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Abstract 

Capture, specification, and communication of requirements is now a critical issue in the 

product development process. Systems Modeling Language (SysML) was developed to 

address systems engineering needs. In this approach, use cases are developed along with lists 

of actions necessary to put them into practice. This paper focuses on the early phases of 

applying textual and diagrammatic narratives in requirements specification and examines a 

SysML-based representation of a development process as an example. The paper shows that 

the series of SysML representations lacks a nucleus around which the various phases of the 

development process can evolve. The paper produces a sample core by using a Flowthing 

Model (FM) and contrasts it with the multifarious textual and graphical descriptions of 

SysML to demonstrate the viability of FM for modeling of requirements and design phases.  
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1. Introduction and Problem Description 

A product development life cycle includes distinct and ordered phases, starting from 

requirements specification and ending with delivery of the product. In the first phase of the 

development life cycle, high-level requirements are defined from analysis of the system 

requirements that do not involve design or verification detail and that may include system 

constraints. The output of this phase is used to derive design requirements utilized in the 

implementation phase without further specification. 

Capture, specification, and communication of requirements is now a critical issue in 

the product development process. In this context, representation and management can 

be plagued with problems because requirements are often ambiguous, incomplete, or 

contradictory, resulting in profound impacts on the quality and cost of system 

development. A highly recurrent cause of failure is poor communication of 

requirements between developers and users [1]. In general, a cause-effect quality-

related relationship exists between requirements specification and the final system [1].  

In the software development life cycle,  

No other part of the conceptual work is as difficult as establishing the detailed technical 

requirements... No other part of the work so cripples the resulting system if done wrong. 

No other part is as difficult to rectify later. [2] 

Many software failures can be attributed to the inherent complexity of the development 

process [3]. Studies have shown that the majority of errors are made during requirements 

analysis, and that most of these errors are not found until the later phases of development [4].  
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We are still having difficulties getting the requirements right. We do a poor job of 

specifying what it is that we want built. Requirements are often ambiguous, unclear, 

incomplete, or contradictory. And developers often guess what is desired, only to have to 

come back later in the cycle and rework their software once discrepancies have been 

discovered. [5] 

The cost of fixing a requirements error grows dramatically during the process: correcting an 

error in a later phase can cost up to 200 times more to fix than one corrected early [6]. This 

problem in requirements specification is not limited to software: 

Requirements errors are often the most serious errors. Investigators focusing on safety-

critical systems have found that requirements errors are most likely to affect the safety of 

embedded system than errors introduced during design or implementation. ([4]; see 

references therein) 

Current practices in management, control, integration, verification, and validation of 

requirements may rely on tabular formats and graphical notations [4], e.g., 

Requirements State Machine Language (RSML) [7], and Specification Toolkit and 

Requirements Methodology (SpecTRM) [8]. Significant progress has been achieved 

with the introduction of such methodologies as object-oriented methods [9-11], unified 

modeling language (UML) [12, 13], and agile development [14]. The resultant tools can 

be used at different levels of the development phases. For example, Statecharts [15] 

used to describe the behavior of systems can also be used to specify requirements 

during design. 

UML has gained significant acceptance as a diagrammatic language for specifying, 

visualizing, constructing, and documenting object-oriented systems development. Systems 

Modeling Language (SysML) [16-18] is based on UML but addresses systems engineering 

needs and is more suitable “to analyze, specify, design, and verify complex systems, … to 

enhance systems quality, improve the ability to exchange systems engineering information 

amongst tools, and [to] help bridge the semantic gap between systems, software, and other 

engineering disciplines” [19]. “In particular, the language provides graphical representations 

with a semantic foundation for modeling system requirements, behavior, structure, and 

parametrics, which is used to integrate with other engineering analysis models” [20]. 

SysML involves modeling of blocks instead of classes in UML, and is said to be easier to 

learn and apply, adding two new diagrams (requirements and parametric diagrams) to the 

seven included from UML, for a total of nine diagram types. SysML makes it possible to 

generate specifications in a single language for heterogeneous teams dealing with the 

realization of system hardware and software blocks. Knowledge is thereby captured through 

models stored in a single repository, enhancing communication among and within teams. In 

the long term, blocks can be reused because their specifications and models enable suitability 

assessment for subsequent projects [21]. 

In UML and SysML, the notion of use case is most often “associated with 

requirements” [22]. The modeling process starts by setting a context that includes what 

is included in the system and what is not, who and what will interact with the system, 

and what information will be passed to and from the system. Then, use cases are 

derived, analyzed, and refined by stakeholders and analysts [23]. Accordingly, use case 

specifications are developed with lists of actions necessary to put them into practice. 
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A use case describes a specific operational aspect of the system... It specifies the behavior 

as perceived by the actors (user) and the message flow between the actors and the use case. 

