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Abstract N
Shape of granule is one of the important issues in granular computing_cl fcation
problems and related to the classification accuracy, the number of granule, the join

developed in the frame work of fuzzy lattices. Firstly, t ules a resented as 4
shapes, namely hyperdiamond granule, hypersphe e 1€, w e granule, and
hyperbox granule. Secondly, the granule set is |nd he t w t and the bottle up
join operator. Thirdly, machine learning benchmark dsets are\& 0 analyze and discuss
the BUGrC with different shape granules.

process of two granules. A bottle up granular computing classificagion a%’ UGrQC) is
r
r

Keywords: Hyperdiamond granule, Qere gr \hypercube granule, hyperbox
granule, join operator. g

1. Introduction

Granular computing (GrC) put based on the partition of problem space,
and widely used in pattegayrecogniti @maﬁon system, etc. Zadeh identified three
fundamental concepts man cQg process, namely, granulation, organization, and
causation [1, 2]. Gr. x is a pw%s that decomposes a universe into parts. Conversely,
organization is a x S tha rales parts into a universe by introducing operation
between two gragtiles: Caus olves the association of causes and effects. Information
granules bassets, fuz s or relations, and fuzzy relations is computed in [3]. These
studies enable US to ma mplexities of the world around us into simple theories.

GrC based algebrai@e em is a frame computing paradigm that regarded the set of objects
as granule, and thefo erator and meet operator are the two keys of GrC. The join operator
and meet operato related to the shapes of granule.

The presenf work uses a fuzzy partial order relation (fuzzy inclusion relation) to form a
ieezbased on a granule set with 4 granular shapes, and bottle up granule computing
radigm is proposed based on the granule set, which is induced by the training set.
t of this paper is presented as follows: Section2 introduces the motivation and
works. BUGTrC is described in Section3. Section4 demonstrates the comparative
experimental results on two-class and multi-class problems. Section5 summarizes the
contribution of our work and presents future work plans.

2. Motivation and Related Work
In this section, we present the motivation of our work, and discuss some related
works.
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2.1. Motivation

Granular computing theory are formed based on the granule set and the relation
between two granule, the granule set is induced by the training set, and the relation
between two granule is determined by the shape of granule. For the training set S, the
algebra system (@ (S),c) is a lattice, where (S) is the power set of S, < is the
inclusion relation between two elements in ¢ (S). The power set ¢ (S) is regarded as the
granule set composed of changeable granule, and < is the inclusion relation between
two granules. The inclusion relation between two granules is different from the
traditional inclusion relation which is crisp. Namely, the inclusion relation between two
granules is fuzzy. The lattice formed by fuzzy relation is called the fuzzy lattice. The
fuzzy inclusion relation is often induced by the join operator and meet operator. The
join operator v has been used extensively in the fields of cIasmﬁcanonWﬁl
networks, and machine learning in the context of mathematical morphology [

Different granule shapes are demonstrated in different representatiz@ﬂh as the

two-point representation of a hyperbox granule and the single-point esgntation of
hyperspherical granule. All samples that belong to%ﬁule @pped into a

hyperbox, represented as a vector. Inconsistency et partial order
relation between two granules and that bet 0 ve t\g’re\fo eliminate this
inconsistency, Kaburlasos and colleagues introd he po&\| aluation function in
linear or nonlinear forms, which satisfies the all y and qu ity properties [5-7].

Granular computing classification alg W|th rent shape granules are
suitable for the different classmcat ems persphere granular computing
classification algorithm is more suita ype anular computing classification
algorithm for the same classificatl orlt e steps of improving the testing
accuracy of classification invalv aspec mcreasmg the number of granule
induced by the training set, @k ing tt\ pe of granules.

