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Abstract 
 

Shape of granule is one of the important issues in granular computing classification 

problems and related to the classification accuracy, the number of granule, and the join 

process of two granules. A bottle up granular computing classification algorithm (BUGrC) is 

developed in the frame work of fuzzy lattices. Firstly, the granules are represented as 4 

shapes, namely hyperdiamond granule, hypersphere granule, hypercube granule, and 

hyperbox granule. Secondly, the granule set is induced by the training set and the bottle up 

join operator. Thirdly, machine learning benchmark datasets are used to analyze and discuss 

the BUGrC with different shape granules. 

 

Keywords: Hyperdiamond granule, hypersphere granule, hypercube granule, hyperbox 

granule, join operator. 

 

1. Introduction 
Granular computing (GrC) is computing method based on the partition of problem space, 

and widely used in pattern recognition, information system, etc. Zadeh identified three 

fundamental concepts of the human cognition process, namely, granulation, organization, and 

causation [1, 2]. Granulation is a process that decomposes a universe into parts. Conversely, 

organization is a process that integrates parts into a universe by introducing operation 

between two granules. Causation involves the association of causes and effects. Information 

granules based on sets, fuzzy sets or relations, and fuzzy relations is computed in [3]. These 

studies enable us to map the complexities of the world around us into simple theories.  

GrC based algebraic system is a frame computing paradigm that regarded the set of objects 

as granule, and the join operator and meet operator are the two keys of GrC. The join operator 

and meet operator are related to the shapes of granule.  

The present work uses a fuzzy partial order relation (fuzzy inclusion relation) to form a 

fuzzy lattice based on a granule set with 4 granular shapes, and bottle up granule computing 

(BUGrC) paradigm is proposed based on the granule set, which is induced by the training set. 

The rest of this paper is presented as follows: Section2 introduces the motivation and 

related works. BUGrC is described in Section3. Section4 demonstrates the comparative 

experimental results on two-class and multi-class problems. Section5 summarizes the 

contribution of our work and presents future work plans. 

 

2. Motivation and Related Work 
In this section, we present the motivation of our work, and discuss some related 

works. 
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2.1. Motivation  

Granular computing theory are formed based on the granule set and the relation 

between two granule, the granule set is induced by the training set, and the relation 

between two granule is determined by the shape of granule. For the training set S, the 

algebra system (S), is a lattice, where (S) is the power set of S,  is the 

inclusion relation between two elements in (S). The power set (S) is regarded as the 

granule set composed of changeable granule, and  is the inclusion relation between 

two granules. The inclusion relation between two granules is different from the 

traditional inclusion relation which is crisp. Namely, the inclusion relation between two 

granules is fuzzy. The lattice formed by fuzzy relation is called the fuzzy lattice. The 

fuzzy inclusion relation is often induced by the join operator and meet operator. The 

join operator  has been used extensively in the fields of classification, neural 

networks, and machine learning in the context of mathematical morphology [4].  

Different granule shapes are demonstrated in different representations, such as the 

two-point representation of a hyperbox granule and the single-point representation of 

hyperspherical granule. All samples that belong to a granule are mapped into a 

hyperbox, represented as a vector. Inconsistency exists between the partial order 

relation between two granules and that between two vectors. To eliminate this 

inconsistency, Kaburlasos and colleagues introduced the positive valuation function in 

linear or nonlinear forms, which satisfies the equality and inequality properties [5-7]. 

Granular computing classification algorithms with different shape granules are 

suitable for the different classification problems. Hypersphere granular computing 

classification algorithm is more suitable the hyperbox granular computing classification 

algorithm for the same classification algorithm. The steps of improving the testing 

accuracy of classification involve two aspects: (1) increasing the number of granule 

induced by the training set, (2) changing the shape of granules. 

The objective of this article is to form the bottle up granular computing paradigm 

with 4 different shapes of granules on the fuzzy lattice, such as hypersphere granules, 

hypercube granules, hyperdiamond granules, and hyperbox granules.  

 

2.2. Related Work 

From 1988, Lin published articles on granular computing and neighborhood systems, 

mainly focusing on the granular computing model, which included binary relationship, 

granular structure, granule representation, and applications of granular computing [8–

10]. Yao introduced the rough set in granular computing and discussed data mining, 

rule extraction, and machine learning methods based on granular computing [11-13].  

