International Journal of Hybrid Information Technology
Vol.7, No.2 (2014), pp.57-70
http://dx.doi.org/10.14257/ijhit.2014.7.2.07

Drafting Blueprints for Car System Requirements

Sabah Al-Fedaghi

Kuwait University
sabah.alfedaghi@ku.edu.kw

Abstract

Capture, specification, and communication of requirements is now a critical issue in the
product development process. Systems Modeling Language (SysML) was deve
address systems engineering needs. In this approach, use cases are developed alo i
of actions necessary to put them into practice. This paper focuses on the garhy phases of
applying textual and diagrammatic narratives in requirement%wgcifica i xamines a

i

SysML-based representation of a development process as er shows that

the series of SysML representations lacks a nucleus aro h the vari®us phases of the

development process can evolve. The paper produ mple eore By using a Flowthing

Model (FM) and contrasts it with the multifariou ual an%aﬁhical descriptions of
m

SysML to demonstrate the viability of FM for m@ng of req% ents and design phases.

Keywords: SysML, product developmeni@cle re@\ents specifications, use case

1. Introduction and Problem @& ptlo \
incl

A product development i stlnct and ordered phases, starting from
requirements specification and e y of the product. In the first phase of the
development life cycle, h eveI re ts are defined from analysis of the system

requirements that do, n ve design Of verification detail and that may include system
constraints. The o h|s pha used to derive design requirements utilized in the

|mplementat|on phes |thout fu pecification.

Capture, $ ation, communication of requirements is now a critical issue in
the product developme ss. In this context, representation and management can
be plagued W|th pro ecause requirements are often ambiguous, incomplete, or

development. ly recurrent cause of failure is poor communication of
requirements, between developers and users [1]. In general, a cause-effect quality-

contradictory, res# in profound impacts on the quality and cost of system
related reip exists between requirements specification and the final system [1].

In the § are development life cycle,

Qwr part of the conceptual work is as difficult as establishing the detailed technical
uirements... No other part of the work so cripples the resulting system if done wrong.
No other part is as difficult to rectify later. [2]

Many software failures can be attributed to the inherent complexity of the development
process [3]. Studies have shown that the majority of errors are made during requirements
analysis, and that most of these errors are not found until the later phases of development [4].

ISSN: 1738-9968 [JHIT
Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

We are still having difficulties getting the requirements right. We do a poor job of
specifying what it is that we want built. Requirements are often ambiguous, unclear,
incomplete, or contradictory. And developers often guess what is desired, only to have to
come back later in the cycle and rework their software once discrepancies have been
discovered. [5]

The cost of fixing a requirements error grows dramatically during the process: correcting an
error in a later phase can cost up to 200 times more to fix than one corrected early [6]. This
problem in requirements specification is not limited to software:

Requirements errors are often the most serious errors. Investigators focusing on safety-
critical systems have found that requirements errors are most likely to affect the safety of
embedded system than errors introduced during design or implementatio / see

references therein)
Current practices in management, control, integratio ificatio Qlidation of
requirements may rely on tabular formats and cal , notatighs [4], e.g.,
Requirements State Machine Language (RSML)=R{} and S ec\?ion Toolkit and
Requirements Methodology (SpecTRM) [8]. Si ant p%s; as been achieved
with the introduction of such methodologies as objeCt-orientedNrethods [9-11], unified
modeling language (UML) [12, 13], and agil elopm@q The resultant tools can
be used at different levels of the deve.lo@ phases. example, Statecharts [15]
an

used to describe the behavior of sy%ﬁﬁg ‘@ used to specify requirements

during design.

UML has gained signifiginﬂ& nce as &I grammatic language for specifying,
t
) 8] i

visualizing, constructing, and_d ing, offleet-oriented systems development. Systems
Modeling Language (SysML %i UML but addresses systems engineering
needs and is more suitabl analyz cify, design, and verify complex systems, ... to
enhance systems quqlit&ove the abiMity to exchange systems engineering information
amongst tools, and{%[Ip brid e%_‘semantic gap between systems, software, and other
engineering discipfine®’ T19]. « ieular, the language provides graphical representations
with a semaptie datio r modeling system requirements, behavior, structure, and
parametrics, is use grate with other engineering analysis models” [20].

