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Abstract 

Abundance estimation is an important step of quantitative analysis of hyperspectral remote 

sensing data. Due to physical interpretation, sum-to-one and non-negativity constraints are 

generally imposed on the abundances of materials. This paper presents a geometric approach 

to fully constrained linear spectral unmixing using variable endmember sets for the pixels. 

First, an improved method for selecting per-pixel candidate endmember set is presented, 

which is suitable for dealing with hyperspectral image with large number of endmembers. To 

determine the optimal per-pixel endmember set from the entire endmembers present in the 

hyperspectral scene, an iterative partially constrained geometric unmixing is then performed, 

in which subspace projection is used for fully constrained least square estimation. The 

performance of the resulting unmixing algorithm is evaluated by comparison with benchmark 

unmixing algorithm on synthetic and real hyperspectral data. 

 

Keywords: Abundance Estimation, Full Constraint, Subspace Projection, Hyperspectral 
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1. Introduction 

Hyperspectral remote sensing imagery has been widely used in various applications as its 

rich spectral information provides an effective way of distinguishing different objects. 

However, due to the low spatial resolution of the sensors, the pixels may contain spectra from 

several distinct material substances and be viewed as the “mixed pixels”. To utilize the 

hyperspectral data, these mixed pixels must be decomposed into a set of pure class spectra, 

called endmembers, and their corresponding fractions, called fractional abundances or simply 

abundances. Hyperspectral unmixing is a technique for this purpose. The process of 

hyperspectral unmixing usually involves two steps, extracting the endmembers and estimating 

the abundance of each endmember for each pixel in the image [1]. Most unmixing algorithms 

require several additional steps, such as denoising of the data, dimensionality reduction (DR), 

or estimation of the number of the endmembers, and some unmixing algorithms integrate all 

the steps simultaneously (See [2] for a recent and complete overview of hyperspectral 

unmixing). In this paper, we focus on the abundance estimation step of the hyperspectral 

unmixing process. 

Although nonlinear mixing model has attracted increasing attention in recent years, linear 

mixing model (LMM) is still widely used in the past decade to address spectral unmixing 

problem. The reason is twofold [3]: 1) in spite of its simplicity, LMM is an acceptable 

approximation for the light scattering in many real scenarios; 2) under the LMM, spectral 

unmixing is interpretable as a blind source separation problem or a nonnegative matrix 

factorization problem, which have been vastly researched in many signal processing areas. 
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In LMM, the observed spectral signature in each pixel can be expressed as a linear 

combination of the endmember signatures, weighted by their abundances. Since the 

number of spectral bands usually exceeds the number of endmembers in the image, the 

spectral unmixing problem is cast in terms of an over-determined system of equations. 

For endmember fractions to be meaningful, abundances must sum to one (ASC) and be 

nonnegative (ANC) [4]. The fully constrained abundance estimation approach should 

implement these two constraints simultaneously. The researchers have noted that the 

former constraint is easy to implement [5], for instance, by using lagrangian multipliers, 

the latter one, however, is difficult to deal with, since it results in a set of inequalities 

and does not have a closed-form solution. To this end, many approaches which require 

more advanced optimization methods have been proposed, including nonnegative matrix 

factorization technique [6][7], blind signal separation technique [8], as well as general 

iterative techniques [5]. However, solutions to these problems involve computational 

extensive algorithms, which are not appropriate for a large number of pixels. 

To overcome the heavy computational demands, simplex volume based abundance 

estimation approaches have been proposed, which exploit the fact that the mixed pixels 

lie inside the simplex, endmembers correspond to the vertices of simplex, and thus the 

fractional abundances can be expressed as the barycentric coordinates using a geometric 

formulation [9]. Geng et al. [10] and Honeine et al. [11] have proposed positive volume 

based and signed volume based unmixing methods in original and reduced space, 

respectively. However, solutions to them cannot obey the full constraint simultaneously. 