An actor may be a person, another system or a piece of hardware external to the system 

under development...  [24] 

A use case yields an observable result to a particular actor or user [25]. It describes 

an interaction using text and diagrammatic forms. Alternative paths specify different 

scenarios the system can follow beyond its typical procedures. Diagrammatic 

representation can enhance the clarity and hence the understanding of text-based 

description of requirements, but it does not substitute for text. In general and according 

to Faulk and Brackett [1], users find diagrammatic representation more acceptable than 

text and symbols, whereas many developers prefer to work from textual description.  

This paper focuses on the early phases of applying narratives—textual and 

diagrammatic—in requirements specification. It focuses on a sample SysML depiction 

of a development process. The paper shows that the sample requirements description is 

infested with fragmented representations imported from UML. The sequence of SysMl 

representations lacks a fundamental base or nucleus on which different phases of the 

development process can be developed, analogous to the central role of the blueprin t for 

a complex project such as a high-rise building, where it serves as the core around which 

the building’s framework, an electrical system, water system, and interior walls will be 

built by their various specialists.  This paper develops an alternative representation by 

using a tool called the Flowthing Model (FM), then contrasts the result with these 

multifaceted textual and graphical descriptions, demonstrating the viability of FM in the 

requirements and design phases as a core or base.  

The next section reviews the SysML design process in the context of a sample study 

case. To provide background for the new methodology, and for the sake of 

completeness, FM is briefly described in section 3. Section 4 recasts the study case in 

terms of FM in order to compare the two methodologies side by side. 

 

2. Motivational Study Case: Embedded Systems Requirements 

Quadri et al. [30] propose use of UML in “Model-Driven Engineering” for system 

specifications in order to increase comprehensibility as it enables designers to provide 

high-level descriptions that easily illustrate internal concepts. Their work is within an 

EU [31] project that aims to utilize model-driven techniques in developing real-time 

and embedded systems for avionics and surveillance systems. The project proposes 

using the UML profiles SysML [5] and MARTE [6] to construct tools and technologies 

that support designing and eventually automatically generating code. Quadri et al. [30] 

aim to develop a design methodology that includes both SysML and MARTE “while 

avoiding incompatibilities resulting from simultaneous usage of both profiles.” They 

illustrate their methodology by means of a real-life embedded systems case study: a car 

collision avoidance system. 

In the initial specification phase, diagrams are utilized to integrate SysML 

requirements concepts. Use case Scenarios are then developed, and each use case is 

converted into a SysML block. Thus, once the functional description is complete, the 

designer can partition the system to determine which part of  the system needs 

implementation in hardware and which in software. 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.2 (2014) 

 

 

60   Copyright ⓒ 2014 SERSC 
 

The study case deals with a car collision avoidance system (CCAS) that serves to 

detect and prevent collisions with incoming objects. The CCAS contains two types of 

detection modules: 

- A radar detection module emits waves that collide when an incoming object is reflected. 

The data are sent to an obstacle detection module where the distance to the incoming object is 

calculated and sent to a primary controller. 

- An image tracking module determines the distance to the car by means of image 

computation. The camera sends the data to a secondary controller, which calculates a 

distance; if closer than a specified value, the result is sent to the primary controller. 

The primary controller acts according to the situation at hand. For an imminent 

collision, it can carry out certain emergency actions, such as stopping the engine or 

applying emergency brakes; otherwise, it can decrease the speed of the car and apply 

normal brakes. 

Accordingly, Quadri et al. [30] start with requirements specification to describe the 

initial phase of system conception. Figure 1 shows the different functional 

requirements: the Global Collision Avoidance Strategy and the derived requirements: 

the Imminent Collision Strategy, Near Collision Avoidance Strategy, Additional Timing 

requirements, and Changing Lanes Strategy.  These specifications rely on use case 

scenarios and functional blocks for completion. The use case scenarios are then 

developed as shown in Figure 2. Once the system requirements and use case scenarios 

are specified, a functional block description is drawn, as shown in Figure 3. 

At this point, Quadri et al. [30] discover a need to refine the textual description of 

Fig. 1 where a related use case scenario and a functional block have to be added. We do 

not show the new version of that figure. 