SysML involves mo of blocks instead of classes in UML, and is said to be easier to
learn and apply, addi 0 new diagrams (requirements and parametric diagrams) to the
seven included fr, L, for a total of nine diagram types. SysML makes it possible to
generate specifications in a single language for heterogeneous teams dealing with the

realization ® tem hardware and software blocks. Knowledge is thereby captured through
models s %‘ in a single repository, enhancing communication among and within teams. In
the lo , blocks can be reused because their specifications and models enable suitability

-* for subsequent projects [21].

ML and SysML, the notion of use case is most often “associated with
requirements” [22]. The modeling process starts by setting a context that includes what
is included in the system and what is not, who and what will interact with the system,
and what information will be passed to and from the system. Then, use cases are
derived, analyzed, and refined by stakeholders and analysts [23]. Accordingly, use case

specifications are developed with lists of actions necessary to put them into practice.

.'@»

58 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

A use case describes a specific operational aspect of the system... It specifies the behavior
as perceived by the actors (user) and the message flow between the actors and the use case.
An actor may be a person, another system or a piece of hardware external to the system
under development... [24]

A use case yields an observable result to a particular actor or user [25]. It describes
an interaction using text and diagrammatic forms. Alternative paths specify different
scenarios the system can follow beyond its typical procedures. Diagrammatic
representation can enhance the clarity and hence the understanding of text-based
description of requirements, but it does not substitute for text. In general and according
to Faulk and Brackett [1], users find diagrammatic representation more acceptable than
text and symbols, whereas many developers prefer to work from textual descripti .

This paper focuses on the early phases of applying narratlves—t
diagrammatic—in requirements specification. It focuses on a sample Sy, eplctlon
of a development process. The paper shows that the sample require %rlptlon is
infested with fragmented representations imported fro %’The%}

e of SysMl
representations lacks a fundamental base or nucleus phases of the

development process can be developed, analogou ntral ro the blueprint for
a complex project such as a high-rise building, W‘t serv%}e core around which
the building’s framework, an electrical syste ater system, ahd interior walls will be
built by their various specialists. This pape%elops r@ernatlve representation by
using a tool called the Flowthing Mode) thenx ts the result with these
multifaceted textual and graphical des ns d rating the viability of FM in the

requirements and design phases as a o r ba
The next section rewews th de5|gn ss in the context of a sample study

case. To provide backgr methodology, and for the sake of
completeness, FM is briefly |be n 3. Section 4 recasts the study case in
terms of FM in order to c@are the hodologles side by side.

2. Motlvatlonal @bedded Systems Requirements

Quadri et 0 propo of UML in “Model-Driven Engineering” for system
specificatio rder tq, i ase comprehensibility as it enables designers to provide
high-level deSEfiptions easily illustrate internal concepts. Their work is within an
EU [31] project tha to utilize model-driven techniques in developing real-time
and embedded s for avionics and surveillance systems. The project proposes
using the UML Profiles SysML [5] and MARTE [6] to construct tools and technologies

that suppoE !esig ing and eventually automatically generating code. Quadri et al. [30]

aim to d a design methodology that includes both SysML and MARTE “while
avoidi ompatibilities resulting from simultaneous usage of both profiles.” They
ilgr heir methodology by means of a real-life embedded systems case study: a car
c n avoidance system.

the initial specification phase, diagrams are utilized to integrate SysML
requirements concepts. Use case Scenarios are then developed, and each use case is
converted into a SysML block. Thus, once the functional description is complete, the
designer can partition the system to determine which part of the system needs
implementation in hardware and which in software.

Copyright © 2014 SERSC 59

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

The study case deals with a car collision avoidance system (CCAS) that serves to
detect and prevent collisions with incoming objects. The CCAS contains two types of
detection modules:

- A radar detection module emits waves that collide when an incoming object is reflected.
The data are sent to an obstacle detection module where the distance to the incoming object is
calculated and sent to a primary controller.

- An image tracking module determines the distance to the car by means of image
computation. The camera sends the data to a secondary controller, which calculates a
distance; if closer than a specified value, the result is sent to the primary controller.