The new approach proposed in this paper is named geometric estimation based on 

subspace projection using variable endmembers (GESPVE). This method exploits the 

common-sense fact that the number of endmembers that participates in the composition 

of a specific pixel is less than the one present in entire hyperspectral image, especially 

for which covering a large geospatial area. With this in mind, we incorporated the 

subspace projection technique into the process of geometric abundance estimation, and 

adopted an iterative search strategy to minimum residual, rather than an exhaustive one 

used in [12], which leads to extremely expensive computing time. The performance of 

the proposed unmixing algorithm is evaluated by comparison with well-known fully 

constrained least square spectral unmixing (FCLSU) [5] algorithm on simulation and 

real hyperspectral data. 

 

2. Linear Mixing Model and Geometric Abundance Estimation 
 

2.1. Linear Mixing Model 

Most of hyperspectral unmixing algorithms adopt LMM in which a mixed pixel is a 

linear combination of endmembers and the linear coefficient of each endmember is its 

abundance. The hyperspectral unmixing based on LMM is referred to as linear spectral 

unmixing (LSU) or as linear spectral mixture analysis (LSMA). Specifically, LSMA 

models a data sample vector 
1 2

 =  ( , , , )
T

L
x x xx as a linear mixture described by 

   (1) 

where 
,1 , 2 ,

[ , , , ]
T

i i i i L
e e ee  denotes the ith endmember, 

i
α  is the abundance fraction of the ith 

endmember in the pixel, p is the number of endmembers present in the observed scene, L is 

the number of available spectral bands for the image, and n takes into account possible errors. 
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For endmember fractions to be physically meaningful, two constraints are generally 

imposed on (1), which are ASC and ANC specified by , and i≥0, for 1≤i≤

p, respectively. The matrix form of LMM is given by x=E+n, where 
1 2

[    ]e e eE
p

 is 

endmember signatures, 
1 2

[    ]
p

α α α


α  is a column vector of fractional abundance. 

According to convex geometry theory, if both ASC and ANC are satisfied, all the mixed 

or pure pixels will lie in a simplex spanned by all endmembers. 

 

2.2. Geometric Abundance Estimation 

This paper extends the traditional geometric abundance estimation approaches, and 

hence, we first simply introduce two representative method proposed in [10] and [11]. 

For convenient description, we call the former one PVAE, and the latter one SVAE. 

In [10], the volume of the simplex spanned by p endmembers {e1, e2, …, ep} and 

original point O is given by 

( ) ( )
T

1 2

1
, , , , d e t

( 1) !
p

V
p

=
-

O E Ee e e  

Then, the abundance 
i

α  is defined as 

   (2) 

where \ denote the set difference operator, and is the set defined by S, 

where 
i

e  has been removed and x added.  

Using above expression to obtain fractional abundances is straightforward and free of 

DR. However, it does not guarantee that the estimated fractional abundances satisfy the 

ASC. Similarly, in [11] the abundances are expressed as the signed volume of the 

simplex in reduced space rather than in original spectral space. The benefit of this is 

that the abundances always obey the ASC. 

Table 1. Comparison of Two Geometric Abundance Estimation Methods 

Method DR Violation of ASC Violation of ANC 

PVAE No No Yes 

SVAE Yes Yes No 

 

Table 1 shows the comparison results of PVAE and SVAE. As shown by the table, 

both PVAE and SVAE cannot meet the ASC and ANC constraints simultaneously. To 

this end, we will extend the PVAE to satisfy the ASC constraint in the following. 

 

3. Methodology 

According to the position relationship between the mixed pixel and simplex, we 

divide the mixed pixels into two types as follows: the interior pixels, i.e., the pixels 

inside the simplex, and the exterior pixels, i.e., the pixels outside the simplex. As stated 

above, the ASC and ANC constraints constrain the mixed pixel to be in the simplex 

spanned by the endmember vertices. That is to say that the abundance will violate the 

full constraint when a mixed pixel is the exterior one. In this case, solving the fully 
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constrained unmixing problem can be turned into searching for the projection of this 

exterior pixel onto the simplex spanned by an optimal endmember set, and then using (2) 

to obtain the abundances by replacing the exterior pixel with its projection.  With this in 

mind, we present a fully constrained spectral unmixng algorithm in the following subsection. 

 

3.1. Selection of Candidate Endmembers Set 

The image scene captured by the hyperspectral sensor usually cover a large geospatial area, 

and thus the number of endmembers is quite large but only a small subset of these 

endmembers may actually participate in the composition of a specific pixel. For this reason, 

we present a method by modifying an available approach developed in [13], which can assist 

in the selection of optimal per-pixel endmember set. 