The objective of this article 7S to % bottle up granular computing paradigm

uzzy lattice, such as hypersphere granules,

with 4 different shapes nules 05\1
antles, and hyperbox granules.

hypercube granules,,h mond{
2.2. Related W \\ Q
From 19 ubllsh rticles on granular computing and neighborhood systems,
mainly focu n the@ ar computing model, which included binary relationship,
granular structure, g representation, and applications of granular computing [8—
10]. Yao introduc rough set in granular computing and discussed data mining,
rule extraction, @wachme learning methods based on granular computing [11-13].
Therefore, thE refationship between two granules and the changeable granules based on

their relati s are two issues in granular computing. Lattice computing and partial
order rel can be used to solve these two issues. Fuzzy lattices have also been used
to for ssifiers. Kaburlasos and colleagues proposed a fundamentally new and

i hierarchical approach on neurocomputing, called fuzzy lattice
ne omputing (FLN) [14]. Based on FLN, they designed fuzzy lattice reasoning
(FLR) classifiers in which the partially ordered relationship is induced by the positive
valuation function. FLR classifiers are applied to estimation of ambient ozone [15],
using both lattice theory and granular computing. In granular computing, the fuzzy
inclusion relation between two granules is used to form classification algorithms, which
can obtain changeable hyperbox granules [16, 17].
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3. Bottle Up Granular Computing Classification Algorithms
In this section, we form the bottle up granular computing classification algorithms.

3.1. Representation of Four Kinds Shapes of Granules

In reality, there are different shapes for granules. In the article, four shape granules
are called hypersphere granules, hypercube granules, hyperdiamond granules, and
hyperbox granules. Hypersphere, hypercube, and hyperdiamond are represented by the
center and granularity, such as G=(c,g,). Hyperbox is represented by the beginning
point and the end point, such as G=[x,y,q:].

(1) Hypersphere granule is represented as a vector including the center and the radii
of the hypersphere.

(2) Hypercube granule is represented as a vector including the center andw

af
side of the hypercube.

(3) Hyperdiamond granule is represented as a vector including the amond’s
center and the half diagonal of hyperdiamond.

(4) Hyperbox granule is represented as a vector«j ding v s, Induced the
beginning points, the end points, and the distance bet e begin point and the
end point.

the eng point

Gr

the beginning point
0 1 2 3

r

Figu . Shapes of granules in 2-dimensional space. (a) hypersphere
6@

granu hypercube granule, (c) hyperdiamond granule, (d) hyperbox
granule

@-dimensional space, hypersphere granules, hypercube granules, hyperdiamond
granules, and hyperbox granules are circle, cube, diamond, and rectangle respectively.
Granularity is the size of granule, we measure the granularity by diameter or radii. In
Figure 1, the hypersphere granule (1,2,1) is represented as the circle with center(1,2)
and radii 1 in Figure 1(a), and hypercube granule (1,2,1) is represented as the cube with
the center (1,2), and the half side is 2 in Figure 1(b), a hyperdiamond granule (1,2,1) is
represented as a diamond with the center (1,2), and the half diagonal is 1, and a

Copyright © 2014 SERSC 169



International Journal of Hybrid Information Technology
Vol.7, No.3 (2014)

hyperbox granule (0,1,3,3) is represented as a rectangle with the beginning point(0,1)
and the end point (3,3).

3.2. Join Operator for BUGrC

Join operator v is the key to design granular computing classification algorithms.
Firstly, the atomic granule is represented by the single with granularity 0. Secondly, the
join operator is designed to unite the granule with larger granularity compared with the
atomic granule. Thirdly, the bottle-up granular computing classification algorithms are
proposed by the designed join operator.

Suppose G, v G, = (c,R) is the join hypersphere granule of two hypersphere granules

¢,-c,r) and 6,-(,r,) , c,=-c,-c, IS the vector from c, to c, , where

C, = (X, %, Xy ) » C, = (¥, Y, -yy ), the join hypersphere granule induce sz

operator Is

G,

vG,=[C, R]f{ (P+Q)7||P— || (1a)
Where p =c1_r1CL, Q=C,+ The granul 10| Q{phere granule

e || i
gr(leez)zR. \
For two hypercube granules ¢, -(c,.r), G ), % hypercube granule is

G,v G, = (C,R), Where O
R = max(max{C,,C,}-min{C,,C,}) C = mij

Where max{c,,c,} isa vector mduc‘t rr%
components of vector c, an he vector with the same dimension as c, whose

d
components are both 1. Theg%lanty of'j ypercube granule g,(G;vGz)=R.
For two hyperdiamond_granules ¢ \Q) andc, = (c,,r,), the vertex set of ¢