Therefore, the relationship between two granules and the changeable granules based on 

their relationships are two issues in granular computing. Lattice computing and partial 

order relation can be used to solve these two issues. Fuzzy lattices have also been used 

to form classifiers. Kaburlasos and colleagues proposed a fundamentally new and 

inherently hierarchical approach on neurocomputing, called fuzzy lattice 

neurocomputing (FLN) [14]. Based on FLN, they designed fuzzy lattice reasoning 

(FLR) classifiers in which the partially ordered relationship is induced by the positive 

valuation function. FLR classifiers are applied to estimation of ambient ozone [15], 

using both lattice theory and granular computing. In granular computing, the fuzzy 

inclusion relation between two granules is used to form classification algorithms, which 

can obtain changeable hyperbox granules [16, 17]. 
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3. Bottle Up Granular Computing Classification Algorithms 
In this section, we form the bottle up granular computing classification algorithms. 

 

3.1. Representation of Four Kinds Shapes of Granules 

In reality, there are different shapes for granules. In the article, four shape granules 

are called hypersphere granules, hypercube granules, hyperdiamond granules, and 

hyperbox granules. Hypersphere, hypercube, and hyperdiamond are represented by the 

center and granularity, such as G=(c,gr). Hyperbox is represented by the beginning 

point and the end point, such as G=[x,y,gr]. 

(1) Hypersphere granule is represented as a vector including the center and the radii 

of the hypersphere. 

(2) Hypercube granule is represented as a vector including the center and the half 

side of the hypercube. 

(3) Hyperdiamond granule is represented as a vector including the hyperdiamond’s 

center and the half diagonal of hyperdiamond. 

(4) Hyperbox granule is represented as a vector including vectors induced the 

beginning points, the end points, and the distance between the beginning point and the 

end point. 

 
Figure 1. Shapes of granules in 2-dimensional space. (a) hypersphere 

granule, (b) hypercube granule, (c) hyperdiamond granule, (d) hyperbox 
granule 

 
In 2-dimensional space, hypersphere granules, hypercube granules, hyperdiamond 

granules, and hyperbox granules are circle, cube, diamond, and rectangle respectively.  

Granularity is the size of granule, we measure the granularity by diameter or radii. In 

Figure 1, the hypersphere granule (1,2,1) is represented as the circle with center(1,2) 

and radii 1 in Figure 1(a), and hypercube granule (1,2,1) is represented as the cube with 

the center (1,2), and the half side is 2 in Figure 1(b), a hyperdiamond granule (1,2,1) is 

represented as a diamond with the center (1,2), and the half diagonal is 1, and a 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.3 (2014)  

  

 

170   Copyright ⓒ 2014 SERSC 

hyperbox granule (0,1,3,3) is represented as a rectangle with the beginning point(0,1) 

and the end point (3,3). 

 

3.2. Join Operator for BUGrC 

Join operator  is the key to design granular computing classification algorithms. 

Firstly, the atomic granule is represented by the single with granularity 0. Secondly, the 

join operator is designed to unite the granule with larger granularity compared with the 

atomic granule. Thirdly, the bottle-up granular computing classification algorithms are 

proposed by the designed join operator. 

Suppose 
1 2

( , )G G C R   is the join hypersphere granule of two hypersphere granules 

1 1 1
( , )G C r  and 

2 2 2
( , )G C r , 

1 2 2 1
C C C  is  the vector from 

1
C  to 

2
C , where 

1 1 2
( , , ..., )

N
C x x x , 

2 1 2
( , , . . . , )

N
C y y y , the join hypersphere granule induced by join 

operator is  

1 2

1 1
[ , ] ( ),

2 2
G G C R P Q P Q

 
    

 
 

                                     (1a) 

Where 1 2

1 1

1 2

C
P C r

C
  , 1 2

2 2

1 2

C
Q C r

C
  . The granularity of join hypersphere granule 

gr(G1G2)=R. 

For two hypercube granules 
1 1 1

( , )G C r , 
2 2 2

( , )G C r , the join hypercube granule is 

1 2
( , )G G C R  , where 

1 2 1 2 1 2
m ax (m ax { , } m in { , } )R C C C C r r     

1 1 2 2
m in { , }C C r I C r I R                     (1b) 

Where 
1 2

m ax { , }C C  is a vector induced by the minimization of the corresponding 

components of vector 
1

C  and 
2

C , I  is the vector with the same dimension as 
1

C  whose 

components are both 1. The granularity of join hypercube granule gr(G1G2)=R. 