The primary controller acts according to the situation at hand. For an i mlnent
collision, it can carry out certain emergency actions, such as stopping the

applying emergency brakes; otherwise, it can decrease the speed of the car pply
normal brakes Q
Accordingly, Quadri et al. [30] start with requirem tlflc oprto~Uescribe the
initial phase of system conception. Figure 1 the d t functional
requirements: the Global Collision Avoidance Sgr nd the d requirements:

the Imminent Collision Strategy, Near Collision @ ance 9& , Additional Timing

requirements, and Changing Lanes Strategy.. Th&Se specifications rely on use case
scenarios and functional blocks for compietion. The case scenarios are then
developed as shown in Figure 2. Once«th em requirggients and use case scenarios
are specified, a functional block descr%/ S dr shown in Figure 3.

At this point, Quadri et al. [30]

era refine the textual description of
Fig. 1 where a related use case and a fu nal block have to be added. We do
not show the new version on 6

S N —— e
i Detect Colli bWmeans of the installed radar

” detectgon or by #hc image tracking system. I\. car Collision Avoidance Sirategy 3

Lol P S.“E Switching between radar and image tracking . When external object is less than 3
(When external object is less th . i upon requirements and weather s<drive=> Inctors away, the controller should
idriver should be notified by an ala D, | ition® Take appropriate actions to aveid witch to aw‘raming state. If the
system should swuchm a criffcal§gariing state. If the ollj$ion #nd notify the driver. ystem remains in this stdlefu[300
gystem remains in critiea ing State for more than ittt A - o then the driver ...
300 ms and distangf from Ghjcolyis less than 2 mgfeTs “<drivg>> o -
the engine should Bl stopped] brakes shouléhbe - -~ .
applied, scatbelts shguld baftensioned and aishas T, ol

i S The radar or the image tracking module should send the data to the controller every 100 ms via the system
should be deployed. brakes should be| 8 8 Ty !
100 ms us and communication should take 20 ms, during which the bus should be buzy. In case of imminent
% 1 kollision, the controller should send the brake comm and which should take no more than 20 ms.

________________ i B B

Figure 1. Pa@ew of different case scenarios related to the project (from

[30])
o

Car Usecase Scenarios

O - K mclude
@ 111L,lucre -

~crease Speed

E\{tend |
.-‘-“‘-‘-‘-'- V - = ~
“<include>>
\ 1 d -1 e —
f"iexleud?y:» U‘L ude- -nclmde

Figure 2. The different case scenarios related to the project (redrawn from [30])

Notification to other cars aud pcdcstrmns

60 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

“Block> “Block> “Block>

Doors 2. % [Starting System Fuel Supply System
_ ! ; -

“Block~ 0T é:B;;E» =il

[onition System O, | % ‘te.

o1 - -
Block> ‘Block, Requirément Related Allocated>
Steering System “ar Collision Avoidance Module

Figure 3. High-level specification using SysML block concepts (partially
redrawn from [30])

in SysML imported from UML, including different narratives, diagrams, a
The sequence of representations lacks a constant nucleus or base on

diverse phases of the process. A brief overview of the a ative to 26-29], is
given in the next section. %

3. Flowthing Model Q
In UML and SysML, “the primary ch eristic di

istingiishing one end of the
application spectrum from the other is w actm %ccept inputs and provide
outputs while they are executing” [3 hcs added ctivity corresponds to an
intuitive notion of items: things that item is an entity that can flow

through a system, e.g., phy3|cal ma d ob;%'\e ergy, data, software objects. An
activity is the transformation |n WhICh are taken as inputs and provided
as outputs.

Activities are one of kinds effavior model in UML, the other two being
interactions and sta Ines. Agtiviti€s highlight how outputs of one subfunction flow
to the inputs of , while i ctions focus on messages between objects, and state
machines emp object st nd transitions between them based on incoming signals.

[32] O

But a more gener Q‘eptuallzatlon can be made. Transformation can be related to
change in three ways;

1. Change M sphere (system, environment) through being released, transferred, and
gived frGm one sphere to another.

@ Change in form through being processed to change one or more features, e.g., shape,
color, size.