 

 

Figure 1. Partial view of different case scenarios related to the project (from 
[30]) 

 

 

Figure 2. The different case scenarios related to the project (redrawn from [30]) 
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Figure 3. High-level specification using SysML block concepts (partially 
redrawn from [30]) 

 

As claimed previously, we can observe a multiplicity of fragmented representations 

in SysML imported from UML, including different narratives, diagrams, and notions. 

The sequence of representations lacks a constant nucleus or base on which to build 

diverse phases of the process. A brief overview of the alternative tool, FM [26-29], is 

given in the next section.  

 

3. Flowthing Model 

In UML and SysML, “the primary characteristic distinguishing one end of the 

application spectrum from the other is whether activities accept inputs and provide 

outputs while they are executing” [32] (italics added). Activity corresponds to an 

intuitive notion of items: things that change. Thus, an item is an entity that can flow 

through a system, e.g., physical matter and objects, energy, data, software objects. An 

activity is the transformation of items in which items are taken as inputs and provided 

as outputs. 

 

Activities are one of three kinds of behavior model in UML, the other two being 

interactions and state machines. Activities highlight how outputs of one subfunction flow 

to the inputs of another, while interactions focus on messages between objects, and state 

machines emphasize object states and transitions between them based on incoming signals. 

[32] 

 

But a more general conceptualization can be made. Transformation can be related to 

change in three ways: 

1. Change in sphere (system, environment) through being released, transferred, and 

received from one sphere to another. 

2. Change in existence through being created/re-created, e.g., if a things is deleted, then 

it is changed. 

3. Change in form through being processed to change one or more features, e.g., shape, 

color, size. 

Things that change in form, sphere, or existence are called in FM: things that flow 

(flowthings). Things that flow are things that are transformed in form, sphere, or existence 

through being created, released, transferred, processed, arrived, and accepted. This 

characterization is a more general conceptualization of SysML’s things that change and 

transformation from input to output. 
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Flow in FM refers to the exclusive (i.e., being in one and only one) transformation among 

six states (also called stages): transfer, process, creation, release, arrival, and acceptance, as 

shown in Figure 4. We use Receive as a combined stage of Arrive and Accept whenever 

arriving flowthings are always accepted. 

 

 

Figure 4. Flowsystem 
 

The fundamental elements of FM are as follows: 

Flowthing: A thing that has the capability of being created, released, transferred, arrived, 

accepted, and processed while flowing within and between “units” called spheres.   

A flow system (referred to as flowsystem) is a system with six stages and transformations 

(edges) between them. The flow notion in FM corresponds to “atomic flow” in SysML, in 

which only a single type of input or output is specified. Strangely, flows in SysML can be 

discrete (flowthings), streaming, or control, but how does “control” flow? It is not a 

flowthing. In FM, flows can be controlled by the progress (sequence) of a stream of events 

(create, release, transfer within and between spheres, receive, …), or by triggering that 

initiates a new flow. For example, in a computer program, control does not flow through 

instruction; rather, instruction flows through the control sphere. 

Spheres and subspheres: These are the environments (constituents) of the totality of the 

system, such as, e.g., the sphere that comprises a company, a computer, and a person. Spheres 

and subspheres are the conceptual divisions and subdivisions, each with its boundary, in a 

decomposition made to manage complexity. A sphere can include the subsphere of a 

flowsystem as a terminal node in this breakdown. 

In UML and SysML, Control is the determination of the points at which activities perform 

their transformations. Similarly, in FM control is the determination of the points at which 

transferring, releasing, receiving, processing, and creation of flowthings are performed. 

Triggering: Triggering is a transformation (denoted by a dashed arrow) from one flow to 

another, e.g., a flow of electricity triggers a flow of air. 

The exclusiveness of FM stages (i.e., a flowthing cannot be in two stages simulaneously) 

indicates synchronized change of the flowthing. A flowthing cannot be changed in form and 

sphere simultaneously. This is a basic systematic representation of flowthings. Suppose that a 

message is distorted while being transmitted (change in form and sphere) and then restored at 

the destination (using, say, parity-bit correction technique). This case can be described in FM 

as shown in Figure 5, where the white circle represents the original message and the dark one 

represents the distorted message. There is no change in form when moving from one sphere 

to another. Also, the change in form (white/dark, dark/white) occurs while not in the transfer 

stage. 

Similarly, no flowthing can be created and change form (be processed) simultaneously. 

Creation means coming into existence; hence, this transformation is in conflict with change in 
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form (being processed) since the latter requires pre-existence. Also, a flowthing cannot be 

transferred and arrive at the same point in time, and it cannot be received and processed 

instantaneously. 