For two hyperdiamond granules
1 1 1

( , )G C r  and
2 2 2

( , )G C r , the vertex set of 
1

G  is 

1 1 1
{ | 1, 2 , ..., }

i
S C r e i N   , 

i
e is the identical vector whose the ith component is 1, the 

vertex set of 
2

G  is 
2 2 2

{ | 1, 2 , ..., }
i

S C r e i N   . Suppose 
1 2

S S S  is composed of the 

vectors with length N, ( : , )S i  is the set including the ith component of each element in 

set S, the joined hyperdiamond granule is 
1 2

( , )G G C R   

   

 

1 1
m a x ( (:,1) m in ( (:,1) , m a x ( (:, 2 ) m in ( (:, 2 ) ,

2 2

1
..., m a x ( (:, ) m in ( (:, )

2

C S S S S

S N S N


  



 



                          (1c) 

                
1

1
( 1, :) ( 2 , :)

2
R S id S id   

Where 1 arg m ax (:,1)id S ， 2 arg m in (:,1)id S . The granularity of join hyperdiamond 

granule gr(G1G2)=R. 

For two hyperbox granules 
1 1 1

( , )G  x y  and 
2 2 2

( , )G  x y , the joined hyperbox granule 

is 

1 2 1 2 1 2
( , )G G   x x y y                                                       (1d) 

Where 
1

x  and 
2

x  are vectors and represented as  

                          
1 1 1 1 2 1

( , , ..., )
N

x x xx , 
2 2 1 2 2 2

( , , . . . , )
N

x x xx   

                          
1 1 1 1 2 1

( , , ..., )
N

y y yy , 
2 2 1 2 2 2

( , , . . . , )
N

y y yy  

The operators between vectors are 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC  171 

                          
1 2 1 1 2 1 1 2 2 2 1 2

(m in ( , ), m in ( , ), ..., m in ( , ))
N N

x x x x x x x x  

                          
1 2 1 1 2 1 1 2 2 2 1 2

(m ax ( , ), m ax ( , ), ..., m ax ( , ))
N N

y y y y y y y y  

The granularity of join hypersphere granule gr(G1G2)=||y1y2—x1x2||2. 

 
Figure 2. Join operators between granules 

 
We explain the join process in 2-dimensional space. Suppose two G1=[0.1 0.2 0.2] 

and G2=[0.25 0.25 0.2], which can be represented as hypersphere (circle) granule, 

hypercube (cube) granule, and hyperdiamond (diamond) granule in 2-dimensional 

space. Two hyperbox (rectangle) granules G1=[0.1 0.2 0.2 0.4] and G2=[0.25 0.25 0.2 

0.5], they are two hyperboxes (rectangles) in 2-dimensional space. The join granules, 

which are labelled by the red curves, are listed in Figure 2. In Figure 2 (a), the join 

circle granule is [0.1750 0.2250 0.2791], in Figure 2 (b), the join cube granule is 

[0.1750 0.2250 0.275], in Fig.2 (c), the join diamond granule is [0.1750 0.2250 0.3], in 

Figure 2 (d), the join rectangle granule is [0.1 0.2 0.3 0.5]. 
 

3.3 Algebra System Induced by Granule Set and Inclusion Relation 

For training set (TS), the algebra system GS, is formed by granule set (GS) and 

fuzzy inclusion relation . The algebra system GS, is proved as fuzzy lattice. 

Because the traditional inclusion relation can't completely reflect the fuzziness, 

randomness, and uncertainty by which the research objectives are evaluated, Kaburlasos 

introduced the positive valuation function to form the fuzzy inclusion relation to 

measure the fuzzy inclusion relation between two granules. The fuzzy inclusion 

measure is compounded by the positive valuation of granules and their join granule.  

2

1 2

1 2

( )
( , )

( )

v G
G G

v G G
 


                                                  (2) 

Where v(G):GSR is the positive valuation function, which is the mapping between 

granule space and real number, and satisfies the equality property and inequality 

property: (1) equality property, G1G2  iff v(G1)v(G2), (2) inequality property, 

v(G1)+v(G2)= v(G1G2)+v(G1G2). We select the increasing function as the positive 

valuation function, which is compounded by the granularity. The positive valuation 

function is (3a) or (3b) 

v(G)=gr(G)+1                                                        (3a) 

( )

1
( )

1 rg G
v G

e






                                                      (3b) 
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and the fuzzy inclusion measure is 

2

1 2

1 2

g ( ) 1
( , )

( ) 1

r

r

G
G G

g G G





 
                                               (4) 

The fuzzy inclusion measure satisfies the following properties.  