Things that change in form, sphere, or existence are called in FM: things that flow
(flowthings). Things that flow are things that are transformed in form, sphere, or existence
through being created, released, transferred, processed, arrived, and accepted. This
characterization is a more general conceptualization of SysML’s things that change and
transformation from input to output.

Copyright © 2014 SERSC 61

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

Flow in FM refers to the exclusive (i.e., being in one and only one) transformation among
six states (also called stages): transfer, process, creation, release, arrival, and acceptance, as
shown in Figure 4. We use Receive as a combined stage of Arrive and Accept whenever
arriving flowthings are always accepted.

Create P Release p| Transfer >
l / I I

Process |4——— Accept |q Arrive R

*
Figure 4. Flowsystem ?y

The fundamental elements of FM are as follows:

Flowthing: A thing that has the capability of being createds Ieased,@erred, arrived,
accepted, and processed while flowing within and betwe its cal@ res.

A flow system (referred to as flowsystem) is a sy| h si es and transformations
(edges) between them. The flow notion in FM correspOnds to “atgmiic flow” in SysML, in
which only a single type of input or output is ified. Str ly, flows in SysML can be
discrete (flowthings), streaming, or corur how do control” flow? It is not a
flowthing. In FM, flows can be controll ? e p og (sequence) of a stream of events

(create, release, transfer within and ceive, ...), or by triggering that
initiates a new flow. For example s compute ram control does not flow through

instruction; rather, instruction % ugh,th trol sphere.
re t

Spheres and subspheres: These h@tonments (constituents) of the totality of the
system, such as, e.g., the s that corﬁﬁ[S a company, a computer, and a person. Spheres
s

and subspheres are th ptual diyisions and subdivisions, each with its boundary, in a
decomposition ma lexity. A sphere can include the subsphere of a
flowsystem as at I node in breakdown.

In UML :9 r@ is the determination of the points at which activities perform
their transformations. S| y, in FM control is the determination of the points at which
transferring, releasmg Iving, processing, and creation of flowthings are performed.

Triggering: Tng@ is a transformation (denoted by a dashed arrow) from one flow to
another, e.g., a flow of electricity triggers a flow of air.

eness of FM stages (i.e., a flowthing cannot be in two stages simulaneously)
hronized change of the flowthing. A flowthing cannot be changed in form and
S ultaneously. This is a basic systematic representation of flowthings. Suppose that a
r@e is distorted while being transmitted (change in form and sphere) and then restored at
the destination (using, say, parity-bit correction technique). This case can be described in FM
as shown in Figure 5, where the white circle represents the original message and the dark one
represents the distorted message. There is no change in form when moving from one sphere
to another. Also, the change in form (white/dark, dark/white) occurs while not in the transfer
stage.

Similarly, no flowthing can be created and change form (be processed) simultaneously.
Creation means coming into existence; hence, this transformation is in conflict with change in

62 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

form (being processed) since the latter requires pre-existence. Also, a flowthing cannot be
transferred and arrive at the same point in time, and it cannot be received and processed
instantaneously.

Create elease Transfej _ -
S Destination £a TOEESS €CEIVE || Tansfer
(8" TR P | soue (O] - | g e
1
Channel |Tra(u)sfer|_|Rec ive |_’F‘r cess l- _______ Cregte elegse |p{Tragsfer

Figure 5. Message is exclusively in a single stage

0

The issue remains of being released and transferred exclusively. The point o
the point of departure from the sending sphere. Such a moment is surely by a
decision to output the flowthing. This decision is actually materialized in t|m t a strike

to the transfer stage. For example, even in a human be ene is e of intent
between mental release of a concept (conscmus thought) al trans the concept in

a spoken or written communication. Thus a “state” @\at prec le ctual transfer no
matter how insignificant the time between the deC| elea mplementatlon by
transfer. This is the state of the change from re5|dent to ex em before actual exit
from the source sphere; however, this release is a signi t stage in many situations;
e.g., a human being prepares a speech, produ@ stocked I N entory for shipping, etc.