 

 

Figure 5. Message is exclusively in a single stage 
 

The issue remains of being released and transferred exclusively. The point of transfer is 

the point of departure from the sending sphere. Such a moment is surely preceded by a 

decision to output the flowthing. This decision is actually materialized in time and not a strike 

to the transfer stage. For example, even in a human being, there is an instance of intent 

between mental release of a concept (conscious thought) and actual transfer of the concept in 

a spoken or written communication. Thus a “state” exists that precedes actual transfer no 

matter how insignificant the time between the decision to release and its implementation by 

transfer. This is the state of the change from resident item to exported item before actual exit 

from the source sphere; however, this release state is a significant stage in many situations; 

e.g., a human being prepares a speech, products are stocked in inventory for shipping, etc. 

 

4. Contrasting the Two Representations 

In UML 2, activity diagrams represent activity by a round-cornered rectangle as shown in 

Figure 6, where “Item flow is omitted for brevity” [32].  The arrows in the figure are “control 

flow lines.” Figure 7 shows the corresponding FM representation, where the conceptual 

picture is more complete. 

 

 

Figure 6. Activity definition (from [32]) 
 

 

Figure 7. FM representation that corresponds to Figure 6 
 

The Tank sphere has three subspheres: Liquid, Heated Liquid, and Heat. Sphere here 

denotes a conceptual system that contains other subspheres, or it is a flowsystem. What is 

Tank? It is a sphere that ecompasses Liquid, Heated Liquid, and Heat; analogous to the 

notation Tank(Liquid, Heated Liquid, Heat). What is Liquid? It is a sphere of type flowsystem 

where the flowthing liquid flows through its stages of transfer, receive, and process. Transfer 

(circle 1) occurs at a “valve” where the liquid enters (this is deduced from the direction of the 
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arrow) and is received (2). The Process stage (3) involves checking the liquid level. If the 

result of this checking process indicates the tank is filled, it triggers (4) a flow of heat to the 

tank (5) to be received and processed (6). Processing the heat (i.e., heating the surroundings 

in the tank) triggers (7) the creation (generation) of Heated Liquid (8). Note that this 

conceptual creation means the appearance of this flowthing for the first time. This creation is 

analogous to the notion of plastics being created when polymers are added to a resin, or, 

more dramatically, the conceptual creation of Mr. Hyde from Dr. Jekyll, where Mr. Hyde 

appears in the sphere of Dr. Jekyll from nowhere; he has been created—not arrived from 

another sphere—otherwise he would have been transferred and received from a source 

outside the sphere.    

In Bock’s [32] description, the activity notation is based on Activity definition, Usage, and 

Execution. For example, Figure 8 shows an activity with the same item definition (“classifier” 

in UML), Water, used as output from different activities, Heat Liquid and Supply Water, and 

input to the same activity, Dispense Water [32]. The arrows in Fig 8 now have double 

meanings: some represent control flow, and some denote item flow. The figure can be 

contrasted with the FM representation shown in Figure 9. The figure represents the flow of 

Water (1), Liquid (2), and Heat (3) to produce Hot mix (4). Some Water flows directly as 

Dispense water (5). The Hot mix also generates Dispense water (6). 

 

 

Figure 8. Multiple items of same kind input to an activity usage (from [32]) 
 

 

 

Figure 9. FM representation 
 

Comparing the two diagrammatic representations, FM appears as a straightforward 

description of the situation, similar to textbook illustrations in, say, Physics, while the activity 

diagram provides a shorthand sketch of the situation. Note that all types of notions can be 

superimposed on the basic FM description, e.g., logic, synchronization, constraints symbols. 

In Figure 9, the vertical bar is taken from Petri nets notation to indicate “firing” (triggering to 

generate Hot mix) that depends on the presence of Water, Liquid, and Heat. Note also that 

Hot mix is not present in Figure 8, but deduced and added into the FM description by the 

semantics of events. If heated liquid is supplied with water, a Hot mix of liquid and water is 

generated, causing the flow of Dispense water. This continuity of narration is “forced” by 

basing FM on the concept of conceptual flow of flowthings.   
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Bock [32] enhances Figure 8 to permit distinguishing the temperature of the Dispense 

water as Hot or Cold:  

This requires item usages on the activity definition (parameters in UML)… Parameters … 

to items flowing in and out of activities. Parameters are named to distinguish each input, 

… This requires another layer of item usage, the item usages on activity usages. 

Accordingly, Figure 8 is modified as seen in Figure 10.  