 GGS,G, (G, )=0                                                  (5a) 

  (G,G)=1                                                                       (5b) 

 G1G2(G,G1) (G,G2)                                             (5c) 

G1G2G1(G1,G2)<1                                                 (5d) 

For real number set R, N-dimensional real number space R
N
, granule set (GS) 

induced by the training set TS in N-dimensional space R
N
, the following theorems are 

achieved. 

Theorem 1. Algebra system R, is lattice,  is the less than or equal relation 

between two real numbers. 

Theorem 2. Algebra system R
N
,  is lattice,  is the less than or equal relation 

between two vectors, and defined as xyx1y1, x2y2,…,xNyN. 

Theorem 3. Algebra GS, is lattice,  is the inclusion relation between two 

granules. 

Theorem 4. Algebra GS, is fuzzy lattice,  is the fuzzy inclusion relation between 

two granules. 

 

3.4. Bottle Up Granular Computing Classification Algorithms 

For training set TS, the bottle up granular computing classification algorithms are 

proposed by the following steps. Firstly, the samples are used to form the atomic 

granule. Secondly, the threshold of granularity is introduced to conditionally join the 

atomic granules by the aforementioned join operator, and the granule set is composed of 

all the join granules. Thirdly, if all atomic granules are included in the granules of GS, 

the join process is terminated, otherwise, the second process is continued. We explain 

the BUGrC as follows. 

Suppose the atomic granules with the same class labels induced by TS are g1, g2, g3, 

g4, g5. The training process of BUGrC can be described as the following structure of 

tree shown in Figure 3, leafs denote the atomic granules, root denotes GS including its 

child nodes G2 and G3, G1 is induced by join operation of child nodes g1 and g2, G2 is 

the join granule of G1 and g3, G3 is the join granule of g4 and g5. The whole process of 

obtaining GS is the bottle up process. 

GS

g1

g3

g2

g4 g5G1

G3G2

 
Figure 3. The training process of BUGrC including 5 samples 
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The training algorithm and testing algorithm are described as algorithm1 and 

algorithm2. 

Algorithm1. BUGrC 

Input: Training set TS,  threshold  of granularity, the class number n 

Output: Granule set GS, the class label lab 

S1. initialize the granule set GS=, lab= 

S2. i=1 

S3. select the samples with class i, and form set X 

    S31. initialize the granule set GSt= 

    S32. j=1 

    S33. for the jth sample xj in X, form the corresponding atomic granule Gj 

    S34. k=1 

    S35. compute the inclusion measure jk induced by formula (3b) between the 

atomic granule Gj and the kth granule Gk in GSt 

    S36. k=k+1 

    S37. find the maximal inclusion measure jm 

    S38. if the granularity of the join of Gj and Gm is less than or equal to , the 

granule Gm is replace by the join, otherwise Gj is the new member of GSt. 

    S39. remove xj until X is empty. 

S4. GS=GSGSt, lab=lab{i} 

S5. if i=n, output GS and class lab, otherwise i=i+1 

Algorithm2. Testing process 

Input: inputs of unknown datum x, granule set GS, the class label lab 

Output: class label of x 

S1. x is represented as granule g 

S2. for i = 1:|GS| 

S3. compute the fuzzy inclusion measure i between g and gi in GS 

S4. find the maximal inclusion measure m 

S5. find the corresponding class label of the gm as the label of x 

 

4. Experiments 
We evaluated the effectiveness of BUGrC in spaces R

2
 and R

N
 using Intel PIV PC 

with 2.8 GHz CPU and 2 GB memory, running Microsoft Windows XP Professional 

and Matlab 7.0. The classification problems and the shapes of granules are shown in 

spaces R
2 

clearly. Data sets in spaces R
N
 listed in Table 2 are selected from web site 

(http://sci2s.ugr.es/keel/datasets.php)to verify the performance of BUGrC. The data 

sets, and their 10-fold cross validation data and 5-fold cross validation data can be 

found in the Web site. We select 10-fold cross validation data to analyze and discuss 

BUGrCs with different shape granules from testing accuracy including maximization 

(max), minimization (min), mean, and standard deviation (std).  