4. Contrasting the Two Repre |ons
In UML 2, activity dlagrams t activj round cornered rectangle as shown in
Figure 6, where “Item flow is ed for bré 32] The arrows in the figure are “control

flow lines.” Figure 7 shows the corr FM representation, where the conceptual
picture is more complete. &

(i Apply Heat ®
v

re 6. Activity definition (from [32])

S
1} 2] | Tank Heated Liquid

- ransfe cceive Proced 3 5 9
itn - p Transfer Heat Process = =+ >

4) =
i ® | Receive |4

Figure 7. FM representation that corresponds to Figure 6

The Tank sphere has three subspheres: Liquid, Heated Liquid, and Heat. Sphere here
denotes a conceptual system that contains other subspheres, or it is a flowsystem. What is
Tank? It is a sphere that ecompasses Liquid, Heated Liquid, and Heat; analogous to the
notation Tank(Liquid, Heated Liquid, Heat). What is Liquid? It is a sphere of type flowsystem
where the flowthing liquid flows through its stages of transfer, receive, and process. Transfer
(circle 1) occurs at a “valve” where the liquid enters (this is deduced from the direction of the

Copyright © 2014 SERSC 63

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

arrow) and is received (2). The Process stage (3) involves checking the liquid level. If the
result of this checking process indicates the tank is filled, it triggers (4) a flow of heat to the
tank (5) to be received and processed (6). Processing the heat (i.e., heating the surroundings
in the tank) triggers (7) the creation (generation) of Heated Liquid (8). Note that this
conceptual creation means the appearance of this flowthing for the first time. This creation is
analogous to the notion of plastics being created when polymers are added to a resin, or,
more dramatically, the conceptual creation of Mr. Hyde from Dr. Jekyll, where Mr. Hyde
appears in the sphere of Dr. Jekyll from nowhere; he has been created—not arrived from
another sphere—otherwise he would have been transferred and received from a source
outside the sphere.

In Bock’s [32] description, the activity notation is based on Activity definition, Usage, and
Execution. For example, Figure 8 shows an activity with the same item definition (“clagsi
in UML), Water, used as output from different activities, Heat Liquid and Supply
input to the same activity, Dispense Water [32]. The arrows in Fig 8 n ae double
meanings: some represent control flow, and some denote item flow. Thé, figire can be
contrasted with the FM representation shown in Figure 9. idure refresents the flow of
Water (1), Liquid (2), and Heat (3) to produce Hot mix (4 e YWatenflows directly as
Dispense water (5). The Hot mix also generates Disp@ ter (6 K/

lAct Pr le W ’J \\
ct Provide ater
A * %
:HEE[]-_uiqllid "% [atg

Supply Water ('.
£ N
Figure 8. Multiple itemso&aQe kin@ut to an activity usage (from [32])

A.(\Q \®

@ = (5) Tenk ,

T >

efeive elea:

== reate

L J

provides a shorthand sketch of the situation. Note that all types of notions can be
superimposed on the basic FM description, e.g., logic, synchronization, constraints symbols.
In Figure 9, the vertical bar is taken from Petri nets notation to indicate “firing” (triggering to
generate Hot mix) that depends on the presence of Water, Liquid, and Heat. Note also that
Hot mix is not present in Figure 8, but deduced and added into the FM description by the
semantics of events. If heated liquid is supplied with water, a Hot mix of liquid and water is
generated, causing the flow of Dispense water. This continuity of narration is “forced” by
basing FM on the concept of conceptual flow of flowthings.

64 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

Bock [32] enhances Figure 8 to permit distinguishing the temperature of the Dispense
water as Hot or Cold:

This requires item usages on the activity definition (parameters in UML)... Parameters ...

to items flowing in and out of activities. Parameters are named to distinguish each input,

... This requires another layer of item usage, the item usages on activity usages.
Accordingly, Figure 8 is modified as seen in Figure 10.

|Act Provide Water Heat Liquid | kiquid
Liqui .
quid [_] Hot Watery] D1s?ense
Water [5[] Water V‘
T Cold
Supply Water Water v

Figure 10. Use of pins (from [3])0
In FM such additional requirements can be inc @ﬂt th
a

0rpor.
without the need for additional notions such as pe s and ‘pins.

required modifications. Cold water (1) and Hot er (2) ar

igure 11 shows the
viewed as separate

*

flowthings (different types—colors—of arrows)Nyith their d@ished streams of flow.