The improved method uses a recursive process based on the Gramm-Schmidt orthogonal-

lization to select the candidate endmembers 

   (3) 

where xr is a residual vector, ω is a parameter and 0＜ω≤1, 
m a x

ê is normal endmember 

vector with maximum projection. 

First, each pixel is projected onto all normal endmember vectors, and the most 

efficient projection, which corresponds to that with the highest value cmax, indicates the 

first selected endmember. Then, the residual xr is repeatedly projected onto each of the 

remaining endmembers to find the second selected endmember. 

This process continues continue up to the identification of a complete subset with a 

prefixed maximum number of endmembers, or until no positive residual remains. After 

this process, the candidate endmember set is obtained for each pixel. 

 

3.2. Sub-Simplex Plane Projection 

The main goal of this study is to find an appropriate set of endmembers for each pixel so 

that the projection of the exterior pixel on the sub-simplex plane through these endmmebers 

could lie in the simplex. So, we first address the projection problem. Note that this sub-

simplex plane in fact is the hyperplane through these endmember vertices. As a result, the 

projection on the sub-simplex plane is turned into the projection onto the hyperplane.  

According to knowledge of linear algebra, the projection of point x on hyperplane through 

the endmember vertices {e1, e2, …, ep} can be obtained by adapting the projection onto the 

subspace, i.e., following expression 

  1

1 1
' ( ) ( )

 -
= - +E E E Ex x e e  (4) 

It should be noted that e1 can be replaced by any one in {e2, e3, …, ep}. 

 

3.3. GESPVE Algorithm 

The candidate endmember set (denoted by C) is often not the true optimal one (denoted by 

O), so we consider two typical relationships between C and O, i.e., C  O and C  O, and 

present two iterative algorithms to search optimal endmember set for pixel x and E as follows: 
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Algorithm 1: (C  O) 

Step 1.  set i = 1, construct the difference set R = E − C. 

Step 2.  construct B = C∪ ri, where ri  R. 

Step 3.  calculate the projection of x on the simplex plane formed by B, denoted by ¢
B

x , obtain the 

abundance of ¢
B

x  by (2) using E. 

Step 4.  if the abundance are fully constrained, then set C = B, and go to Step 1, otherwise update i = 

i + 1. 

Step 5.  if ri  R, go to Step 2, else output the optimal per-pixel endmember set C and the 

corresponding abundance 

Algorithm 2: (C  O) 

Step 1.  set i = 1, construct B = C − ci, where ci  C. 

Step 2.  calculate the projection of x on the simplex plane formed by B, denoted by , obtain the 

abundance of  by (2) using E 

Step 3.  if the abundance are not fully constrained, then set C = B, go to Step 1, else output the 

optimal per-pixel endmember set C and the corresponding abundance. 

Based on the above statement, the process of searching for the fully constrained abundance 

is described as follows: 

GESPVE algorithm: 

Step 1.  select candidate endmember set C for the pixel x using (3), calculate R = E−C 

Step 2.  Calculate , obtain its abundance by (2) using E. 

Step 3.  if the abundances are fully constrained and , output the abundances as the optimal 

fully constrained solution to (1). If the abundances are fully constrained but , go to 

Step 4; otherwise go to Step 5. 

Step 4.  perform algorithm 1, and output the results. 

Step 5.  perform algorithm 2, use its outputs as inputs to perform algorithm 1.  

 

4. Experimental Results and Analysis 
In this section, we conduct a series of experiments on synthetic and real hyperspectal data 

to demonstrate the effectiveness of the proposed algorithm. Two algorithms: FCLSU and 

PVAE were considered for comparison purposes.  

To quantitatively evaluate the performances of these algorithms, root mean square error 

(RMSE) is used as the criteria for abundance estimation. For synthetic image, the RMSE is 

defined as follow 

 
2

, ,
1

1
ˆR M S E =

k
α α

N 



N

k j k j

j

 

where N is the number of data points (pixels), 
,

α
k j

 and 
,

α̂
k j

 are the resulting and the 

ground-truth abundance for the kth endmember in the jth pixel, respectively. The 

average value of all RMSE is used to evaluate the performance of the algorithms. 