-1r1,C,-r,1}+R (1b)
ion of the corresponding

s, ={C,-re li=12,. the ide | vector whose the ith component is 1, the
vertex set of ¢ Q .,N}. Suppose s -s,Us, is composed of the
vectors with Ien 5( ) S mcluding the ith component of each element in

set S, thejo@ erdi granule is 6, v 6, = (C,R)
E éﬂ)

=L—( —min(S(:,l)),i(max(S(:,Z)—min(S(:,2)),
2 2

; (1c)
@,;(max(S(:, N)-min(S(:, N )))
%1 . .
O = ;||S(|d1,:) ~s(id 2,:)||1

W r@= argmax S(;,1) , id2=argmins(,1) . The granularity of join hyperdiamond
g@ 0r(G1vGy)=R.
two hyperbox granules G, = (x,,y,) and ¢, = (x,,v,), the joined hyperbox granule
is
G,vG, =(X, AX,,¥Y,VY,) (1d)
Where x, and x, are vectors and represented as

Y= (Voo Yopooons Yin )1 Yo = (Yo Yppreens Yo )
The operators between vectors are
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Xy A X, = (Min(X, X, ), Min(X,,, X,,), min(x,, X,y))
Yy VY, = (Max(y,, Y, ) max(y,, ¥y, )i max(y, . ¥,y ))
The granularity of join hypersphere granule g,(G1vGy)=||y1vy2-X1AX)|2.
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Figure 2. Join operatorsQ gran
We explain the join process in 2-dimensional ce. Supp wo G;=[0.1 0.2 0.2]

and G,=[0.25 0.25 0.2], which can be repfesented as ersphere (circle) granule,

hypercube (cube) granule, and hyperdi (diamo granule in 2-dimensional
space. Two hyperbox (rectangle) gran O 2 0.4] and G,=[0.25 0.25 0.2
0.5], they are two hyperboxes (rec ) in ional space. The join granules,
which are labelled by the red cu are Ilst gure 2. In Figure 2 (a), the join

circle granule is [0.1750 0.22 79]J Figure 2 (b), the join cube granule is
[0.1750 0.2250 0.275], in FIB’A‘) the

h} mond granule is [0.1750 0.2250 0.3], in
Figure 2 (d), the Jom rect le granul % 0.2 0.3 0.5].

3.3 Algebra Syste C d by Gq*le Set and Inclusion Relation

For training s , the & ystem (GS,u) is formed by granule set (GS) and
fuzzy inclu ion Th algebra system (GS,u) is proved as fuzzy lattice.
Because th@mona sion relation can't completely reflect the fuzziness,
randomness, afd uncert by which the research objectives are evaluated, Kaburlasos
introduced the posi valuation function to form the fuzzy inclusion relation to
measure the fu iliClusion relation between two granules. The fuzzy inclusion
measure is com ed by the positive valuation of granules and their join granule.

v(G,)

Space and real number, and satisfies the equality property and inequality

ty: (1) equality property, G,cG, iff v(G1)<v(G,), (2) inequality property,

V(G1)+V(Gy)= v(G1vGy)+v(GiAGy). We select the increasing function as the positive

valuation function, which is compounded by the granularity. The positive valuation
function is (3a) or (3b)

u(6,.6,) = (2)
v(G, v G,)
W%r@@GS—)R is the positive valuation function, which is the mapping between
p

V(G)=g:(G)+1 (3a)
ey — (3b)

1+e 9 (®
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and the fuzzy inclusion measure is
(G,)+1
4(G,.6,) = — T 4
g,(G,vG,)+1

The fuzzy inclusion measure satisfies the following properties.

GeGS,G+D, 1 (G, B)=0 (52)
#(G,G)=1 (5b)
G1cG=u(G,G )< 1(G,Gy) (5¢)
Gl/\G2CG1:>,U(G1,G2)<1 (5d)

For real number set R, N-dimensional real number space R", granule set (GS)
induced by the training set TS in N-dimensional space R", the following theorems are
achieved.