— /l—¢ra.nsfer —
ColdWaterI \

Tiquid

—{TransteroReceive —o = = -

Different types of
flow

e 11. iweresentation with Cold and Hot water

Bock [32] then d control capabilities in UML 2, and SysML, e.g., needed for

disabling streamin ies as when a driver turns off a car, or to control buffering. Control
is treated in Syy& if it were an item accepted as input or provided as output through
parameters: supports control values and operators with a classifier called
UE. The classifier has instances ENABLE and DISABLE. These values can
flow t an activity execution like any other item [32].
Control is an integral part of the conceptual representation. Figure 12 shows the
ad n of such a feature. The hot mix triggers (1) temperature measurement that is created
(2) and processed (3). If it is below or over the threshold (4 and 5, respectively), adjustment
in the flow of heat is triggered (6).

Copyright © 2014 SERSC 65

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

Tank
i Transfer i >
Releive| oo vvater | — | Hot Water

___________ Hot mix .

ITra.nsfer |-ﬁRecei\‘e| Liguid elease
-4
Transfer [-Receive| pfprocessf T | et e
Heat
- ——————— - L If below threshel 4
) _

: \/.
Figure 12. In FM, Control is an integral part of the total co&@v
N

5. Model Embedded Systems Requiremen I itec\>/
can serve as a nucleus

The aim of this section is to develop a conceptual sentatio
for further development; however, only a par. epresent% can be shown because of
space limitations. We start with a partial vj igure 13\ he Car Use case Scenarios

shown in Figure 2. \ .
N\

\Partial Car Use case Scena.*s@ @
“ * = <<includazz- "

shown in Figure 2

Fil; Pa&&ew of case scenarios related to the project

e superimposed.

he figure presents a fragment of the description of the car system. Other
fr are provided by text, high-level specification using SysML block concepts
(% partially in Figure 7), and other diagrams. It can be pointed out here that the
“embedded system for avionics and surveillance” is built over the basic description of
the car system, and this is what these SysML descriptions try to represent in a
piecemeal manner. This system includes Drive, Start, Stop car, Decrease speed, Apply
brakes, and so forth; accordingly, we utilize these sketchy terms and words appearing in
SysML diagrams to build a broad car system that can be understood by stakeholders and
form a core for communicating other requirements including collision avoidance.

66 Copyright © 2014 SERSC

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

Figure 14 shows the FM representation of a sample car system. Note that for simplicity’s
sake, several assumptions are made such as that the car has three gear positions: neutral, drive
and reverse. In a less compacted representation, a full conceptual map could be developed to
reach the level of detail shown in typical engineering schemata. The FM description can be
generated to any level of detail, just as with the blueprint of a building in which, say, some
interior partitions are marked but not completely represented in the drawing. Figure 14
presents a compact and convenient level of description; a more complete representation can
be developed in real cases.

The driver in Figure 14 uses his/her key to create a signal (circle 1) that flows (2) to the car
system to be processed (3). There, if the gear is in the neutral position (4), the engine turns on
(5). Note that both conditions should be present:

'0\/‘
\/

A signal from the driver AND a signal from the gear that it is in the neutral posi

Driver

Neutral | (gear)
signal | Create | |Re1ease‘Transfer| |Transfer| |Rece1\'e | |Pmcess |

S,““Ch [Create F={Release/Transfer l—ﬂml—ﬁmi"e
signal @ CI
oL
\‘
shon gas) 7 8 B
Speed fshons 7 S P 2 JProcess 46
sig;;l -J.Create HRelease Transfer '——'Transfer B Process Create AND e |- |- (@ Craatz
5 7 N ®

15

’ T

' I

o | Drve T |

Drive ear XN (gear) @ ! !
signal Create |={Release Transfer =1 s Proc® [~ T-T~ -~ > |
Create :

!

J

Reverse |ecan D = @ Rewverse (gear) @
Signal \[Create |—{Release Transt Framstes PNfectiye T [Frocess | 1 ={- - -~ - ==~
S 4

A2
* \ - Slowing
Brake @ 18 rake signal ” Proces @
Sig;lal Bele w Feceive MPmcess |——- —*Create Stop - -- H# De-create

57 Movement

b
[

L/
@ plified FM description of the car system

This last conditi @.odelled as the gear triggering the processing (3). Triggering in this
case can be impla@d by a signal from the gear informing of its position.