 

Table 2. Specifications of the PC and Software Used for Experiments 

CPU Memory OS Software 

Pentium (R) 4 

CPU 3.2GHz 
2 GBytes 

Windows XP Professional 

with Service Pack 3 

Matlab 

R2009b 
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To compare the computing time, the same computing environment of the specifications of 

the PC and software used to perform all the versions of GESPVE is specified in Table 2. 

 

4.1. Experiments on Synthetic Data 

In all experiments, the synthetic data are linearly mixed with the known endmembers 

and abundances according to LMM. The endmembers signatures are selected from the 

USGS spectral library [14], and the abundances were generated according to Dirichlet 

distribution [15] whose density enforces the sum-to-one and non-negativity constraints. 

The noise was added using the following expression 

(0 ,1)
.

S N R

q
= M

 
  
 

n  

where q is a randomly generated number with a mean of zero and a standard deviation 

of one, SNR is signal-to-noise ratio, and M is the assumed reflectance for the spectrum. 

According to Harsanyi [16], the SNR is defined as half the reflectance divided by the 

standard deviation of the noise, i.e., M = 0.5. 

The algorithms are evaluated by five experiments. The first experiment aims to test 

the numerical accuracy by comparing the abundance. Experiments 2-5 aim to test the 

computational performance by calculating the computing time for several parameter 

sets with GESPVE, FCLSU, and PVAE algorithms and comparing them one by one. 

Table 3. Comparison of Three Algorithms with Different Noise Level 

Algorithm 
SNR 

15 dB 30 dB 50 dB 70 dB 90 dB 110 dB 

PVAE 0.1341  0.1058 0.0795 0.0623 0.0548 0.0504 

FCLSU 0.1036  0.0793 0.0614 0.0507 0.0449 0.0402 

GESPVE 0.0924 0.0715 0.0563 0.0485 0.0438 0.0399 

 

Experiment 1: In the first experiment, we tested the accuracy by comparing the 

estimated abundance with the real one. Table 3 shows the results for p = 10, L = 224, N 

= 5000, and SNR varied from 15:1 to 110:1. As we can see from the table, the proposed 

algorithm outperforms the well-known FCLSU algorithm, especially for high noise level 

case. The PVAE algorithm performs worst among of them. Specifically, for very high 

SNR, GESPVE slightly outperforms both FCLSU and PVAE. As the noise level 

increases, the performance of PVAE algorithm drops significantly. This shows that the 

fully constrained approaches outperform the partially constrained ones in generally. 

However, the GESPVE still performs better than the FCLSU. 

Experiment 2: In this experiment, we limited the number of endmembers to six in 

each synthetic pixel, i.e., there were at most six endmember signatures per pixel. The 

same limit was adopted in the following experiments. Figure 1 (a) shows the computing 

time of the GESPVE, PVAE, and FCLSU algorithms with L = 224, SNR = 15, N = 5000, 

as the number of endmembers varied from 3 to 15. As shown by the figure, the 

computing time increases exponentially as a function of p for the GESPVE, PVAE and 

FCLSU algorithms approximately. The performance of PVAE was best in terms of 

computing time. We notice that the GESPVE algorithm consumed more time than the 

FCLSU algorithm when the number of endmembers is relatively small, e.g., p < 8 in 

this experiment. This is mainly due to the fact that the candidate endmembers selection 

method presented in Section 3.1 was not effective enough for GESPVE algorithm but 

spent relatively much time. 
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Experiment 3: In this experiment, the impact of the number of data points on the 

GESPVE, PVAE and FCLSU algorithm’s performance is studied. Figure 1 (b) shows 

the results of three algorithm with p = 10, SNR = 15, L = 224, as the number of data 

points varied from 1000 to 50000. It is clear that the computing time of all algorithms 

scales linearly with the number of data points. However, the computing time of the 

FCLSU algorithm increase significantly for increasing N, and the proposed GESPVE 

algorithm outperform the FCLSU algorithm once again. 

