
|| || || || || || || || || ||

n n n n

n n n n n n n n n n
T x x T x T x T x T x T x x x x

   

   
             

1

1 1 1
|| || ( 1) || || || || 0

n n

n n n n n n
k x T x k x x T x x



    
        . 

Finally, { }
n

x convergence strongly to 
( ) ( ) 0

( )
F T E P f

P x . 

Since { }
n

x  is bounded, there exists a subsequence { }
k

n
x  of { }

n
x  such that '

k

w

n
x w  . By 

Demiclosed Principle, we have ' ( )w F T . Next we show ' E P ( )w f . 

From (3.4 and (3.5), we get that '
k

w

n
u w  , '

k

w

n
y w  . Since 

n
n r n

u T y ,replacing n  by 
k

n , 

from Condition (A2), 
1

, ( , ) ( , ) ,   
k k k k k

k

n n n n n

n

y u u y f u y f y u y C
r

       . 

Let k   , since lim in f 0
n

n

r
 

 , by (3.5) and Condition (A4), we get that ( , ') 0,  f y w y C   .  

For (0 ,1)t  , y C , let (1 ) '
t

y ty t w   , then 
t

y C , thus ( , ') 0
t

f y w  . By Condition (A1), we 

get that 

0 ( , ) ( , ) (1 ) ( , ') ( , )
t t t t t

f y y tf y y t f y w tf y y     . 

Dividing by t , we have ( , ) 0 ,  
t

f y y y C   . Let 0t  , from Condition (A3), we obtain that 

( ', ) 0,  f w y y C   . Therefore, ' E P ( )w f . 

Denote 
( ) E P ( ) 0

( )
F T f

w P x . Since 
1 0

( )
n n

n C Q
x P x


 , ( )w F T  E P ( )

n n
f C Q , then  

1 0 0
|| || || ||

n
x x w x


   . 

Since the norm is weakly lower semi-continuous, we have 

0 0 0 0 0
|| || || ' || lim in f || || lim su p || || || ||

k k
n n

k
k

w x w x x x x x w x
 

 

         . 

Hence 
0 0 0

lim || || || ' || || ||
k

n
k

x x w x w x
 

     . Using the Kadec-Klee property of H , we get 

lim '
k

n
k

x w w
 

  . Since { }
k

n
x  is an arbitrary subsequence of { }

n
x , we can conclude that { }

n
x  

converges strongly to 
( ) ( ) 0

( )
F T E P f

P x . The proof is complete. 
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    Remark  The space n
R  is a Hilbert space with the inner product defined by ,x y   

1

n

i i

i

 



  , where 
1

( , , )
n

x   , 
1

( , , )
n

y   , and the corresponding norm is 
1 / 2

|| || ,x x x  

 
1 / 2

2 2

1 n
    .  Hence, the above algorithm holds under the framework of n

R . 

Terminal condition 
Inequality (3.3) shows that our algorithm is terminable. Let us estimate the terminal 

condition of our iterative scheme. By (3.1), we have 
2 2

0 0
|| || d is t ( , )

n n
x x x Q  , 

where 
0 0

d is t ( , ) in f{ ( , ) : }
n n

x Q d x y y Q  . Since  0
|| ||

n
x x  is nondecreasing, by (3.2) we obtain 

2 2 2

1 0 1 0
|| || d is t ( , ) || ||

n n n
x x x Q x x


    . 

So if n satisfies 2 2 2

0 0 1 0
d ist ( , ) || ||

n
x Q x x   , then  terminate the iterative progress. 

 

4. Numerical Examples 
In this section, we test the proposed iterative scheme by an example of variational 

inequality problem. All computations were done using the PC with DualCore Intel Core i5 

430M, 2533 MHz and with 4GByte of RAM. All the programming is implemented in 

MATLAB R2010b. 

Throughout the computational experiment, the parameters in Hybrid Algorithm were set as 
6

0
1 0


 , 0 .9 8a  , { }

n
 are uniformly distributed random numbers in [0, ]a , and 1 0 0

n
r r  for 

simplicity. 

Example.  The Kojshin problem was used by Pang and Gabriel [10]. Let  
2 2

1 1 2 2 3 4

2 2

1 1 2 3 4

2 2

1 1 2 2 3 4

2 2

1 2 3 4

3 2 2 3 6

2 1 0 2 2
( )

3 2 2 9 9

3 2 3 3

x x x x x x

x x x x x
F x

x x x x x x

x x x x

     

 
     


     
 
 

    

. 

Consider variational inequality problem: find x̂ C such that  

ˆ ˆ( ) , 0 ,   F x x x x C    . 

This problem has one degenerate solution  6 / 2 , 0 , 0 ,1 / 2
T

 and one non-degenerate 

solution  1, 0, 3, 0
T

. The numerical results are listed in Table 1 using different initial 

points (SP). The asterisk (*) denotes that the limit point generated by the algorithm is 

the degenerate. 

Table 1. Numerical results for Example 1 
SP Iter. Error CPU 

(0,0,0,0)T 176 8.54e–007 0.0208 

(1,1,1,1)T 184 9.47e–007 0.0213 

(2,2,2,2)T 79* 7.81e–007 0.0106 

(3,2,1,4)T 68* 8.32e–007 0.0098 

(4,1,3,6)T 191 8.72e–007 0.0208 

 

5. Conclusions 
A new iterative algorithm based on hybrid method is proposed in this paper. The 

algorithm not only reduces the projection region at each iteration progress by 

directional and distance relations, but also monitors the convergence of an iterative 

process by the distance from an iterative element to the projection set which reduces 

gradually with the iterative progress. This method overcomes the difficulty of 
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monitoring the contraction argument for convergence. Besides, some examples are 

given to illustrate the efficiency and performance of the newly algorithm. Although the 

algorithm might not be competitive with other codes for solving optimization and 

variational inequality problems, it possesses several theoretical and practical 

advantages over current algorithms. There are still some imperfections and need to be 

improved further, such as how to select  { }
n

  to raise iterative efficiency, comparing 

with other algorithms, etc. 
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