Speeding, starts With the driver creating (6) a signal (pushing down the gas pedal) that
flows to %"system (7), where it is processed (8). There, the speeding mechanism is
trigger however, the gear in this case should be in the drive position to create forward
m ré (12). Similarly, for reverse movement, the driver first creates the reverse signal
(t flows to the car system (13), where it is processed (14). There, if the gear is in the
reverSe position (15) AND there is a drive signal (16), this causes the car to move in the
reverse direction.

When the driver creates the brake signal (17), it flows (18) to the car system, where
it is processed (19) to trigger the creation of the mechanism of slowing (2). The slowing
is processed at different degrees (21) to trigger gradual stopping of the car and
cessation of movement (22).

Copyright © 2014 SERSC 67

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

6. Conclusion

This paper focuses on the piecemeal, heterogeneous conceptual descriptions adopted
in SysML. One disadvantage of such an approach is the lack of a core specification that
plays the role of central reference in system specification. An alternative representation
is presented and applied to published SysML cases. We can conclude that the proposed
Flowthing Model presents a viable tool for creating a core schema for describing
requirements. Further research will reveal how it can be integrated into the project
development life cycle.

Acknowledgements

I would like to acknowledge the reviewers, as their comments have been constructive and
helpful. Also, | would like to thank SERSC for providing a free processing for
publication. 0
References *’ @
[1] S. Faulk, J. Brackett, P. Ward and J. Kirby Jr., “The Co od for ReaWRequirements”, IEEE

Software, vol. 9, no. 5, (1992) September, pp. 22-33. y

[2] F. Brooks, “No Silver Bullet: Essence and Accidents of re Engin% , Computer, vol. 20, no. 4,

(1987) April, pp. 10-19.
[3] J. Chen, H. Wang, Y. Zhou and S. D. Bruda, "Co

JDCTA: Int. J. of Digital Content Tech. and its»A|
[4] U.S. Department of Transportation,

DOT/FAA/AR-08/34, (2009) May, http://ywe

ity*Metrics ponent-based Software Systems",
tions, vol. 5, nO83, (2011), pp. 235-244.

ents n@ring Management Findings Report”,
.gov/ai i /design_approvals/air_software/media/AR-08-

34.pdf.
[5] J. Marasco, “Software developmeft tivity and project success rates: Are we attacking the right
problem?”, (2006), http://www.% velop: rational/library/feb06/marasco/.
[6] B.Boehm, “Software Engineering omics”, iee=Hall, Englewood Cliffs, NJ, (1981).
[71 N. Leveson, M. Heimdahl, Hildreth . Recse, “Requirements Specifications for Process-Control
r@Soﬁware Engingering, vol. 20, no. 9, (1994) September, pp. 684-707.

Systems”, IEEE Transacti
[8] J. Howard, “Preserxinétem Safety\across the Boundary between System Integrator and Software
Contractor”, Proceetli tl
[9] P.Coadand E. Y. ien|
[10] 1. Jacobso t-Oriented Softwafe Engineering”, ACM Press, New York, (1991).
[11] J. Rumba @rlani, F. Eddy and W. Lorensen, “Object-Oriented Modeling and Design”,

aha, W.

Prentice-Ha per Sadfh . NJ, USA, (1991).

[12] 1. Jacobson, G. Boocl umbaugh, “The Unified Modeling Language User Guide”, Addison-Wesley,
Reading, MA, USA, (

ing MA, (2003) September.

[14] J. A mith,*“Adaptive Software Development: A Collaborative Approach to Managing Complex
Systems”’ t House, New York, USA, (2000).

[15] D. Ha atecharts: A Visual Formalism for Complex Systems”, Science of Computer Programming, vol.
8, 87), pp. 231- 274.

:/[staff.iha.dk/foh/Foredrag/SysML-SystemEngineering-DSFD-15-03-2010.pdf.

[17]%€" Friedenthal, A. Moore and R. Steiner, “A Practical Guide to SysML: The Systems Modeling Language”,
Elsevier, ISBN 0123852064, 9780123852069, (2011).