Theorem 1. Algebra system (R,<) is lattice, < is the less than or eq
between two real numbers. LV

Theorem 2. Algebra system (R, <) is lattice, < is the Iess than o relation
between two vectors, and defined as X<y<Xx;<yi, Xo<Y2, ...

Theorem 3. Algebra (GS,c) is lattice, < is the_i

on rela between two
granules
Theorem 4. Algebra (GS, ) is fuzzy lattice, ,u@

uzzya u\){relation between
two granules. y\
*
3.4. Bottle Up Granular Computing Clas @ n Algon@

For training set TS, the bottle up g classification algorithms are

proposed by the following steps. s are used to form the atomic
granule. Secondly, the thresho dé‘anulant troduced to conditionally join the
atomic granules by the aforeq(& d join ator, and the granule set is composed of
all the join granules. Thirdly,

Il atomi \g ules are included in the granules of GS,
the join process is terml , other %e second process is continued. We explain

the BUGrC as foIIows
Suppose the at lees We same class labels induced by TS are g;, 02, 0s,
04, gs. The tralnl GIC can be described as the following structure of

cess CNE?
tree shown i e’ 3, leafs,derote the atomic granules, root denotes GS including its
child nodes a@nduced by join operation of child nodes g; and g, G is
the join granule
obtaining GS is the

of G, ahd s, Gs is the join granule of g4 and gs. The whole process of
tﬁb up Process.

Figure 3. The training process of BUGrC including 5 samples
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The training algorithm and testing algorithm are described as algorithml and
algorithm2.
Algorithml. BUGrC
Input: Training set TS, threshold p of granularity, the class number n
Output: Granule set GS, the class label lab
S1. initialize the granule set GS={, lab=g
S2.i=1
S3. select the samples with class i, and form set X
S31. initialize the granule set GSt=0
S32.j=1
S33. for the jth sample x; in X, form the corresponding atomic granule G;
S34. k=1 ¢
S35. compute the inclusion measure g induced by formula (3b) bet e
atomic granule G; and the kth granule Gy in GSt
S36. k=k+1
S37. find the maximal inclusion measure gjnm \S
S38. if the granularity of the join of G; and thawg or al to p, the
granule G,, is replace by the join, otherwise G mbewnof GSt.
$39. remove x; until X is empty. ”\/
S4. GS=GSUGSt, lab=labu{i}
S5. if i=n, output GS and class Iab o;h&e i= |+\%
Algorithm2. Testing process

Input: inputs of unknown datu nuI %\ the class label lab
Output: class label of x { %(

S1. x is represented asﬂm

S2. fori = 1:|GS|
ncIusmr@ e u; between g and g; in GS
lusio re tin

S3. compute the fuz
S4. find the maxi

S5. find the ding ﬁ%label of the gn as the label of x

4. Experi \Q

We evalug he ef l@uess of BUGIC in spaces R and R" using Intel PIV PC
with 2.8 GHz CPU a B memory, running Microsoft Windows XP Professional
and Matlab 7.0. Th sification problems and the shapes of granules are shown in
spaces R? clearl sets in spaces R listed in Table 2 are selected from web site
(http://sci2s.ugr.es/Reel/datasets.php)to verify the performance of BUGrC. The data
sets, and 10-fold cross validation data and 5-fold cross validation data can be
found in eb site. We select 10-fold cross validation data to analyze and discuss

BUGr@n different shape granules from testing accuracy including maximization
imization (min), mean, and standard deviation (std).

( i i i i ) )
4.1. :;Iassification Problems in space R

The spiral classification is a difficult problem to be classified, and used to evaluate
the performance of classifiers. The data proposed in reference [18] are used to evaluate
the performance of GrC. The data set is composed of 312 data including input in R* and
3 class labels, the data and the induced granules are showed in R?, in which we can see
the shapes of granules.
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The threshold p of granularity is form 1 to 0 with step 0.01, the maximal accuracy is
the selection indicator of optimization algorithms. Performances of BUGrC with four
kinds of shape are listed in Table 1. The training data and their granules were shown in
Figure 4 in which the single points are the atomic granules, each point lies in a single
granule. From the Table 1, we saw, BUGrCs with hypercube granules and hyperbox
granules achieved the optimization performance because of the minimal size of GS
including 27 granules when p=0.19 and 0.11, BUGrC with hyperdiamond granules is
poor because of the maximal size of GS including 32 granules when p=0.22, and
BUGrCs with hypersphere granules and hyperdiamond granules touched the best testing
accuracy firstly. Granular computing classification algorithms with the minimal size of
granule set are our pursuits in the same conditions for the maximal accuracy.