 

4.1. Classification Problems in space R
2
 

The spiral classification is a difficult problem to be classified, and used to evaluate 

the performance of classifiers. The data proposed in reference [18] are used to evaluate 

the performance of GrC. The data set is composed of 312 data including input in R
2
 and 

3 class labels, the data and the induced granules are showed in R
2
, in which we can see 

the shapes of granules. 
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The threshold  of granularity is form 1 to 0 with step 0.01, the maximal accuracy is 

the selection indicator of optimization algorithms. Performances of BUGrC with four 

kinds of shape are listed in Table 1. The training data and their granules were shown in 

Figure 4 in which the single points are the atomic granules, each point lies in a single 

granule. From the Table 1, we saw, BUGrCs with hypercube granules and hyperbox 

granules achieved the optimization performance because of the minimal size of GS 

including 27 granules when =0.19 and 0.11, BUGrC with hyperdiamond granules is 

poor because of the maximal size of GS including 32 granules when =0.22, and 

BUGrCs with hypersphere granules and hyperdiamond granules touched the best testing 

accuracy firstly. Granular computing classification algorithms with the minimal size of 

granule set are our pursuits in the same conditions for the maximal accuracy. 
 

Table 1. Performance of BUGrC with different shape granules 
Shapes  Size Tr(%) 

Hypersphere 0.22 29 100 

Hypercube  0.19 27 100 

Hyperdiamond 0.22 32 100 

Hyperbox 0.11 27 100 

 

 
Figure 4. Spiral classification problem and GS (a) hypersphere granules, 

(b) hypercube granules, (c) hyperdiamond granule, (d) hyperbox granule.  
 

4.2. Classification Problems in Space R
N
 

In order to evaluate the performance of BUGrC in space RN, four data sets listed in 

Table 2 are selected to perform the algorithms by 10-fold cross validation.  
 

Table 2. Classification problems in RN 
Data sets Sizes Attributes Classes 

Balance 625 4 3 

Wine 178 13 3 

Phoneme 5404 5 2 

Segment 2310 19 7 

We selected the optimal parameters that maximized the testing accuracy. GrCs with 

four kinds of shape are performed in the same environment, and the performance is 

listed in table. From the table 3, we can see, (1) for different classification problems, 
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the BUGrCs with different shape granules achieved the best testing accuracy. For 

classification problem balance, BUGrCs with hypersphere and hypercube granules 

achieved the maximal testing accuracies, and for wine problem, BUGrCs with 

hyperdiamond and hyperbox granules are much better than BUGrCs with hypersphere 

and hypercube granules. (2) the maximal testing accuracy of BUGrCs less than or equal 

to KNN algorithm, the maximal testing accuracy of KNN on data set balance is 

93.6508%, which equals to BUGrCs, the maximal testing accuracy of BUGrCs on data 

set phoneme is 92.9760%, which is greater than 92.7911% obtained by KNN.  (3) From 

the aspect of mean of testing accuracies, BUGrCs with hyperbox have the better testing 

accuracies compared with the other BUGrC. 
 

Table 3. performance of BUGrC on classification problems in space RN 
Data sets Shapes Testing accuracies 

max min mean std 

Balance Hypersphere 93.6508 84.1270 87.8386 2.9220 

Hypercube  93.6508 79.3651 86.0694 4.6559 

Hyperdiamond 92.0635 79.3651 85.9210 3.8678 

Hyperbox 92.0635 84.1270 87.9921 2.7683 

Wine Hypersphere 88.8889 76.4706 80.8824 3.9764 

Hypercube  88.2353 70.5882 78.6601 5.8460 

Hyperdiamond 94.4444 82.3529 88.2026 5.5916 

Hyperbox 100 88.2353 94.3464 3.8175 

Phoneme Hypersphere 92.9760 87.9630 90.7467 1.6353 

Hypercube  92.4214 86.8519 89.9880 1.7296 

Hyperdiamond 92.9760 88.3333 90.6176 1.4865 

Hyperbox 92.7911 88.5185 90.8208 1.4556 

Segment Hypersphere 99.5671 94.8052 97.4026 1.4574 

Hypercube  98.7013 92.6407 95.4978 1.7579 

Hyperdiamond 99.5671 96.1039 97.5758 0.9882 

Hyperbox 99.5671 95.6710 97.7922 1.1758 

 

5. Conclusions 
The bottle up granular computing classification algorithms with different shape granules 

are proposed in the article. Firstly, a training datum is represented as an atomic granule. 

Secondly, the fuzzy inclusion measure between granules is form based on the join operator. 

Thirdly, the bottle up structure of training process is constructed based on the join operator 

and the threshold of granularity jointly. Finally, the proposed granular computing 

classification algorithms are demonstrated by the data set selected from references. BUGrC is 

affected by the sequence of the training data the same as the other granular computing. For 

the future work, we will focus on the distance measure between granules and how to form the 

granule set with mixing granules with different shapes. 
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