 

 
(a)                                                       (b) 

 
(c)                                                        (d) 

Figure 1. Computing Time of GESPVE, PVAE, and FCLSU Algorithms with 
(a) Number of Endmembers (b) Number of Pixels (c) Different Noise Level 

(d) Number of Dimensionality 

Experiment 4: In this experiment, a comparative analysis on the issue of algorithm 

sensitivity to noise is studied by simulating synthetic data with different noise levels . 

The SNR is varied to be 5 dB, 10 dB, 15 dB, 30 dB, 50 dB, 70 dB, 90 dB and 110 dB. 

Figure 1 (c) shows the results with p = 10, L = 224, and N = 5000. As we can see from 

the figure, the PVAE performs best, followed by the GESPVE whose performance is 

second and the FCLSU performs worst. Specifically, both GESPVE and FCLSU 

algorithms perform worse in terms of computing time as SNR decreases, while the 

result of PVAE is not related to the noise level. This is because the PVAE does not deal 

with the case where abundances do not satisfy the ASC constraint, but both GESPVE 

and FCLSU would do. 
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Experiment 5: Finally, the dependence of computing time on the dimensionality is 

shown in Figure 1 (d), where SNR = 15, p = 10, and N = 5000. Experimental results 

show that the computing time of GESPVE, PVAE, and FCLSU algorithms increases as 

the dimensionality increases. This is because the computing time of three algorithms is 

mainly influenced either by the matrix inversion operation or by determinant of matrix, 

where the size of each matrix depends on the dimensionality. Once again, the 

performance of GESPVE algorithm was better than the one of FCLSU algorithm. 

It should be noted that the value of parameter ω was not related to the numerical 

accuracy although it would affect the computational performance of the proposed 

GESPVE algorithm. According to experimental results, the parameter is set as ω = 0.5 

in this paper. 

 

4.2. Experiments on Real Data 

In this subsection, we apply the GESPVE, PVAE, and FCLSU algorithms to the real 

hyperspectral data captured by the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) over Cuprite, Nevada. This data set has been widely used to validate the 

performance of the spectral unmixing algorithms [6], [11], [17]. A sub-scene is used in 

the experiment, which consists of 200 lines and 200 pixels per line. To improve the 

unmixing performance, lower SNR and water-vapor absorption bands were removed 

from the original 224-band data cube. As a result, a total of 188 reflectance channels 

are used in the experiment.  

The estimated number of endmembers using the Hysime method [15] is equal to 18 

and using the VD method [18] is equal to 10. We applied the vertex component analysis 

(VCA) [17] algorithm to extract 18 endmembers of which some endmembers was 

extracted multiple times (e.g., Kaolinite #1, #2, #3; and Alunite #1, #2). It is worth 

mentioning that variants of the same mineral with slightly different spectra can be 

considered as the same endmember, and hence, we set p = 10. Using these endmember 

signatures, GESPVE, FCLSU, and PVAE algorithms are used to estimate the 

abundances. The RMSE is used for evaluating unmixing performance 

2

1

1
ˆ=

j j
j

R M S E
N 



N

x x  

where xj and ˆ
j

x  are the jth pixel vector and its reconstruction vector, respectively 

Table 4 tabulates the computing time and RMSE for the GESPVE, FCLSU, and 

PVAE algorithms. 

Table 4. Computing time of the Algorithms on AVIRIS Cuprite Data Set 

Algorithm FCLSU PVAE GESPVE 

Computing time (second) 102.75 35.43 86.16 

RMSE 0.0759 0.1103 0.0717 

 

As we can see from table, the GESPVE requires less time than the FCLSU, and more 

time than the PVAE. However, the GESPVE performs best in terms of RMSE. In 

conclusion, the experimental results of the real data are consistent with the ones of 

synthetic data. 
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5. Conclusion 

This paper extends the partially constrained abundance estimation method [10] to 

produce fully constrained solution. The GESPVE incorporates the subspace projection 

into the process of geometric abundance estimation, and uses variable endmembers to 

unmix the pixels. The GESPVE is in line with least square criterion and free to DR. The 

tests from the simulated and real data show that the GESPVE algorithm outperforms the 

original PVAE [10] and FSLSU [5] algorithms in terms of spectral unmixing errors. 

The GESPVE has a lower computational efficiency compared to the PVAE. For 

relatively large number of endmembers however, which are typical of most practical 

situations, the GESPVE requires less time than the FCLSU. 
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