L 4
Table 1. Performance of BUGrC with different shape granule?
Shapes el Size Tr(%)
Hypersphere 0.22 29 100 O
Hypercube 0.19 27 “ *
Hyperdiamond | 0.22 32 ~
Hyperbox 0.11

ification problem and GS (a) hypersphere granules,
les, (c) hyperdiamond granule, (d) hyperbox granule.

4.2. Classificgtion Problems in Space R™
aluate the performance of BUGTrC in space RN, four data sets listed in

In ord
Table @elected to perform the algorithms by 10-fold cross validation.

% Table 2. Classification problems in R"
Data sets Sizes Attributes Classes

Balance 625 4 3

Wine 178 13 3

Phoneme 5404 5 2

Segment 2310 19 7

We selected the optimal parameters that maximized the testing accuracy. GrCs with
four kinds of shape are performed in the same environment, and the performance is
listed in table. From the table 3, we can see, (1) for different classification problems,
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the BUGrCs with different shape granules achieved the best testing accuracy. For
classification problem balance, BUGrCs with hypersphere and hypercube granules
achieved the maximal testing accuracies, and for wine problem, BUGrCs with
hyperdiamond and hyperbox granules are much better than BUGrCs with hypersphere
and hypercube granules. (2) the maximal testing accuracy of BUGrCs less than or equal
to KNN algorithm, the maximal testing accuracy of KNN on data set balance is
93.6508%, which equals to BUGrCs, the maximal testing accuracy of BUGrCs on data
set phoneme is 92.9760%, which is greater than 92.7911% obtained by KNN. (3) From
the aspect of mean of testing accuracies, BUGrCs with hyperbox have the better testing
accuracies compared with the other BUGrC.

N

Table 3. performance of BUGrC on classification problems in spa{R/,

Data sets Shapes Testing accuracies
max min mean std ;
Balance Hypersphere 93.6508 84.1270 87.8386 || 29920
Hypercube 93.6508 79.3651 , .[86.0694  , 146559
Hyperdiamond | 92.0635 79.3651 9210 \{ 438678
Hyperbox 92.0635 84.1270, <L N['87.992N, " | 2.7683
Wine Hypersphere 88.8889 76.4£(§A\‘ 8Q.§24,V 3.9764
Hypercube 88.2353 70.5 78. 5.8460
Hyperdiamond | 94.4444 %Zg ‘%gz 6 5.5916
Hyperbox 100 P 53 .3464 3.8175
Phoneme Hypersphere | 92.9760 4 N\_87.9630 = [ 90.7467 1.6353
Hypercube 92.4214_(_~" 86.850 ¢ J | 89.9880 1.7296
Hyperdiamond | 92.9760%, 885%?%\ 90.6176 1.4865
Hyperbox 03,7601 ° 8.5185 90.8208 1.4556
Segment Hypersphere 4@%&8 ¢ &4‘5052 97.4026 1.4574
Hypercube 98:7013 6407 95.4978 1.7579
Hyperdiamor@gg.se?l % 96.1039 97.5758 0.9882
99.5674 ¥ | 95.6710 97.7922 1.1758

Hyperlgo>0
5, Conclusionsg\ \Q
The bottle granular, c ting classification algorithms with different shape granules
@

are propose e arti stly, a training datum is represented as an atomic granule.
Secondly, the fuzzy i measure between granules is form based on the join operator.
Thirdly, the bottle Cture of training process is constructed based on the join operator
and the thresh@ granularity jointly. Finally, the proposed granular computing
classificatign algorithms are demonstrated by the data set selected from references. BUGIC is
affected b %@equence of the training data the same as the other granular computing. For
the futur , we will focus on the distance measure between granules and how to form the

grE:ul@ with mixing granules with different shapes.
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