 

 

Figure 10. Use of pins (from [32]) 

 

In FM such additional requirements can be incorporated into the conceptual description 

without the need for additional notions such as parameters and pins. Figure 11 shows the 

required modifications.  Cold water (1) and Hot water (2) are now viewed as separate 

flowthings (different types—colors—of arrows) with their distinguished streams of flow. 

 

 

Figure 11. FM representation with Cold and Hot water 

 

Bock [32] then describes control capabilities in UML 2, and SysML, e.g., needed for 

disabling streaming activities as when a driver turns off a car, or to control buffering. Control 

is treated in SysML as if it were an item accepted as input or provided as output through 

parameters. It supports control values and operators with a classifier called 

CONTROLVALUE. The classifier has instances ENABLE and DISABLE. These values can 

flow through an activity execution like any other item [32]. 

In FM, Control is an integral part of the conceptual representation. Figure 12 shows the 

addition of such a feature. The hot mix triggers (1) temperature measurement that is created 

(2) and processed (3). If it is below or over the threshold (4 and 5, respectively), adjustment 

in the flow of heat is triggered (6).  
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Figure 12. In FM, Control is an integral part of the total conceptual view 
 

 

5. Model Embedded Systems Requirements Revisited 

The aim of this section is to develop a conceptual representation that can serve as a nucleus 

for further development; however, only a partial representation can be shown because of 

space limitations. We start with a partial view (Figure 13) of the Car Use case Scenarios 

shown in Figure 2. 

 

 

Figure 13. Partial view of case scenarios related to the project  
shown in Figure 2 

 

The figure includes the cases: Drive Car, Start Car and Stop Car and includes 

subcases or Use case Scenarios: Reverse Car, Decrease Speed, Apply Brakes. This 

partial view describes the main components of the car system over which other 

subsystems can be superimposed. 

Note that the figure presents a fragment of the description of the car system. Other 

fragments are provided by text, high-level specification using SysML block concepts 

(shown partially in Figure 7), and other diagrams. It can be pointed out here that the 

“embedded system for avionics and surveillance” is built over the basic description of 

the car system, and this is what these SysML descriptions try to represent in a 

piecemeal manner. This system includes Drive, Start, Stop car, Decrease speed, Apply 

brakes, and so forth; accordingly, we utilize these sketchy terms and words appearing in 

SysML diagrams to build a broad car system that can be understood by stakeholders and 

form a core for communicating other requirements including collision avoidance.  
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Figure 14 shows the FM representation of a sample car system. Note that for simplicity’s 

sake, several assumptions are made such as that the car has three gear positions: neutral, drive 

and reverse. In a less compacted representation, a full conceptual map could be developed to 

reach the level of detail shown in typical engineering schemata. The FM description can be 

generated to any level of detail, just as with the blueprint of a building in which, say, some 

interior partitions are marked but not completely represented in the drawing. Figure 14 

presents a compact and convenient level of description; a more complete representation can 

be developed in real cases. 

The driver in Figure 14 uses his/her key to create a signal (circle 1) that flows (2) to the car 

system to be processed (3). There, if the gear is in the neutral position (4), the engine turns on 

(5). Note that both conditions should be present: 

A signal from the driver AND a signal from the gear that it is in the neutral position.  

 

 

Figure 14. A simplified FM description of the car system 
 

This last condition is modelled as the gear triggering the processing (3). Triggering in this 

case can be implemented by a signal from the gear informing of its position.  

Speeding starts with the driver creating (6) a signal (pushing down the gas pedal) that 

flows to the car system (7), where it is processed (8). There, the speeding mechanism is 

triggered (9); however, the gear in this case should be in the drive position to create forward 

movement (11). Similarly, for reverse movement, the driver first creates the reverse signal 

(12) that flows to the car system (13), where it is processed (14). There, if the gear is in the 

reverse position (15) AND there is a drive signal (16), this causes the car to move in the 

reverse direction. 

When the driver creates the brake signal (17), it flows (18) to the car system, where 

it is processed (19) to trigger the creation of the mechanism of slowing (2). The slowing 

is processed at different degrees (21) to trigger gradual stopping of the car and 

cessation of movement (22). 
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6. Conclusion 

This paper focuses on the piecemeal, heterogeneous conceptual descriptions adopted 

in SysML. One disadvantage of such an approach is the lack of a core specification that 

plays the role of central reference in system specification. An alternative representation 

is presented and applied to published SysML cases. We can conclude that the proposed 

Flowthing Model presents a viable tool for creating a core schema for describing 

requirements. Further research will reveal how it can be integrated into the project 

development life cycle. 
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