[18] T. Weilkiens, “Systems Engineering with SysML/UML: Modeling, Analysis, Design”, Elsevier, ISBN:
9780123742742, (2008).

[19] Object Management Group UML channel, UML & SysML modelling languages: Expertise and blog articles
on UML, SysML, and Enterprise Architect modelling tools, (2013) February,
http://Aww.umlchannel.com/en/sysml.

[20] OMG Systems Modeling Language, The Official OMG SysML site, http://www.omgsysml.org/.

[% . Hansen, “SysML — a modeling language for systems engineering”, (2010),

68 Copyright © 2014 SERSC

http://www.ibm.com/developerworks/rational/library/feb06/marasco/
http://staff.iha.dk/foh/Foredrag/SysML-SystemEngineering-DSFD-15-03-2010.pdf
http://www.omgsysml.org/

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

[21] Guillaume Finance, SysML Modelling Language explained (2010),
http://www.omgsysml.org/SysML_Modelling_Language_explained-finance.pdf.

[22] A. Cockburn, “Writing Effective Use Cases”, Addison-Wesley, Boston, MA, (2001).

[23] J. A. Lane and T. Bohn, “Using SysML modeling to understand and evolve systems of systems”, Systems
Engineering, vol. 16, no. 1, (2013), pp. 87-98.

[24] H. -P. Hoffmann, “Systems Engineering Best Practices with the Rational Solution for Systems and Software
Engineering”, IBM Software Group, Deskbook Release 3.1.2, (2011) February.

[25] 1. Alexander and T. Zink, “An Introduction to Systems Engineering With Use Cases”, IEEE Computer and
Control Engineering, vol. 13, no. 6, (2002) December, pp. 289-297.

[26] S. Al-Fedaghi, “Conceptual Software Testing: A New Approach”, Int. Review on Computers and Software,
vol. 8, no. 8, (2013) August.

[27] S. Al-Fedaghi, “Flow-based Enterprise Process”, Int. J. of Database Theory and Application, vol. 6, no. 3,
(2013), pp. 59-70.

[28] S. Al-Fedaghi, “A Method for Modeling and Facilitating Understanding of User Requirements i Softwa;e

[29] S. Al-Fedaghi, “Schematizing Proofs based on Flow of Truth Values in Logic”, IEEE ional
Conference on Systems, Man, and Cybernetics (IEEE SMC 2013), Manchester, UK, (201

[30] I. R. Quadri, A. Sadovykh and L. S. Indrusiak. “MADES: a SysML/MARTE high le
real-time and embedded systems”, In Proceedings of the 2012 Embedded Real ti
Conference, Toulouse, France, (2012) February.

dology for
and Systems

s domain,” in First

Paris, France, (2010) June, pp. 5-9.
[32] C. Bock, “SysML and UML 2 Support for Activity Modeling?Syst. Enginetgirig, vol. 9, no. 2, (2006) May,
pp. 160-186.

[31] A. Bagnato, et al., “MADES: Embedded systems engineering Appgodch®in tig, avio
Workshop on Hands-on Platforms and tools for model-baQ i eeringﬂ‘@ ed Systems (HOPES),

>

o8 @
& Q¥
Sabah ﬁ@hi . %
He holds an'MS an\h in computer science from the Department

of Elggtrical En ing and Computer Science, Northwestern
Wnife , Evan§ton, "1llinois, and a BS in Engineering Science from
Arigona St rsity, Tempe. He has published two books and more
180 pa i journals and conferences on software engineering,

databas tems, information systems, computer/information privacy,
securg assurance, information warfare, and conceptual modeling.
He=ji associate professor in the Computer Engineering Department,

t University. He previously worked as a programmer at the Kuwait

& Company, where he also headed the Electrical and Computer

Engineering Department (1991-1994) and the Computer Engineering
Department (2000-2007).

%

Copyright © 2014 SERSC 69

http://www.omgsysml.org/SysML_Modelling_Language_explained-finance.pdf

International Journal of Hybrid Information Technology
Vol.7, No.2 (2014)

70 Copyright © 2014 SERSC

